A kernel for multi-parameter persistent homology

•We propose the first kernel construction for multi-parameter persistent homology.•Our kernel is generic, stable and can be approximated in polynomial time.•Connect topological data analysis and machine learning for multivariate analysis.•Our technique is applicable to shape analysis, recognition an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & graphics. X Ročník 2; s. 100005
Hlavní autori: Corbet, René, Fugacci, Ulderico, Kerber, Michael, Landi, Claudia, Wang, Bei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2019
Predmet:
ISSN:2590-1486, 2590-1486
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We propose the first kernel construction for multi-parameter persistent homology.•Our kernel is generic, stable and can be approximated in polynomial time.•Connect topological data analysis and machine learning for multivariate analysis.•Our technique is applicable to shape analysis, recognition and classification. [Display omitted] Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
AbstractList Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
•We propose the first kernel construction for multi-parameter persistent homology.•Our kernel is generic, stable and can be approximated in polynomial time.•Connect topological data analysis and machine learning for multivariate analysis.•Our technique is applicable to shape analysis, recognition and classification. [Display omitted] Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
ArticleNumber 100005
Author Wang, Bei
Corbet, René
Fugacci, Ulderico
Kerber, Michael
Landi, Claudia
AuthorAffiliation b University of Modena and Reggio Emilia, Italy
a Graz University of Technology, Austria
c University of Utah, USA
AuthorAffiliation_xml – name: a Graz University of Technology, Austria
– name: b University of Modena and Reggio Emilia, Italy
– name: c University of Utah, USA
Author_xml – sequence: 1
  givenname: René
  surname: Corbet
  fullname: Corbet, René
  email: maths@rene-corbet.de
  organization: Graz University of Technology, Austria
– sequence: 2
  givenname: Ulderico
  surname: Fugacci
  fullname: Fugacci, Ulderico
  organization: Graz University of Technology, Austria
– sequence: 3
  givenname: Michael
  surname: Kerber
  fullname: Kerber, Michael
  email: kerber@tugraz.at
  organization: Graz University of Technology, Austria
– sequence: 4
  givenname: Claudia
  surname: Landi
  fullname: Landi, Claudia
  email: clandi@unimore.it
  organization: University of Modena and Reggio Emilia, Italy
– sequence: 5
  givenname: Bei
  surname: Wang
  fullname: Wang, Bei
  email: beiwang@sci.utah.edu
  organization: University of Utah, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33367228$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtPAjEQbgxGEPkDHswevSz2sWWXxJgQ4ish8aLnZrY7QHF3i-1C5N9bskjwYi_Tdr7HZL5L0qltjYRcMzpklI3uVkMNi-8hp2wcPsKRZ6TH5ZjGLMlGnZN7lwy8XwUEF-FJ5QXpCiFGKedZj9BJ9ImuxjKaWxdVm7Ix8RocVNigi9bovPEN1k20tJUt7WJ3Rc7nUHocHGqffDw9vk9f4tnb8-t0Mou14EzGPIWxABCQCz3HHCQXwZ2lwHmqM2SFLCAvOGTAizyhoyzPUx2GyjRkiBmIPnloddebvMJChxkclGrtTAVupywY9bdTm6Va2K1KUylZwoPA7UHA2a8N-kZVxmssS6jRbrziSSoSJumYBujNqdfR5HdNAcBbgHbWe4fzI4RRtY9DrdQ-DrWPQ7VxBNJ9S8Kwpq1Bp7w2WGssjEPdqMKa_-g_PxWTAg
Cites_doi 10.1090/conm/453/08802
10.1016/j.jneumeth.2016.04.001
10.1007/s00454-004-1146-y
10.1007/s00454-002-2885-2
10.1073/pnas.1313480110
10.1016/j.cviu.2013.10.014
10.1073/pnas.1102826108
10.4310/HHA.2016.v18.n1.a21
10.1111/j.1467-8659.2009.01515.x
10.1007/s00454-006-1276-5
10.1007/s10208-015-9255-y
10.1007/s10851-008-0096-z
10.1090/surv/209
10.1007/s00454-009-9176-0
10.1016/j.patrec.2011.07.014
10.1007/s10208-019-09442-y
10.1155/2013/815035
10.1073/pnas.1506407112
10.1073/pnas.1520877113
10.1126/scitranslmed.aaa9364
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.cagx.2019.100005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1486
ExternalDocumentID PMC7755142
33367228
10_1016_j_cagx_2019_100005
S2590148619300056
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB022876
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c3215-27a93aa3ab3cfeba52331417a227c8e1d5dabd2a8a2db4068bb7c3678ca8ee8a3
ISSN 2590-1486
IngestDate Thu Aug 21 13:47:35 EDT 2025
Fri Jul 11 10:54:55 EDT 2025
Thu Jan 02 22:58:10 EST 2025
Thu Nov 20 00:56:46 EST 2025
Tue Jul 25 21:14:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Persistent homology
Multivariate analysis
Topological data analysis
Machine learning
Persistent Homology
Multivariate Analysis
Machine Learning
Topological Data Analysis
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3215-27a93aa3ab3cfeba52331417a227c8e1d5dabd2a8a2db4068bb7c3678ca8ee8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cagx.2019.100005
PMID 33367228
PQID 2473415090
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7755142
proquest_miscellaneous_2473415090
pubmed_primary_33367228
crossref_primary_10_1016_j_cagx_2019_100005
elsevier_sciencedirect_doi_10_1016_j_cagx_2019_100005
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & graphics. X
PublicationTitleAlternate Comput Graph X
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chan, Carlsson, Rabadan (bib0002) 2013; 110
Kerber, Lesnick, Oudot (bib0043) 2019
Lesnick (bib0039) 2015; 15
Biasotti, Cerri, Frosini, Giorgi (bib0042) 2011; 32
Singh, Mémoli, Carlsson (bib0029) 2007
Sun, Ovsjanikov, Guibas (bib0030) 2009; 28
Dey, Xin (bib0041) 2018
Landi (bib0048) 2018; 13
Edelsbrunner, Harer (bib0031) 2002
Adcock, Carlsson, Carlsson (bib0037) 2016; 18
Edelsbrunner, Letscher, Zomorodian (bib0015) 2002; 28
Biasotti, Falcidieno, Spagnuolo (bib0012) 2000
Nicolau, Levine, Carlsson (bib0009) 2011; 108
Kališnik (bib0038) 2018; 19
Munkres (bib0014) 1984
Adcock, Rubin, Carlsson (bib0035) 2014; 121
Wang, Ombao, Chung (bib0007) 2017; 12
Carriére, Cuturi, Oudot (bib0033) 2017; 70
Skraba, Ovsjanikov, Chazal, Guibas (bib0013) 2010
Carlsson, Mémoli (bib0027) 2010
Chazal, Cohen-Steiner, Guibas, Mémoli, Oudot (bib0028) 2009; 28
Lesnick M, Wright M. Interactive visualization of 2-D persistence modules. arXiv
2018.
Edelsbrunner, Harer, Patel (bib0032) 2008
Di Fabio, Ferri (bib0036) 2015
Bjerkevik HB, Botnan MB, Kerber M. Computing the interleaving distance is NP-hard. arXiv
Edelsbrunner, Morozov (bib0019) 2012
Li, Cheng, Glicksberg, Gottesman, Tamler, Chen (bib0006) 2015; 7
Bubenik (bib0022) 2015; 16
Carstens, Horadam (bib0001) 2013; 2013
Yoo, Kim, Ahn, Ye (bib0008) 2016; 267
Reininghaus, Huber, Bauer, Kwitt (bib0021) 2015
Kwitt, Huber, Niethammer, Lin, Bauer (bib0023) 2015
Edelsbrunner, Harer (bib0018) 2010
Giusti, Pastalkova, Curto, Itskov (bib0003) 2015; 112
Hofer, Kwitt, Niethammer, Uhl (bib0025) 2017
Carlsson, Zomorodian (bib0026) 2009; 42
2015.
Adams, Chepushtanova, Emerson, Hanson, Kirby, Motta (bib0034) 2017; 18
Edelsbrunner, Harer (bib0017) 2008; 453
Oudot (bib0045) 2015; 209
Guo, Banerjee (bib0004) 2016
Turner, Mukherjee, Boyer (bib0010) 2014; 3
Hiraoka, Nakamura, Hirata, Escolar, Matsue, Nishiura (bib0005) 2016; 113
Kusano, Fukumizu, Hiraoka (bib0024) 2016; 48
Li, Ovsjanikov, Chazal (bib0011) 2014
Biasotti, Cerri, Frosini, Giorgi, Landi (bib0047) 2008; 32
Zomorodian, Carlsson (bib0016) 2005; 33
Cohen-Steiner, Edelsbrunner, Harer (bib0020) 2007; 37
Cohen-Steiner, Edelsbrunner, Harer (bib0046) 2007; 37
Turner (10.1016/j.cagx.2019.100005_bib0010) 2014; 3
Kwitt (10.1016/j.cagx.2019.100005_bib0023) 2015
Adams (10.1016/j.cagx.2019.100005_bib0034) 2017; 18
Li (10.1016/j.cagx.2019.100005_bib0006) 2015; 7
Carlsson (10.1016/j.cagx.2019.100005_bib0027) 2010
Adcock (10.1016/j.cagx.2019.100005_bib0035) 2014; 121
Adcock (10.1016/j.cagx.2019.100005_bib0037) 2016; 18
Kališnik (10.1016/j.cagx.2019.100005_bib0038) 2018; 19
Guo (10.1016/j.cagx.2019.100005_bib0004) 2016
Carriére (10.1016/j.cagx.2019.100005_bib0033) 2017; 70
Edelsbrunner (10.1016/j.cagx.2019.100005_bib0018) 2010
Bubenik (10.1016/j.cagx.2019.100005_bib0022) 2015; 16
Hofer (10.1016/j.cagx.2019.100005_bib0025) 2017
Chazal (10.1016/j.cagx.2019.100005_bib0028) 2009; 28
Landi (10.1016/j.cagx.2019.100005_bib0048) 2018; 13
Biasotti (10.1016/j.cagx.2019.100005_bib0047) 2008; 32
Carstens (10.1016/j.cagx.2019.100005_bib0001) 2013; 2013
Chan (10.1016/j.cagx.2019.100005_bib0002) 2013; 110
Reininghaus (10.1016/j.cagx.2019.100005_bib0021) 2015
Edelsbrunner (10.1016/j.cagx.2019.100005_sbref0031) 2002
Edelsbrunner (10.1016/j.cagx.2019.100005_bib0017) 2008; 453
Skraba (10.1016/j.cagx.2019.100005_bib0013) 2010
Sun (10.1016/j.cagx.2019.100005_bib0030) 2009; 28
Biasotti (10.1016/j.cagx.2019.100005_bib0042) 2011; 32
Cohen-Steiner (10.1016/j.cagx.2019.100005_bib0020) 2007; 37
Zomorodian (10.1016/j.cagx.2019.100005_bib0016) 2005; 33
Lesnick (10.1016/j.cagx.2019.100005_bib0039) 2015; 15
Cohen-Steiner (10.1016/j.cagx.2019.100005_bib0046) 2007; 37
Carlsson (10.1016/j.cagx.2019.100005_bib0026) 2009; 42
Singh (10.1016/j.cagx.2019.100005_bib0029) 2007
Di Fabio (10.1016/j.cagx.2019.100005_bib0036) 2015
Oudot (10.1016/j.cagx.2019.100005_bib0045) 2015; 209
Kusano (10.1016/j.cagx.2019.100005_bib0024) 2016; 48
Edelsbrunner (10.1016/j.cagx.2019.100005_bib0032) 2008
Giusti (10.1016/j.cagx.2019.100005_bib0003) 2015; 112
Wang (10.1016/j.cagx.2019.100005_bib0007) 2017; 12
Edelsbrunner (10.1016/j.cagx.2019.100005_bib0015) 2002; 28
Biasotti (10.1016/j.cagx.2019.100005_bib0012) 2000
10.1016/j.cagx.2019.100005_bib0044
Li (10.1016/j.cagx.2019.100005_bib0011) 2014
Dey (10.1016/j.cagx.2019.100005_bib0041) 2018
Yoo (10.1016/j.cagx.2019.100005_bib0008) 2016; 267
Hiraoka (10.1016/j.cagx.2019.100005_bib0005) 2016; 113
Kerber (10.1016/j.cagx.2019.100005_bib0043) 2019
Nicolau (10.1016/j.cagx.2019.100005_bib0009) 2011; 108
Edelsbrunner (10.1016/j.cagx.2019.100005_bib0019) 2012
10.1016/j.cagx.2019.100005_bib0040
Munkres (10.1016/j.cagx.2019.100005_bib0014) 1984
References_xml – volume: 48
  start-page: 2004
  year: 2016
  end-page: 2013
  ident: bib0024
  article-title: Persistence weighted Gaussian kernel for topological data analysis
– volume: 453
  start-page: 257
  year: 2008
  end-page: 282
  ident: bib0017
  article-title: Persistent homology – a survey
  publication-title: Contemp Math
– volume: 113
  start-page: 7035
  year: 2016
  end-page: 7040
  ident: bib0005
  article-title: Hierarchical structures of amorphous solids characterized by persistent homology
  publication-title: Proc Natl Acad Sci USA
– start-page: 32:1
  year: 2018
  end-page: 32:15
  ident: bib0041
  article-title: Computing bottleneck distance for 2-d interval decomposable modules
  publication-title: Proceedings of the thirty-forth international symposium on computational geometry
– volume: 2013
  start-page: 7
  year: 2013
  ident: bib0001
  article-title: Persistent homology of collaboration networks
  publication-title: Math Probl Eng
– volume: 28
  start-page: 511
  year: 2002
  end-page: 533
  ident: bib0015
  article-title: Topological persistence and simplification
  publication-title: Discr Comput Geom
– start-page: 3070
  year: 2015
  end-page: 3078
  ident: bib0023
  article-title: Statistical topological data analysis – a kernel perspective
  publication-title: Proceedings of the advances in neural information processing systems 28
– volume: 32
  start-page: 161
  year: 2008
  ident: bib0047
  article-title: Multidimensional size functions for shape comparison
  publication-title: J Math Imaging Vis
– start-page: 63
  year: 2010
  end-page: 70
  ident: bib0027
  article-title: Multiparameter hierarchical clustering methods
  publication-title: Classification as a tool for research
– volume: 110
  start-page: 18566
  year: 2013
  end-page: 18571
  ident: bib0002
  article-title: Topology of viral evolution
  publication-title: Proc Natl Acad Sci USA
– start-page: 1634
  year: 2017
  end-page: 1644
  ident: bib0025
  article-title: Deep learning with topological signatures
  publication-title: Proceedings of the advances in neural information processing systems 30
– volume: 42
  start-page: 71
  year: 2009
  end-page: 93
  ident: bib0026
  article-title: The theory of multidimensional persistence
  publication-title: Discr Comput Geom
– reference: ; 2015.
– start-page: 2003
  year: 2014
  end-page: 2010
  ident: bib0011
  article-title: Persistence-based structural recognition
  publication-title: Proceedings of the ieee conference on computer vision and pattern recognition
– volume: 16
  start-page: 77
  year: 2015
  end-page: 102
  ident: bib0022
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J Mach Learn Res
– volume: 121
  start-page: 36
  year: 2014
  end-page: 42
  ident: bib0035
  article-title: Classification of hepatic lesions using the matching metric
  publication-title: Comput Vis Image Understand
– reference: Lesnick M, Wright M. Interactive visualization of 2-D persistence modules. arXiv:
– reference: ; 2018.
– start-page: 185
  year: 2000
  end-page: 197
  ident: bib0012
  article-title: Extended Reeb graphs for surface understanding and description
  publication-title: Proceedings of the ninth international conference on discrete geometry for computer imagery
– volume: 28
  start-page: 1383
  year: 2009
  end-page: 1392
  ident: bib0030
  article-title: A concise and provably informative multi-scale signature based on heat diffusion
  publication-title: Comput Graph Forum
– volume: 267
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0008
  article-title: Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages
  publication-title: J Neurosci Methods
– volume: 28
  start-page: 1393
  year: 2009
  end-page: 1403
  ident: bib0028
  article-title: Gromov-Hausdorff stable signatures for shapes using persistence
  publication-title: Proceedings of the Eurographics symposium on geometry processing
– volume: 15
  start-page: 613
  year: 2015
  end-page: 650
  ident: bib0039
  article-title: The theory of the interleaving distance on multidimensional persistence modules
  publication-title: Found Comput Math
– volume: 13
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0048
  article-title: The rank invariant stability via interleavings
  publication-title: Research in computational topology
– volume: 32
  start-page: 1735
  year: 2011
  end-page: 1746
  ident: bib0042
  article-title: A new algorithm for computing the 2-dimensional matching distance between size functions
  publication-title: Pattern Recogn Lett
– start-page: 46:1
  year: 2019
  end-page: 46:15
  ident: bib0043
  article-title: Exact computation of the matching distance on 2-parameter persistence modules
  publication-title: Proceedings of the thirty-fifth international symposium on computational geometry
– volume: 18
  start-page: 218
  year: 2017
  end-page: 252
  ident: bib0034
  article-title: Persistence images: a stable vector representation of persistent homology
  publication-title: J Mach Learn Res
– year: 1984
  ident: bib0014
  article-title: Elements of algebraic topology
– volume: 37
  start-page: 103
  year: 2007
  end-page: 120
  ident: bib0046
  article-title: Stability of persistence diagrams
  publication-title: Discr Comput Geom
– volume: 19
  start-page: 1
  year: 2018
  end-page: 29
  ident: bib0038
  article-title: Tropical coordinates on the space of persistence barcodes
  publication-title: Found Comput Math
– start-page: 294
  year: 2015
  end-page: 305
  ident: bib0036
  article-title: Comparing persistence diagrams through complex vectors
  publication-title: Proceedings of the international conference on image analysis and processing
– start-page: 242
  year: 2008
  end-page: 250
  ident: bib0032
  article-title: Reeb spaces of piecewise linear mappings
  publication-title: Proceedings of the twenty-forth annual symposium on computational geometry
– volume: 3
  start-page: 310
  year: 2014
  end-page: 344
  ident: bib0010
  article-title: Persistent homology transform for modeling shapes and surfaces
  publication-title: Inf Inference J IMA
– reference: Bjerkevik HB, Botnan MB, Kerber M. Computing the interleaving distance is NP-hard. arXiv:
– start-page: 91
  year: 2007
  end-page: 100
  ident: bib0029
  article-title: Topological methods for the analysis of high dimensional data sets and 3D object recognition
  publication-title: Proceedings of the Eurographics symposium on point-based graphics
– start-page: 37
  year: 2002
  end-page: 57
  ident: bib0031
  article-title: Jacobi sets of multiple Morse functions
  publication-title: Proceedings of the foundations of computational mathematics
– volume: 108
  start-page: 7265
  year: 2011
  end-page: 7270
  ident: bib0009
  article-title: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 1506
  year: 2017
  end-page: 1534
  ident: bib0007
  article-title: Topological data analysis of single-trial electroencephalographic signals
  publication-title: Ann Appl Stat
– volume: 7
  start-page: 311ra174
  year: 2015
  ident: bib0006
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
– volume: 70
  start-page: 664
  year: 2017
  end-page: 673
  ident: bib0033
  article-title: Sliced Wasserstein kernel for persistence diagrams
  publication-title: Proceedings of the thirty-forth international conference on machine learning
– volume: 33
  start-page: 249
  year: 2005
  end-page: 274
  ident: bib0016
  article-title: Computing persistent homology
  publication-title: Discr Comput Geom
– start-page: 31
  year: 2016
  end-page: 36
  ident: bib0004
  article-title: Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis
  publication-title: Proceedings of the IEEE international symposium on assembly and manufacturing
– start-page: 31
  year: 2012
  end-page: 50
  ident: bib0019
  article-title: Persistent homology: Theory and practice
  publication-title: Proceedings of the European congress of mathematics
– start-page: 4741
  year: 2015
  end-page: 4748
  ident: bib0021
  article-title: A stable multi-scale kernel for topological machine learning
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 209
  year: 2015
  ident: bib0045
  article-title: Persistence theory: From quiver representation to data analysis
  publication-title: Mathematical surveys and monographs
– volume: 112
  start-page: 13455
  year: 2015
  end-page: 13460
  ident: bib0003
  article-title: Clique topology reveals intrinsic geometric structure in neural correlations
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 103
  year: 2007
  end-page: 120
  ident: bib0020
  article-title: Stability of persistence diagrams
  publication-title: Discr Comput Geom
– volume: 18
  start-page: 381
  year: 2016
  end-page: 402
  ident: bib0037
  article-title: The ring of algebraic functions on persistence bar codes
  publication-title: Homol Homot Appl
– start-page: 45
  year: 2010
  end-page: 52
  ident: bib0013
  article-title: Persistence-based segmentation of deformable shapes
  publication-title: Proceedings of the IEEE computer society conference on computer vision and pattern recognition – Workshop on non-rigid shape analysis and deformable image alignment
– year: 2010
  ident: bib0018
  article-title: Computational topology: An introduction
– volume: 453
  start-page: 257
  year: 2008
  ident: 10.1016/j.cagx.2019.100005_bib0017
  article-title: Persistent homology – a survey
  publication-title: Contemp Math
  doi: 10.1090/conm/453/08802
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cagx.2019.100005_bib0038
  article-title: Tropical coordinates on the space of persistence barcodes
  publication-title: Found Comput Math
– volume: 267
  start-page: 1
  issue: 15
  year: 2016
  ident: 10.1016/j.cagx.2019.100005_bib0008
  article-title: Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.04.001
– volume: 33
  start-page: 249
  issue: 2
  year: 2005
  ident: 10.1016/j.cagx.2019.100005_bib0016
  article-title: Computing persistent homology
  publication-title: Discr Comput Geom
  doi: 10.1007/s00454-004-1146-y
– start-page: 46:1
  year: 2019
  ident: 10.1016/j.cagx.2019.100005_bib0043
  article-title: Exact computation of the matching distance on 2-parameter persistence modules
– start-page: 4741
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0021
  article-title: A stable multi-scale kernel for topological machine learning
– start-page: 2003
  year: 2014
  ident: 10.1016/j.cagx.2019.100005_bib0011
  article-title: Persistence-based structural recognition
– volume: 28
  start-page: 511
  year: 2002
  ident: 10.1016/j.cagx.2019.100005_bib0015
  article-title: Topological persistence and simplification
  publication-title: Discr Comput Geom
  doi: 10.1007/s00454-002-2885-2
– start-page: 185
  year: 2000
  ident: 10.1016/j.cagx.2019.100005_bib0012
  article-title: Extended Reeb graphs for surface understanding and description
– volume: 110
  start-page: 18566
  issue: 46
  year: 2013
  ident: 10.1016/j.cagx.2019.100005_bib0002
  article-title: Topology of viral evolution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1313480110
– volume: 121
  start-page: 36
  year: 2014
  ident: 10.1016/j.cagx.2019.100005_bib0035
  article-title: Classification of hepatic lesions using the matching metric
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2013.10.014
– start-page: 31
  year: 2016
  ident: 10.1016/j.cagx.2019.100005_bib0004
  article-title: Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis
– start-page: 63
  year: 2010
  ident: 10.1016/j.cagx.2019.100005_bib0027
  article-title: Multiparameter hierarchical clustering methods
– start-page: 1634
  year: 2017
  ident: 10.1016/j.cagx.2019.100005_bib0025
  article-title: Deep learning with topological signatures
– volume: 3
  start-page: 310
  issue: 4
  year: 2014
  ident: 10.1016/j.cagx.2019.100005_bib0010
  article-title: Persistent homology transform for modeling shapes and surfaces
  publication-title: Inf Inference J IMA
– start-page: 294
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0036
  article-title: Comparing persistence diagrams through complex vectors
– volume: 108
  start-page: 7265
  issue: 17
  year: 2011
  ident: 10.1016/j.cagx.2019.100005_bib0009
  article-title: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1102826108
– volume: 18
  start-page: 381
  year: 2016
  ident: 10.1016/j.cagx.2019.100005_bib0037
  article-title: The ring of algebraic functions on persistence bar codes
  publication-title: Homol Homot Appl
  doi: 10.4310/HHA.2016.v18.n1.a21
– volume: 28
  start-page: 1383
  issue: 5
  year: 2009
  ident: 10.1016/j.cagx.2019.100005_bib0030
  article-title: A concise and provably informative multi-scale signature based on heat diffusion
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2009.01515.x
– year: 2010
  ident: 10.1016/j.cagx.2019.100005_bib0018
– volume: 37
  start-page: 103
  issue: 1
  year: 2007
  ident: 10.1016/j.cagx.2019.100005_bib0020
  article-title: Stability of persistence diagrams
  publication-title: Discr Comput Geom
  doi: 10.1007/s00454-006-1276-5
– volume: 15
  start-page: 613
  issue: 3
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0039
  article-title: The theory of the interleaving distance on multidimensional persistence modules
  publication-title: Found Comput Math
  doi: 10.1007/s10208-015-9255-y
– start-page: 242
  year: 2008
  ident: 10.1016/j.cagx.2019.100005_bib0032
  article-title: Reeb spaces of piecewise linear mappings
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.cagx.2019.100005_bib0048
  article-title: The rank invariant stability via interleavings
– volume: 32
  start-page: 161
  issue: 2
  year: 2008
  ident: 10.1016/j.cagx.2019.100005_bib0047
  article-title: Multidimensional size functions for shape comparison
  publication-title: J Math Imaging Vis
  doi: 10.1007/s10851-008-0096-z
– volume: 48
  start-page: 2004
  year: 2016
  ident: 10.1016/j.cagx.2019.100005_bib0024
  article-title: Persistence weighted Gaussian kernel for topological data analysis
– volume: 209
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0045
  article-title: Persistence theory: From quiver representation to data analysis
  doi: 10.1090/surv/209
– start-page: 91
  year: 2007
  ident: 10.1016/j.cagx.2019.100005_bib0029
  article-title: Topological methods for the analysis of high dimensional data sets and 3D object recognition
– volume: 12
  start-page: 1506
  issue: 3
  year: 2017
  ident: 10.1016/j.cagx.2019.100005_bib0007
  article-title: Topological data analysis of single-trial electroencephalographic signals
  publication-title: Ann Appl Stat
– volume: 42
  start-page: 71
  issue: 1
  year: 2009
  ident: 10.1016/j.cagx.2019.100005_bib0026
  article-title: The theory of multidimensional persistence
  publication-title: Discr Comput Geom
  doi: 10.1007/s00454-009-9176-0
– volume: 32
  start-page: 1735
  issue: 14
  year: 2011
  ident: 10.1016/j.cagx.2019.100005_bib0042
  article-title: A new algorithm for computing the 2-dimensional matching distance between size functions
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.07.014
– ident: 10.1016/j.cagx.2019.100005_bib0040
  doi: 10.1007/s10208-019-09442-y
– volume: 16
  start-page: 77
  issue: 1
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0022
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J Mach Learn Res
– start-page: 32:1
  year: 2018
  ident: 10.1016/j.cagx.2019.100005_bib0041
  article-title: Computing bottleneck distance for 2-d interval decomposable modules
– start-page: 37
  year: 2002
  ident: 10.1016/j.cagx.2019.100005_sbref0031
  article-title: Jacobi sets of multiple Morse functions
– year: 1984
  ident: 10.1016/j.cagx.2019.100005_bib0014
– volume: 18
  start-page: 218
  issue: 1
  year: 2017
  ident: 10.1016/j.cagx.2019.100005_bib0034
  article-title: Persistence images: a stable vector representation of persistent homology
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 1393
  year: 2009
  ident: 10.1016/j.cagx.2019.100005_bib0028
  article-title: Gromov-Hausdorff stable signatures for shapes using persistence
– volume: 2013
  start-page: 7
  year: 2013
  ident: 10.1016/j.cagx.2019.100005_bib0001
  article-title: Persistent homology of collaboration networks
  publication-title: Math Probl Eng
  doi: 10.1155/2013/815035
– volume: 112
  start-page: 13455
  issue: 44
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0003
  article-title: Clique topology reveals intrinsic geometric structure in neural correlations
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1506407112
– volume: 70
  start-page: 664
  year: 2017
  ident: 10.1016/j.cagx.2019.100005_bib0033
  article-title: Sliced Wasserstein kernel for persistence diagrams
– start-page: 45
  year: 2010
  ident: 10.1016/j.cagx.2019.100005_bib0013
  article-title: Persistence-based segmentation of deformable shapes
– start-page: 3070
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0023
  article-title: Statistical topological data analysis – a kernel perspective
– start-page: 31
  year: 2012
  ident: 10.1016/j.cagx.2019.100005_bib0019
  article-title: Persistent homology: Theory and practice
– volume: 113
  start-page: 7035
  issue: 26
  year: 2016
  ident: 10.1016/j.cagx.2019.100005_bib0005
  article-title: Hierarchical structures of amorphous solids characterized by persistent homology
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1520877113
– volume: 7
  start-page: 311ra174
  issue: 311
  year: 2015
  ident: 10.1016/j.cagx.2019.100005_bib0006
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa9364
– ident: 10.1016/j.cagx.2019.100005_bib0044
– volume: 37
  start-page: 103
  issue: 1
  year: 2007
  ident: 10.1016/j.cagx.2019.100005_bib0046
  article-title: Stability of persistence diagrams
  publication-title: Discr Comput Geom
  doi: 10.1007/s00454-006-1276-5
SSID ssj0002314805
Score 2.3663533
Snippet •We propose the first kernel construction for multi-parameter persistent homology.•Our kernel is generic, stable and can be approximated in polynomial...
Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100005
SubjectTerms Machine learning
Multivariate analysis
Persistent homology
Topological data analysis
Title A kernel for multi-parameter persistent homology
URI https://dx.doi.org/10.1016/j.cagx.2019.100005
https://www.ncbi.nlm.nih.gov/pubmed/33367228
https://www.proquest.com/docview/2473415090
https://pubmed.ncbi.nlm.nih.gov/PMC7755142
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1486
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0002314805
  issn: 2590-1486
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6wQEOiG_KxxQkdoo8NXZSO8dqrJqglAm1Um6WHSdbp-GWtJ164m_n2fnqykDjwCWK3Dpx3vvl5ff8np8R-sCsQw04wpwGBAMDl1ipsI9JqgMN34N-rlyd2REbj3mSxGedzqd6Lcz1FTOGbzbx4r-qGtpA2Xbp7D-ou7koNMA5KB2OoHY43knxA_9zVpjMrUv03fpafCZtCpYth2gT3q1izco_nX9vp9TrWgXVHg9LhwhXzHqWLo_8pAlVzIsqfPEN7JULsjcIWJ_LNHXJAVO79TdArLXm0KvYzdJ35R6Ndj2Or-Raz-T2HEQQb-VzOFMFPlQPg2NVFbW-pa2yteRWq11OIFyCR36-sdl28ZGLOkTtN6qOy4-_iuF0NBKTk2RySIeLH9juH2bj7If0Y6nLPXSPsCi2Fu7Lz3a-DXhsyF1GazOwag1Vme63e-8_8ZTf_ZDddNotfjJ5jB5VjoU3KAHxBHUy8xQ93Co3-Qz1Bl4JDQ-g4e1Aw2uh4dXQeI6mw5PJ8SmudszAKQXuhgmTMZWSSkXTPFMyIhQeO2CSEJbyLNCRlkoTySXRCqgcV4qlFPhKKnmWcUlfoH0zN9kr5PXh5eU2Zp738lDzUEVak5j3Ocspi0mvi_xaPmJRFkYRdcbgpbDSFFaaopRmF0W1CEVF7UrKJgADf-33vpa3ALtng1nSZPP1UpCQAQEDugsjeVnKvxkHpfBMhPAuYjc00_zB1lS_-YuZXbja6oxZF4K8vsN936AH7bvwFu2vinX2Dt1Pr1ezZXGA9ljCDxwGfwEtfpKz
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kernel+for+Multi-Parameter+Persistent+Homology&rft.jtitle=Computers+%26+graphics.+X&rft.au=Corbet%2C+Ren%C3%A9&rft.au=Fugacci%2C+Ulderico&rft.au=Kerber%2C+Michael&rft.au=Landi%2C+Claudia&rft.date=2019-12-01&rft.issn=2590-1486&rft.eissn=2590-1486&rft.volume=2&rft_id=info:doi/10.1016%2Fj.cagx.2019.100005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1486&client=summon