Automatic detection of pulmonary embolism in computed tomography pulmonary angiography using Scaled‐YOLOv4

Background Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 50; číslo 7; s. 4340 - 4350
Hlavní autori: Xu, Haijun, Li, Huiyao, Xu, Qifei, Zhang, Zewei, Wang, Ping, Li, Dong, Guo, Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.07.2023
Predmet:
ISSN:0094-2405, 2473-4209, 2473-4209
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed. Methods In this study, we identified a deep learning model Scaled‐YOLOv4 that enables end‐to‐end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model. Results Scaled‐YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51–3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36–86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48–76.24] and 72.74 [95% CI: 72.10–73.38] on Linyi and FUMPE, respectively. Conclusions This deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
AbstractList Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed.BACKGROUNDPulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed.In this study, we identified a deep learning model Scaled-YOLOv4 that enables end-to-end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model.METHODSIn this study, we identified a deep learning model Scaled-YOLOv4 that enables end-to-end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model.Scaled-YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51-3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36-86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48-76.24] and 72.74 [95% CI: 72.10-73.38] on Linyi and FUMPE, respectively.RESULTSScaled-YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51-3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36-86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48-76.24] and 72.74 [95% CI: 72.10-73.38] on Linyi and FUMPE, respectively.This deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.CONCLUSIONSThis deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed. In this study, we identified a deep learning model Scaled-YOLOv4 that enables end-to-end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model. Scaled-YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51-3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36-86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48-76.24] and 72.74 [95% CI: 72.10-73.38] on Linyi and FUMPE, respectively. This deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
Background Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed. Methods In this study, we identified a deep learning model Scaled‐YOLOv4 that enables end‐to‐end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model. Results Scaled‐YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51–3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36–86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48–76.24] and 72.74 [95% CI: 72.10–73.38] on Linyi and FUMPE, respectively. Conclusions This deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
Author Guo, Li
Xu, Haijun
Xu, Qifei
Zhang, Zewei
Li, Huiyao
Li, Dong
Wang, Ping
Author_xml – sequence: 1
  givenname: Haijun
  surname: Xu
  fullname: Xu, Haijun
  organization: Tianjin Medical University
– sequence: 2
  givenname: Huiyao
  surname: Li
  fullname: Li, Huiyao
  organization: Beijing Shijitan Hospital, Capital Medical University
– sequence: 3
  givenname: Qifei
  surname: Xu
  fullname: Xu, Qifei
  organization: Linyi people's Hospital
– sequence: 4
  givenname: Zewei
  surname: Zhang
  fullname: Zhang, Zewei
  organization: National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 5
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  organization: Tianjin Medical University
– sequence: 6
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  email: dr_lidong@163.com
  organization: Tianjin Medical University General Hospital
– sequence: 7
  givenname: Li
  surname: Guo
  fullname: Guo, Li
  email: yxgl@tmu.edu.cn
  organization: Tianjin Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36633186$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtKxDAYhYOMOBcFn0C6dNMxt6btchi8wcgI6sJVSNN0jCRNbVpldj6Cz-iT2HFmVERXgT_fOXC-IeiVrlQAHCI4RhDiE1uNEcMo2QEDTGMSUgzTHhhAmNIQUxj1wdD7RwghIxHcA33CGCEoYQNgJm3jrGi0DHLVKNloVwauCKrWWFeKehkomzmjvQ10GUhnq7ZRedBl3KIW1cPyBynKhd5eW6_LRXAjhVH5--vb_Xw2f6b7YLcQxquDzTsCd2ent9OLcDY_v5xOZqEk3YgQJyKSkqUFyagUjKlckAKSKKGYJhAplBBGEqGyvOjGEyZlBFEXRHGUd18JGYHjdW9Vu6dW-YZb7aUyRpTKtZ7jmEUwxiyNOvRog7aZVTmvam27LXxr6LtL1s77WhVfCIJ8JZ_bin_K79DxL1TqRqyMNrXQ5q9AuA68aKOW_xbzq-s1_wGpppVo
CitedBy_id crossref_primary_10_1007_s10278_025_01506_6
crossref_primary_10_1016_j_bspc_2025_107792
crossref_primary_10_1016_j_ejro_2025_100657
crossref_primary_10_1007_s42452_024_06129_0
crossref_primary_10_1016_j_eswa_2023_123029
crossref_primary_10_1016_j_compbiomed_2024_109402
crossref_primary_10_4081_btvb_2024_123
crossref_primary_10_1007_s40031_024_01180_2
crossref_primary_10_1177_08465371251322705
crossref_primary_10_2478_jce_2025_0003
Cites_doi 10.1016/j.jacr.2018.09.028
10.5578/tt.8562
10.1109/TPAMI.2015.2389824
10.1016/j.annemergmed.2004.10.001
10.1109/CVPR.2018.00913
10.2214/ajr.183.6.01831819
10.1016/j.ejim.2010.04.005
10.3390/biology11010043
10.1148/ryai.2021200254
10.1016/j.asjsur.2016.11.005
10.1109/CVPR46437.2021.01283
10.1016/j.media.2019.101541
10.1109/CVPR.2017.690
10.1148/radiol.2362041558
10.1016/j.autcon.2020.103514
10.1038/s41746-020-0266-y
10.1038/sdata.2018.180
10.1038/s41598-021-95249-3
10.3390/s22010200
10.1007/s00330-020-06998-0
10.1186/s12859-021-04036-4
10.1161/01.CIR.0000078464.82671.78
10.1136/bmjopen-2016-012789
10.1109/CVPR.2016.91
10.1007/978-3-319-10602-1_48
10.1038/s41598-020-78888-w
10.1111/nan.12759
10.1109/CVPR42600.2020.01079
10.1016/j.jacr.2017.02.027
10.1097/RTI.0000000000000361
10.1007/s00330-008-0889-x
10.1016/j.neucom.2020.10.022
10.1109/TPAMI.2016.2577031
10.1109/CVPRW50498.2020.00203
10.1007/s00330-020-06699-8
10.3389/fmed.2021.637375
ContentType Journal Article
Copyright 2023 American Association of Physicists in Medicine.
Copyright_xml – notice: 2023 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.16218
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 4350
ExternalDocumentID 36633186
10_1002_mp_16218
MP16218
Genre article
Journal Article
GrantInformation_xml – fundername: Tianjin Natural Science Foundation
  funderid: 18JCYBJC95600
– fundername: Tianjin Municipal Education Commission
  funderid: 2021KJ264
– fundername: National Natural Science Foundation of China
  funderid: 31900812
– fundername: National Natural Scientific Foundation of China
  funderid: 81974277
– fundername: Tianjin Natural Science Foundation
  grantid: 18JCYBJC95600
– fundername: National Natural Scientific Foundation of China
  grantid: 81974277
– fundername: Tianjin Municipal Education Commission
  grantid: 2021KJ264
– fundername: National Natural Science Foundation of China
  grantid: 31900812
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3218-28a5cc69f3b4ca66eda3f0358424801e183638aebdf00236cc501218175d83683
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Thu Sep 04 16:36:16 EDT 2025
Mon Jul 21 06:00:38 EDT 2025
Sat Nov 29 06:02:53 EST 2025
Tue Nov 18 20:40:37 EST 2025
Wed Jan 22 16:21:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords YOLO
deep learning
computer-aided detection
computed tomography (CT)
pulmonary embolism
Language English
License 2023 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3218-28a5cc69f3b4ca66eda3f0358424801e183638aebdf00236cc501218175d83683
Notes Haijun Xu and Huiyao Li contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36633186
PQID 2765072695
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2765072695
pubmed_primary_36633186
crossref_primary_10_1002_mp_16218
crossref_citationtrail_10_1002_mp_16218
wiley_primary_10_1002_mp_16218_MP16218
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-Jul
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2023
References 2021; 8
2017; 7
2015; 37
2021; 3
2021; 22
2021; 422
2008; 18
2005; 236
2004; 183
2019; 58
2022; 48
2018; 41
2021; 122
2020; 10
2005; 45
2010; 21
2003; 107
2020; 3
2018; 5
2021; 11
2017; 14
2020; 30
2021
2017; 39
2020
2015; 63
2018
2017
2016
2014
2018; 33
2018; 15
e_1_2_7_6_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Expert Panel on Vascular Imaging (e_1_2_7_5_1) 2018; 15
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Expert Panels on Cardiac and Thoracic Imaging (e_1_2_7_4_1) 2017; 14
References_xml – volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  article-title: Faster R‐CNN: towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 22
  start-page: 200
  issue: 1
  year: 2021
  article-title: Traffic lights detection and recognition method based on the improved YOLOv4 algorithm
  publication-title: Sensors (Basel)
– volume: 21
  start-page: 278
  issue: 4
  year: 2010
  end-page: 282
  article-title: Delay and misdiagnosis in sub‐massive and non‐massive acute pulmonary embolism
  publication-title: Eur J Intern Med
– volume: 58
  year: 2019
  article-title: Computer‐aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation
  publication-title: Med Image Anal
– volume: 63
  start-page: 13
  issue: 1
  year: 2015
  end-page: 21
  article-title: [Misdiagnosis of pulmonary embolism and causes]
  publication-title: Tuberk Toraks
– year: 2021
– volume: 183
  start-page: 1819
  issue: 6
  year: 2004
  end-page: 1827
  article-title: Accuracy of CT in the diagnosis of pulmonary embolism: a systematic literature review
  publication-title: AJR Am J Roentgenol
– volume: 30
  start-page: 6545
  issue: 12
  year: 2020
  end-page: 6553
  article-title: Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI‐powered algorithm
  publication-title: Eur Radiol
– volume: 45
  start-page: 302
  issue: 3
  year: 2005
  end-page: 310
  article-title: The mortality of untreated pulmonary embolism in emergency department patients
  publication-title: Ann Emerg Med
– volume: 22
  start-page: 112
  issue: 1
  year: 2021
  article-title: Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
  publication-title: BMC Bioinformatics
– volume: 15
  start-page: S413
  issue: 11S
  year: 2018
  end-page: S417
  article-title: ACR appropriateness criteria((R)) suspected lower extremity deep vein thrombosis
  publication-title: J Am Coll Radiol
– volume: 30
  start-page: 3567
  issue: 6
  year: 2020
  end-page: 3575
  article-title: Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning
  publication-title: Eur Radiol
– volume: 33
  start-page: 350
  issue: 6
  year: 2018
  end-page: 357
  article-title: Radiologist performance in the detection of pulmonary embolism: features that favor correct interpretation and risk factors for errors
  publication-title: J Thorac Imaging
– year: 2018
– year: 2014
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 11
  issue: 1
  year: 2021
  article-title: Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta‐analysis
  publication-title: Sci Rep
– volume: 422
  start-page: 345
  year: 2021
  end-page: 353
  article-title: Probability‐based mask R‐CNN for pulmonary embolism detection
  publication-title: Neurocomputing
– volume: 236
  start-page: 677
  issue: 2
  year: 2005
  end-page: 684
  article-title: CT depiction of pulmonary emboli: display window settings
  publication-title: Radiology
– volume: 3
  start-page: 61
  issue: 1
  year: 2020
  article-title: PENet—a scalable deep‐learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
  publication-title: npj Digital Medicine
– volume: 3
  issue: 2
  year: 2021
  article-title: The RSNA pulmonary embolism CT dataset
  publication-title: Radiol Artif Intell
– volume: 18
  start-page: 1350
  issue: 7
  year: 2008
  end-page: 1355
  article-title: Computer‐aided detection of pulmonary embolism: influence on radiologists' detection performance with respect to vessel segments
  publication-title: Eur Radiol
– volume: 48
  issue: 1
  year: 2022
  article-title: Deep learning‐based model for diagnosing Alzheimer's disease and tauopathies
  publication-title: Neuropathol Appl Neurobiol
– year: 2017
  article-title: YOLO9000: better, faster, stronger
– volume: 8
  year: 2021
  article-title: Diagnostic delay of pulmonary embolism in COVID‐19 patients
  publication-title: Front Med (Lausanne)
– volume: 122
  year: 2021
  article-title: A real‐time detection approach for bridge cracks based on YOLOv4‐FPM
  publication-title: Automat Constr
– volume: 107
  start-page: I22
  issue: 23
  year: 2003
  end-page: I30
  article-title: Natural history of venous thromboembolism
  publication-title: Circulation
– year: 2020
– volume: 5
  year: 2018
  article-title: A new dataset of computed‐tomography angiography images for computer‐aided detection of pulmonary embolism
  publication-title: Sci Data
– volume: 14
  start-page: S2
  issue: 5S
  year: 2017
  end-page: S12
  article-title: ACR appropriateness criteria((R)) acute chest pain‐suspected pulmonary embolism
  publication-title: J Am Coll Radiol
– volume: 7
  issue: 3
  year: 2017
  article-title: Clinical characteristics associated with diagnostic delay of pulmonary embolism in primary care: a retrospective observational study
  publication-title: BMJ Open
– volume: 10
  issue: 1
  year: 2020
  article-title: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case‐study in pulmonary embolism detection
  publication-title: Sci Rep
– year: 2017
– volume: 11
  start-page: 43
  issue: 1
  year: 2021
  article-title: Deep ensemble model for COVID‐19 diagnosis and classification using chest CT images
  publication-title: Biology (Basel)
– year: 2016
  article-title: You only look once: unified, real‐time object detection
– volume: 41
  start-page: 176
  issue: 2
  year: 2018
  end-page: 182
  article-title: Epidemiological updates of venous thromboembolism in a Chinese population
  publication-title: Asian J Surg
– year: 2018
  article-title: Path aggregation network for instance segmentation
– volume: 15
  start-page: S413
  issue: 11
  year: 2018
  ident: e_1_2_7_5_1
  article-title: ACR appropriateness criteria((R)) suspected lower extremity deep vein thrombosis
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.09.028
– ident: e_1_2_7_9_1
  doi: 10.5578/tt.8562
– ident: e_1_2_7_31_1
  doi: 10.1109/TPAMI.2015.2389824
– ident: e_1_2_7_2_1
  doi: 10.1016/j.annemergmed.2004.10.001
– ident: e_1_2_7_32_1
  doi: 10.1109/CVPR.2018.00913
– ident: e_1_2_7_39_1
  doi: 10.2214/ajr.183.6.01831819
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ejim.2010.04.005
– ident: e_1_2_7_13_1
  doi: 10.3390/biology11010043
– ident: e_1_2_7_40_1
  doi: 10.1148/ryai.2021200254
– ident: e_1_2_7_6_1
  doi: 10.1016/j.asjsur.2016.11.005
– ident: e_1_2_7_33_1
  doi: 10.1109/CVPR46437.2021.01283
– ident: e_1_2_7_16_1
  doi: 10.1016/j.media.2019.101541
– ident: e_1_2_7_22_1
  doi: 10.1109/CVPR.2017.690
– ident: e_1_2_7_29_1
  doi: 10.1148/radiol.2362041558
– ident: e_1_2_7_25_1
  doi: 10.1016/j.autcon.2020.103514
– ident: e_1_2_7_19_1
  doi: 10.1038/s41746-020-0266-y
– ident: e_1_2_7_28_1
  doi: 10.1038/sdata.2018.180
– ident: e_1_2_7_11_1
  doi: 10.1038/s41598-021-95249-3
– ident: e_1_2_7_26_1
  doi: 10.3390/s22010200
– ident: e_1_2_7_15_1
  doi: 10.1007/s00330-020-06998-0
– ident: e_1_2_7_21_1
– ident: e_1_2_7_27_1
  doi: 10.1186/s12859-021-04036-4
– ident: e_1_2_7_3_1
  doi: 10.1161/01.CIR.0000078464.82671.78
– ident: e_1_2_7_10_1
  doi: 10.1136/bmjopen-2016-012789
– ident: e_1_2_7_24_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_7_36_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_7_20_1
  doi: 10.1038/s41598-020-78888-w
– ident: e_1_2_7_14_1
  doi: 10.1111/nan.12759
– ident: e_1_2_7_34_1
  doi: 10.1109/CVPR42600.2020.01079
– volume: 14
  start-page: S2
  issue: 5
  year: 2017
  ident: e_1_2_7_4_1
  article-title: ACR appropriateness criteria((R)) acute chest pain‐suspected pulmonary embolism
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.02.027
– ident: e_1_2_7_12_1
  doi: 10.1097/RTI.0000000000000361
– ident: e_1_2_7_38_1
  doi: 10.1007/s00330-008-0889-x
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neucom.2020.10.022
– ident: e_1_2_7_37_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_7_30_1
  doi: 10.1109/CVPRW50498.2020.00203
– ident: e_1_2_7_18_1
  doi: 10.1007/s00330-020-06699-8
– ident: e_1_2_7_8_1
  doi: 10.3389/fmed.2021.637375
SSID ssj0006350
Score 2.4751093
Snippet Background Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography...
Pulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4340
SubjectTerms Algorithms
Angiography
computed tomography (CT)
Computed Tomography Angiography - methods
computer‐aided detection
deep learning
Humans
Probability
pulmonary embolism
Pulmonary Embolism - diagnostic imaging
Tomography
YOLO
Title Automatic detection of pulmonary embolism in computed tomography pulmonary angiography using Scaled‐YOLOv4
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.16218
https://www.ncbi.nlm.nih.gov/pubmed/36633186
https://www.proquest.com/docview/2765072695
Volume 50
WOSCitedRecordID wos000917006100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VQCsufaQU0ha0lar2ZAjr3bVzRG0jDgGiQqT0ZO3LKFJiRzjhzE_gN_JLOrtrp41opUo9WbJn16udpz2z3wB8tOgXLLU84l0ZRyzX3UgJFUfojHKWKGbTwOlBcn6ejse9YV1V6c7CBHyI1Q83pxneXjsFl6o6-gUaOpsfHgt0UBuwSVFseQs2v37vjwYrO4yuNBxA6TGXQ-AN9GyXHjVj153RowhzPWD1Hqf_4n_W-hKe13EmOQmC8Qqe2KINz87qTHobnvrST129hunJclF64FZi7MJXZhWkzMl8OUURxXcSO1PldFLNyKQgOnSBMATH1GjXv1HK4nrS3HUV9dfkEmXAmoe7-x8Xg4tbtgOj_rerL6dR3YMh0jEuOKKp5FqLXh4rpqUQ1sg4x91OGXXAMxYtAmqwtMrkHoxea-5Q4lKMSgw-SuM30CrKwu4BMUzgx4zBgMrg2GOUAs6sVJyqJBW5ZB343DAj0zVAueuTMc0CtDLNZvPMb2MHPqwo5wGU4080DT8z1BiXBpGFLZdVRhOMShMqerwDu4HRq1liDMDQyokOfPL8_Ov02dnQX9_-K-E72Had6kOl73toLW6Wdh-29O1iUt0cwEYyTg9qCf4Js5vyKg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_apt32srXZV_apwlifvKa2LDvsKWwNHXM-6BJIn4wsycWQ2KGJ-7w_YX_j_pKdJDtt6AaDPhnsky10p7ufpdPvAD4ojAvKVb7jt7nn0FS0nYQlnoPBKKVBQlVoNR0Fg0E4nXZGW_C5Pgtj-SHWC256Zhh_rSe4XpA-vmENnS8-nTCMUNvQoGhFaN6Nr-e9SbR2xBhL7QmUDtWbCH7NPdt2j-u2m9HoDsTcRKwm5PSe3Kuz-_C4Qpqka03jALZU3oQH_WovvQl7JvlTLJ_CrFuuCkPdSqRamdysnBQpWZQzNFL8KFHzpJhlyznJciJsHQhJsE3Fd31LkueXWX1X59Rfkh9oBUr-_vnrYhgNr-kzmPROx1_OnKoKgyM87LDjhtwXgnVSL6GCM6Yk99K2h8DF1dQzCn0Cjj5XiUwNHb0QvuaJCxGXSHwUes9hJy9y9RKIpAx_ZyRCKoltT9AOfKp44rtJELKU0xYc1dqIRUVRritlzGJLruzG80VshrEFh2vJhaXl-JtMrdAY54zeCOG5Kspl7AaISwOXdfwWvLCaXr_FQwiGfo614KNR6D9fH_dH5vrqfwXfw8OzcT-Ko2-D76_hka5bb_N-38DO6qpUb2FXXK-y5dW7ypD_AH5v9TI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5i7YZ4AdZxKbDNk6btKRASx0nFEwKqofWmbZXgKXJsB1Vqk4i2PPMT-I38Eo7tpFBtkybtKVJynFg5ty_x8XcAPivMC8pTgRO43HdoKlwnYYnvYDJKaZhQFVlNd8JeL7q6ag1W4KTaC2P5IRY_3LRnmHitHVwVMj16Zg2dFIfHDDPUK6hT3UOmBvXzH-1hZxGIMZfaHSgtqhcRgop71vWOqrHL2eg3iLmMWE3KaW_812Q3Yb1EmuTUmsZbWFFZA1a75Vp6A96Y4k8xfQfj0_ksN9StRKqZqc3KSJ6SYj5GI8WHEjVJ8vFoOiGjjAjbB0ISHFPyXb-Q5NnNqDqra-pvyE-0AiUf7x-u-53-Hd2CYfvi19k3p-zC4AgfJ-x4EQ-EYK3UT6jgjCnJ_dT1Ebh4mnpGYUxAH-Yqkamhoxci0DxxEeISiZcifxtqWZ6pXSCSMvyckQipJI49RjsIqOJJ4CVhxFJOm_C10kYsSopy3SljHFtyZS-eFLF5jU34tJAsLC3Hn2QqhcboM3ohhGcqn09jL0RcGnqsFTRhx2p6cRcfIRjGOdaEL0ahf7193B2Y496_Cn6E1cF5O-5c9r7vw5puW2_Lfg-gNrudq_fwWtzNRtPbD6UdPwEZjPSt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+pulmonary+embolism+in+computed+tomography+pulmonary+angiography+using+Scaled%E2%80%90YOLOv4&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Xu%2C+Haijun&rft.au=Li%2C+Huiyao&rft.au=Xu%2C+Qifei&rft.au=Zhang%2C+Zewei&rft.date=2023-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=50&rft.issue=7&rft.spage=4340&rft.epage=4350&rft_id=info:doi/10.1002%2Fmp.16218&rft.externalDBID=10.1002%252Fmp.16218&rft.externalDocID=MP16218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon