Real‐time biomechanics using the finite element method and machine learning: Review and perspective

Purpose The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM‐based mechanical simulations require considerable time, limiting their use in clinical applications that require real‐time responses, such as haptics simulators. Machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 48; H. 1; S. 7 - 18
Hauptverfasser: Phellan, Renzo, Hachem, Bahe, Clin, Julien, Mac‐Thiong, Jean‐Marc, Duong, Luc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.01.2021
Schlagworte:
ISSN:0094-2405, 2473-4209, 2473-4209
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM‐based mechanical simulations require considerable time, limiting their use in clinical applications that require real‐time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results. Methods This review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains. Results A total of 41 references were found. ML algorithms are mainly trained with FEM‐based simulations in 32 publications. The preferred ML approach is neural networks, including deep learning in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM‐based simulations to milliseconds, when using ML. Conclusions ML algorithms can be used to accelerate FEM‐based biomechanical simulations of anatomical structures, possibly reaching real‐time responses. Fast and real‐time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM‐based simulations and accelerate their adoption in the clinical practice.
AbstractList Purpose The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM‐based mechanical simulations require considerable time, limiting their use in clinical applications that require real‐time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results. Methods This review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains. Results A total of 41 references were found. ML algorithms are mainly trained with FEM‐based simulations in 32 publications. The preferred ML approach is neural networks, including deep learning in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM‐based simulations to milliseconds, when using ML. Conclusions ML algorithms can be used to accelerate FEM‐based biomechanical simulations of anatomical structures, possibly reaching real‐time responses. Fast and real‐time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM‐based simulations and accelerate their adoption in the clinical practice.
The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM-based mechanical simulations require considerable time, limiting their use in clinical applications that require real-time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results.PURPOSEThe finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM-based mechanical simulations require considerable time, limiting their use in clinical applications that require real-time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results.This review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains.METHODSThis review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains.A total of 41 references were found. ML algorithms are mainly trained with FEM-based simulations in 32 publications. The preferred ML approach is neural networks, including deep learning in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM-based simulations to milliseconds, when using ML.RESULTSA total of 41 references were found. ML algorithms are mainly trained with FEM-based simulations in 32 publications. The preferred ML approach is neural networks, including deep learning in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM-based simulations to milliseconds, when using ML.ML algorithms can be used to accelerate FEM-based biomechanical simulations of anatomical structures, possibly reaching real-time responses. Fast and real-time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM-based simulations and accelerate their adoption in the clinical practice.CONCLUSIONSML algorithms can be used to accelerate FEM-based biomechanical simulations of anatomical structures, possibly reaching real-time responses. Fast and real-time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM-based simulations and accelerate their adoption in the clinical practice.
The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM-based mechanical simulations require considerable time, limiting their use in clinical applications that require real-time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results. This review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains. A total of 41 references were found. ML algorithms are mainly trained with FEM-based simulations in 32 publications. The preferred ML approach is neural networks, including deep learning in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM-based simulations to milliseconds, when using ML. ML algorithms can be used to accelerate FEM-based biomechanical simulations of anatomical structures, possibly reaching real-time responses. Fast and real-time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM-based simulations and accelerate their adoption in the clinical practice.
Author Duong, Luc
Hachem, Bahe
Phellan, Renzo
Clin, Julien
Mac‐Thiong, Jean‐Marc
Author_xml – sequence: 1
  givenname: Renzo
  surname: Phellan
  fullname: Phellan, Renzo
  email: renzo.phellanaro@mail.mcgill.ca
  organization: University of Quebec
– sequence: 2
  givenname: Bahe
  surname: Hachem
  fullname: Hachem, Bahe
  organization: Spinologics Inc
– sequence: 3
  givenname: Julien
  surname: Clin
  fullname: Clin, Julien
  organization: Spinologics Inc
– sequence: 4
  givenname: Jean‐Marc
  surname: Mac‐Thiong
  fullname: Mac‐Thiong, Jean‐Marc
  organization: Spinologics Inc
– sequence: 5
  givenname: Luc
  surname: Duong
  fullname: Duong, Luc
  organization: University of Quebec
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33222226$$D View this record in MEDLINE/PubMed
BookMark eNp10EtOwzAQBmALFdHykDgB8pJNiu04TsIOIV4SCFTBOpo6E2oUOyF2W3XHETgjJ6GlPCQEs5nFfPMv_m3Sc41DQvY5G3LGxJFth1wqJjbIQMg0jqRgeY8MGMtlJCRL-mTb-yfGmIoTtkX6cSxWowYERwj128trMBbp2DQW9QSc0Z5OvXGPNEyQVsaZgBRrtOgCtRgmTUnBldSCnhiHtEbo3JIf0xHODM4_ji12vkUdzAx3yWYFtce9z71DHs7P7k8vo-vbi6vTk-tIx4KLCGWe6FJznskSeSoVqCxhapyhEpyPIYdSQJoqhWnO4kpDloFIQMlE6ByrMt4hh-vctmuep-hDYY3XWNfgsJn6QkgVK6Zkli7pwSedji2WRdsZC92i-KrmJ0t3jfcdVt-Es2LVemHb4qP1JR3-otoECKZxoQNT__UQrR_mpsbFv8HFzd3avwNhBJKK
CitedBy_id crossref_primary_10_1177_14653125231203743
crossref_primary_10_3390_met13020286
crossref_primary_10_3390_s24186104
crossref_primary_10_3390_ma17071506
crossref_primary_10_1080_17480272_2022_2037704
crossref_primary_10_1016_j_autcon_2024_105935
crossref_primary_10_1088_2515_7655_ac8e30
crossref_primary_10_1088_1361_6560_adde0d
crossref_primary_10_1007_s11548_022_02596_1
crossref_primary_10_1016_j_media_2024_103221
crossref_primary_10_1109_TMI_2022_3180078
crossref_primary_10_1080_10255842_2024_2431892
crossref_primary_10_1016_j_compbiomed_2021_104547
crossref_primary_10_1007_s00419_024_02601_w
crossref_primary_10_1002_mp_17554
crossref_primary_10_1016_j_compbiomed_2024_109646
crossref_primary_10_1155_bmri_8284581
crossref_primary_10_1016_j_jocn_2024_02_024
crossref_primary_10_3390_s25092893
crossref_primary_10_1016_j_compbiomed_2022_105699
crossref_primary_10_1177_15589250251352192
crossref_primary_10_3390_bioengineering10060627
crossref_primary_10_1016_j_compbiomed_2025_110683
crossref_primary_10_1016_j_clinbiomech_2023_106003
crossref_primary_10_1016_j_eswa_2024_123953
crossref_primary_10_3390_bioengineering10091066
crossref_primary_10_3390_s24185872
crossref_primary_10_1016_j_measurement_2022_111534
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1007_s11144_021_02088_4
crossref_primary_10_1016_j_bonr_2025_101870
crossref_primary_10_1016_j_ijmecsci_2021_106972
crossref_primary_10_3389_fbioe_2022_855791
crossref_primary_10_3390_cancers13153662
crossref_primary_10_1088_1361_6668_adfa48
crossref_primary_10_1007_s10237_024_01862_2
crossref_primary_10_1007_s10439_025_03798_9
crossref_primary_10_3390_app14209296
crossref_primary_10_1002_aisy_202300082
crossref_primary_10_1016_j_eswa_2024_126343
crossref_primary_10_1016_j_cmpb_2021_106528
crossref_primary_10_1038_s41598_024_83598_8
crossref_primary_10_3389_fneur_2023_1123607
crossref_primary_10_1016_j_clinbiomech_2023_106117
crossref_primary_10_1016_j_jcis_2024_08_204
crossref_primary_10_1016_j_medengphy_2025_104321
crossref_primary_10_1016_j_compmedimag_2022_102165
crossref_primary_10_1080_24699322_2024_2357164
crossref_primary_10_1111_jace_70241
crossref_primary_10_1016_j_jmbbm_2024_106736
crossref_primary_10_1109_JPROC_2022_3166253
crossref_primary_10_1016_j_biosystemseng_2023_04_012
crossref_primary_10_1016_j_media_2024_103350
Cites_doi 10.1007/978-981-15-1925-3_31
10.1016/j.medengphy.2014.06.016
10.1002/jrsm.1378
10.1162/neco.1992.4.4.473
10.1007/978-1-4614-6849-3
10.1002/rcs.1493
10.1016/j.eswa.2016.11.037
10.1109/ACCESS.2019.2949699
10.1007/s11548-019-01965-7
10.1038/nature14539
10.3389/fphy.2019.00117
10.1109/EMBC.2013.6610170
10.1016/j.apm.2012.10.049
10.1007/s10237-017-0903-9
10.1016/j.cma.2018.12.030
10.1115/1.4002536
10.1016/j.finel.2011.02.014
10.1002/ecs2.1976
10.1016/j.actbio.2017.09.025
10.1016/j.artmed.2017.07.004
10.1109/ICDMW.2016.0042
10.1109/TBME.2012.2185495
10.1017/CBO9781107298019
10.1162/PRES_a_00054
10.1002/cnm.3103
10.1155/2017/3602928
10.1007/s10237-006-0015-4
10.1109/WHC.2009.4810896
10.1007/978-3-540-85990-1_89
10.1093/bib/bbx044
10.1117/12.911171
10.1007/8415_2012_146
10.1115/1.4043290
10.1016/j.media.2019.101569
10.1016/j.jmbbm.2019.103527
10.5194/gmd-7-1247-2014
10.1016/j.compbiomed.2018.09.029
10.1109/ICSMC.2011.6084112
10.3163/1536-5050.95.4.442
10.1016/j.eswa.2019.113083
10.3390/app9142775
10.1016/j.jbiomech.2019.109544
10.1007/s11548-007-0078-4
10.1007/978-3-030-42428-2_4
10.1016/j.bbe.2019.09.001
10.1016/j.media.2017.07.005
10.1109/MCG.2007.51
10.1007/978-1-4419-9326-7_5
10.1016/j.bspc.2013.04.004
10.1016/j.jmbbm.2011.03.002
10.1016/j.mechrescom.2008.10.004
10.1016/j.jbiomech.2015.12.014
10.1016/j.compbiomed.2017.09.019
10.1016/j.media.2019.06.002
10.1109/MSP.2008.930649
ContentType Journal Article
Copyright 2020 American Association of Physicists in Medicine
2020 American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 American Association of Physicists in Medicine
– notice: 2020 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.14602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 18
ExternalDocumentID 33222226
10_1002_mp_14602
MP14602
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3212-e495cdc1184de1746a68506b8e6211ba9ad2a7766e7903fca88a25a6452c9efd3
IEDL.DBID DRFUL
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Thu Sep 04 18:23:58 EDT 2025
Thu Apr 03 06:55:17 EDT 2025
Sat Nov 29 06:02:44 EST 2025
Tue Nov 18 21:36:27 EST 2025
Wed Jan 22 16:58:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords biomechanical simulation, finite element modelling, machine learning, neural network, real-time
Language English
License 2020 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3212-e495cdc1184de1746a68506b8e6211ba9ad2a7766e7903fca88a25a6452c9efd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33222226
PQID 2463606487
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2463606487
pubmed_primary_33222226
crossref_primary_10_1002_mp_14602
crossref_citationtrail_10_1002_mp_14602
wiley_primary_10_1002_mp_14602_MP14602
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2021
References 2017; 42
2017; 8
2017; 80
2013; 26
2017; 1
2012; 8316
2019; 56
2019; 14
2020; 59
2020; 11
2020; 99
2012; 59
2013; 8
2013; 9
2018; 5
2017; 71
2011; 20
2014; 15
2007; 2
2018; 34
2016; 49
2014; 7
1992; 4
2007; 27
2019; 7
2019; 9
2017; 63
2017; 2017
2012
2011
2015; 521
2020; 143
2018; 103
2009
2008
1997
2019; 347
2006; 5
2007
2019; 102
2006
2007; 95
2011; 4
2019; 141
2009; 26
2018; 19
2009; 36
2013; 37
2017; 90
2019; 40
2017; 16
2020
2010; 132
2019
2014; 36
2017
2016
2015
2014
2013
2011; 47
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
Ripley BD (e_1_2_12_47_1) 2007
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Brenner S (e_1_2_12_22_1) 2007
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_45_1
Drucker H (e_1_2_12_26_1) 1997
e_1_2_12_68_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_49_1
Bengio Y (e_1_2_12_66_1) 2017
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
Aranda A (e_1_2_12_36_1) 2018; 5
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
Rupérez M (e_1_2_12_33_1) 2017
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_61_1
Lane DM (e_1_2_12_62_1) 2017
e_1_2_12_40_1
Srivastava N (e_1_2_12_51_1) 2014; 15
Tanenbaum AS (e_1_2_12_63_1) 2015
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 90
  start-page: 116
  year: 2017
  end-page: 124
  article-title: A finite element‐based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real‐time
  publication-title: Comput Biol Med
– volume: 143
  start-page: 113083
  year: 2020
  article-title: Real‐time biomechanical modeling of the liver using machine learning models trained on finite element method simulations
  publication-title: Expert Syst Appl
– volume: 56
  start-page: 184
  year: 2019
  end-page: 192
  article-title: A methodology for generating four‐dimensional arterial spin labeling MR angiography virtual phantoms
  publication-title: Med Image Anal
– volume: 11
  start-page: 181
  year: 2020
  end-page: 217
  article-title: Which academic search systems are suitable for systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources
  publication-title: Res Synth Meth
– volume: 14
  start-page: 1147
  year: 2019
  end-page: 1155
  article-title: Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks
  publication-title: Int J Comput Assist Radiol Surg
– volume: 36
  start-page: 1253
  year: 2014
  end-page: 1265
  article-title: A neural network approach for determining gait modifications to reduce the contact force in knee joint implant
  publication-title: Med Eng Phys
– start-page: 3
  year: 2013
  end-page: 30
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding rmse in the literature
  publication-title: Geosci Model Develp
– volume: 16
  start-page: 1519
  year: 2017
  end-page: 1533
  article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm
  publication-title: Biomech Model Mechanobiol
– volume: 2
  start-page: 1
  year: 2007
  end-page: 10
  article-title: A real‐time navigation system for laparoscopic surgery based on three‐dimensional ultrasound using magneto‐optic hybrid tracking configuration
  publication-title: Int J Comput Assist Radiol Surg
– start-page: 30
  year: 2009
  end-page: 34
– volume: 8
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Statistically reinforced machine learning for nonlinear patterns and variable interactions
  publication-title: Ecosphere
– volume: 71
  start-page: 342
  year: 2017
  end-page: 357
  article-title: A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning
  publication-title: Expert Syst Appl
– volume: 40
  start-page: 849
  year: 2019
  end-page: 863
  article-title: Prediction of displacement in the equine third metacarpal bone using a neural network prediction algorithm
  publication-title: Biocybern Biomed Eng
– year: 2014
– volume: 49
  start-page: 631
  year: 2016
  end-page: 637
  article-title: Determination of the mechanical and physical properties of cartilage by coupling poroelastic‐based finite element models of indentation with artificial neural networks
  publication-title: J Biomech
– start-page: 157
  year: 2012
  end-page: 175
– volume: 102
  start-page: 103527
  year: 2019
  article-title: Prediction of load in a long bone using an artificial neural network prediction algorithm
  publication-title: J Mech Behav Biomed Mater
– volume: 4
  start-page: 473
  year: 1992
  end-page: 493
  article-title: Simplifying neural networks by soft weight‐sharing
  publication-title: Neural Comput
– volume: 103
  start-page: 34
  year: 2018
  end-page: 43
  article-title: Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression
  publication-title: Comput Biol Med
– volume: 9
  start-page: 2775
  year: 2019
  article-title: Survey of finite element method‐based real‐time simulations
  publication-title: App Sci
– volume: 37
  start-page: 5260
  year: 2013
  end-page: 5276
  article-title: Neural network prediction of load from the morphology of trabecular bone
  publication-title: Appl Math Model
– volume: 7
  start-page: 117
  year: 2019
  article-title: Prediction of left ventricular mechanics using machine learning
  publication-title: Front Phys
– volume: 8316
  start-page: 83160J
  year: 2012
– volume: 63
  start-page: 227
  year: 2017
  end-page: 235
  article-title: A deep learning approach to estimate chemically‐treated collagenous tissue nonlinear anisotropic stress‐strain responses from microscopy images
  publication-title: Acta Biomater
– start-page: 247
  year: 2016
  end-page: 253
– volume: 7
  start-page: 156779
  year: 2019
  end-page: 156786
  article-title: Predicting three‐dimensional ground reaction forces in running by using artificial neural networks and lower body kinematics
  publication-title: IEEE Acc
– volume: 34
  start-page: e3103
  year: 2018
  article-title: A machine learning approach as a surrogate of finite element analysis–based inverse method to estimate the zero‐pressure geometry of human thoracic aorta
  publication-title: Int J Num Meth Biomed Eng
– year: 2019
– volume: 347
  start-page: 201
  year: 2019
  end-page: 217
  article-title: Estimation of in vivo constitutive parameters of the aortic wall using a machine learning approach
  publication-title: Comput Methods Appl Mech Eng
– volume: 20
  start-page: 289
  year: 2011
  end-page: 308
  article-title: A physics‐driven neural networks‐based simulation system (Phynness) for multimodal interactive virtual environments involving nonlinear deformable objects
  publication-title: Presence: Teleoperators Virtual Environ
– start-page: 1
  year: 2020
  end-page: 4
– year: 2015
– volume: 9
  start-page: e52
  year: 2013
  end-page: e60
  article-title: A framework for predicting three‐dimensional prostate deformation in real time
  publication-title: Int J Med Robot Comput Ass Surg
– start-page: 431
  year: 2019
  end-page: 440
– start-page: 2842
  year: 2011
  end-page: 2846
– volume: 132
  start-page: 114502‐1
  year: 2010
  end-page: 114502‐5
  article-title: Application of neural networks and finite element computation for multiscale simulation of bone remodeling
  publication-title: J Biomech Eng
– volume: 47
  start-page: 835
  year: 2011
  end-page: 842
  article-title: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation
  publication-title: Finite Elem Anal Des
– volume: 4
  start-page: 868
  year: 2011
  end-page: 878
  article-title: Apparent damage accumulation in cancellous bone using neural networks
  publication-title: J Mech Behav Biomed Mater
– volume: 95
  start-page: 442
  year: 2007
  article-title: Comparing test searches in PubMed and Google Scholar
  publication-title: J Med Libr Ass
– volume: 8
  start-page: 475
  year: 2013
  end-page: 482
  article-title: Application of neural networks for the prediction of cartilage stress in a musculoskeletal system
  publication-title: Biomed Signal Process Control
– volume: 36
  start-page: 284
  year: 2009
  end-page: 293
  article-title: A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse
  publication-title: Mech Res Commun
– year: 2007
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Predictive behavior of a computational foot/ankle model through artificial neural networks
  publication-title: Comput Math Meth Med
– volume: 99
  start-page: 109544
  year: 2020
  article-title: A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta
  publication-title: J Biomech
– start-page: 583
  year: 2017
  end-page: 592
– volume: 141
  start-page: 084502‐1
  year: 2019
  end-page: 084502‐9
  article-title: Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis
  publication-title: J Biomech Eng
– volume: 5
  start-page: 253
  year: 2006
  end-page: 261
  article-title: Biomechanics of the C5‐C6 spinal unit before and after placement of a disc prosthesis
  publication-title: Biomech Model Mechanobiol
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– start-page: 155
  year: 1997
  end-page: 161
– volume: 5
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Study on cerebral aneurysms: Rupture risk prediction using geometrical parameters and wall shear stress with CFD and machine learning tools
  publication-title: Mach Lear Appl
– volume: 59
  start-page: 1155
  year: 2012
  end-page: 1161
  article-title: Machine learning techniques as a helpful tool toward determination of plaque vulnerability
  publication-title: IEEE Trans Biomed Eng
– volume: 19
  start-page: 1236
  year: 2018
  end-page: 1246
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
– volume: 1
  year: 2017
– volume: 59
  start-page: 101569
  year: 2020
  article-title: Simulation of hyperelastic materials in real‐time using deep learning
  publication-title: Med Image Anal
– start-page: 2996
  year: 2013
  end-page: 2999
– start-page: 742
  year: 2008
  end-page: 749
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process Mag
– volume: 80
  start-page: 39
  year: 2017
  end-page: 47
  article-title: A machine learning approach for real‐time modelling of tissue deformation in image‐guided neurosurgery
  publication-title: Artif Intell Med
– volume: 26
  year: 2013
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 54
  year: 2007
  end-page: 66
  article-title: VR‐based simulators for training in minimally invasive surgery
  publication-title: IEEE Comput Graphics Appl
– year: 2017
– start-page: 380
  year: 2006
  end-page: 385
– ident: e_1_2_12_19_1
  doi: 10.1007/978-981-15-1925-3_31
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_12_51_1
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: e_1_2_12_41_1
  doi: 10.1016/j.medengphy.2014.06.016
– ident: e_1_2_12_24_1
  doi: 10.1002/jrsm.1378
– ident: e_1_2_12_52_1
  doi: 10.1162/neco.1992.4.4.473
– ident: e_1_2_12_49_1
  doi: 10.1007/978-1-4614-6849-3
– ident: e_1_2_12_9_1
  doi: 10.1002/rcs.1493
– ident: e_1_2_12_40_1
  doi: 10.1016/j.eswa.2016.11.037
– ident: e_1_2_12_42_1
  doi: 10.1109/ACCESS.2019.2949699
– ident: e_1_2_12_7_1
  doi: 10.1007/s11548-019-01965-7
– ident: e_1_2_12_30_1
  doi: 10.1038/nature14539
– volume-title: Modern Operating Systems
  year: 2015
  ident: e_1_2_12_63_1
– ident: e_1_2_12_4_1
  doi: 10.3389/fphy.2019.00117
– ident: e_1_2_12_43_1
– ident: e_1_2_12_3_1
  doi: 10.1109/EMBC.2013.6610170
– start-page: 583
  volume-title: European Congress on Computational Methods in Applied Sciences and Engineering
  year: 2017
  ident: e_1_2_12_33_1
– ident: e_1_2_12_48_1
  doi: 10.1016/j.apm.2012.10.049
– ident: e_1_2_12_37_1
  doi: 10.1007/s10237-017-0903-9
– ident: e_1_2_12_31_1
– ident: e_1_2_12_58_1
  doi: 10.1016/j.cma.2018.12.030
– volume-title: The Mathematical Theory of Finite Element Methods
  year: 2007
  ident: e_1_2_12_22_1
– ident: e_1_2_12_39_1
  doi: 10.1115/1.4002536
– volume-title: Pattern Recognition and Neural Networks
  year: 2007
  ident: e_1_2_12_47_1
– ident: e_1_2_12_55_1
  doi: 10.1016/j.finel.2011.02.014
– ident: e_1_2_12_64_1
  doi: 10.1002/ecs2.1976
– ident: e_1_2_12_44_1
  doi: 10.1016/j.actbio.2017.09.025
– ident: e_1_2_12_38_1
  doi: 10.1016/j.artmed.2017.07.004
– ident: e_1_2_12_53_1
– ident: e_1_2_12_34_1
  doi: 10.1109/ICDMW.2016.0042
– ident: e_1_2_12_5_1
  doi: 10.1109/TBME.2012.2185495
– ident: e_1_2_12_27_1
  doi: 10.1017/CBO9781107298019
– volume: 5
  start-page: 1
  year: 2018
  ident: e_1_2_12_36_1
  article-title: Study on cerebral aneurysms: Rupture risk prediction using geometrical parameters and wall shear stress with CFD and machine learning tools
  publication-title: Mach Lear Appl
– ident: e_1_2_12_11_1
  doi: 10.1162/PRES_a_00054
– ident: e_1_2_12_50_1
  doi: 10.1002/cnm.3103
– ident: e_1_2_12_57_1
  doi: 10.1155/2017/3602928
– ident: e_1_2_12_14_1
  doi: 10.1007/s10237-006-0015-4
– ident: e_1_2_12_10_1
  doi: 10.1109/WHC.2009.4810896
– ident: e_1_2_12_6_1
  doi: 10.1007/978-3-540-85990-1_89
– ident: e_1_2_12_29_1
  doi: 10.1093/bib/bbx044
– ident: e_1_2_12_12_1
  doi: 10.1117/12.911171
– ident: e_1_2_12_17_1
  doi: 10.1007/8415_2012_146
– ident: e_1_2_12_20_1
  doi: 10.1115/1.4043290
– ident: e_1_2_12_32_1
  doi: 10.1016/j.media.2019.101569
– ident: e_1_2_12_45_1
  doi: 10.1016/j.jmbbm.2019.103527
– ident: e_1_2_12_67_1
  doi: 10.5194/gmd-7-1247-2014
– ident: e_1_2_12_18_1
  doi: 10.1016/j.compbiomed.2018.09.029
– ident: e_1_2_12_54_1
  doi: 10.1109/ICSMC.2011.6084112
– ident: e_1_2_12_25_1
  doi: 10.3163/1536-5050.95.4.442
– ident: e_1_2_12_8_1
  doi: 10.1016/j.eswa.2019.113083
– ident: e_1_2_12_23_1
  doi: 10.3390/app9142775
– ident: e_1_2_12_59_1
  doi: 10.1016/j.jbiomech.2019.109544
– ident: e_1_2_12_13_1
  doi: 10.1007/s11548-007-0078-4
– ident: e_1_2_12_21_1
  doi: 10.1007/978-3-030-42428-2_4
– volume-title: Deep Learning
  year: 2017
  ident: e_1_2_12_66_1
– ident: e_1_2_12_46_1
  doi: 10.1016/j.bbe.2019.09.001
– ident: e_1_2_12_28_1
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_12_2_1
  doi: 10.1109/MCG.2007.51
– ident: e_1_2_12_65_1
  doi: 10.1007/978-1-4419-9326-7_5
– ident: e_1_2_12_68_1
  doi: 10.1016/j.bspc.2013.04.004
– ident: e_1_2_12_16_1
  doi: 10.1016/j.jmbbm.2011.03.002
– volume-title: An Introduction to Statistics
  year: 2017
  ident: e_1_2_12_62_1
– start-page: 155
  volume-title: Advances in Neural Information Processing Systems
  year: 1997
  ident: e_1_2_12_26_1
– ident: e_1_2_12_15_1
  doi: 10.1016/j.mechrescom.2008.10.004
– ident: e_1_2_12_56_1
  doi: 10.1016/j.jbiomech.2015.12.014
– ident: e_1_2_12_35_1
  doi: 10.1016/j.compbiomed.2017.09.019
– ident: e_1_2_12_61_1
  doi: 10.1016/j.media.2019.06.002
– ident: e_1_2_12_60_1
  doi: 10.1109/MSP.2008.930649
SSID ssj0006350
Score 2.5953948
SecondaryResourceType review_article
Snippet Purpose The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM‐based mechanical...
The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM-based mechanical simulations...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Algorithms
Biomechanical Phenomena
biomechanical simulation, finite element modelling, machine learning, neural network, real‐time
Computer Simulation
Finite Element Analysis
Machine Learning
Title Real‐time biomechanics using the finite element method and machine learning: Review and perspective
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14602
https://www.ncbi.nlm.nih.gov/pubmed/33222226
https://www.proquest.com/docview/2463606487
Volume 48
WOSCitedRecordID wos000596112800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PvDio77qo6wgegqWpHl5E7V4aEspFnoLm82kCDYWo579Cf5Gf4kzu0lLUUHwEBaymxAyO7vz7cx8A3AqCfu7iXQsdOLAaiaxtGTacC0fkyC00aNWJwq3_W43GA7DXhFVybkwhh9ieuDGmqHXa1ZwGecXM9LQ8YS1nHkkl2yatm4Flm76rUF7ug7TVmoSUMIm-xDcknq2YV-Uz85vRt8szHmDVe84rY3_fOsmrBd2prgyE2MLFjCrwmqn8KRXYUWHfqp8G7BPtuLn-wdXmRc6G5-TgalLcEz8SJCFKNIHNk0FmlhzYcpOC5klYqyDMVEU1SdGl8J4G3TnZJbJuQOD1u399Z1VFF-wlEPbmYWEnFSiCH80EyTY4kmPye3iAD3CjLEMZWJL3_c89MOGkyoZBNJ2JftJVYhp4uxCJXvKcB8Es5aldC8MCPu5DkrCZHEDnZSupqdkDc5LKUSqYCbnAhmPkeFUtqPxJNL_rwYn05ETw8bx05hSkBGpCvs_ZIZPr3lka3I0jyBaDfaMhKdvcdjjRKZoDc60IH99fdTp6fbgrwMPYc3mOBh9bHMElZfnVzyGZfX28pA_12HRHwb1Yup-AeTh8Gs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8RADA7ier14H-s5guhTceldfRJ1UdxdZFnBtzKdpiK4ddnDZ3-Cv9FfYjLTrogKgg9loDMtpUkmyST5AnAgyff3UulY6CSh5aaJtGRW86wA0zCy0adRFwo3glYrvL-PbifgtKyFMfgQ4wM3lgy9X7OA84H08SdqaLfHYs5AkhWXuIjYu3LRrt81xhsx6VJTgRK5HETwSuzZmn1cPvtVG30zMb9arFrl1Bf-9bGLMF9YmuLMsMYSTGC-DDPNIpa-DNM6-VMNVgDbZC2-v75xn3mh6_G5HJimBGfFPwiyEUX2yMapQJNtLkzjaSHzVHR1OiaKov_Ew4kw8QY92fus5VyFu_pl5_zKKtovWMohhWYh-U4qVeSBuCmS4-JLn-HtkhB98hoTGcnUlkHg-xhENSdTMgyl7UmOlKoIs9RZg8n8OccNEIxbltG9KCTvz3NQkleW1NDJ6HJ9JatwVJIhVgU2ObfIeIoNqrIdd3ux_n9V2B-v7Bk8jp_WlJSMSVg4AiJzfB4NYlvDo_nkpFVh3ZB4_BaHY05kjFbhUFPy19fHzVs9bv514R7MXnWajbhx3brZgjmbs2L0Ic42TA77I9yBKfUyfBz0dwsO_gCgXfNz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kfeDF92N9RhA9FZe-qydRF8V1WUTBW0mTqQhuLa569if4G_0lziTtiqggeCiBJi2lk0nmy8x8A7AtCfsHWnoOelns-DqTjsxbgROhjhMXQ2pNonAn6nbjm5ukNwIHdS6M5YcYHrixZpj1mhUcS53vfbKG9ktWcyaSHPW5hkwDRo8v29ed4UJMe6nNQEl8diIENfdsy92rn_26G30zMb9arGbLaU__62NnYKqyNMWhnRqzMILFHExcVL70ORg3wZ9qMA94Sdbi--sb15kXJh-f04GpS3BU_K0gG1Hkd2ycCrTR5sIWnhay0KJvwjFRVPUnbveF9TeYzvIzl3MBrtsnV0enTlV-wVEebWgOEnZSWhEC8TUScAllyPR2WYwhocZMJlK7MorCEKOk5eVKxrF0A8meUpVgrr1FaBQPBS6DYN6ynO4lMaG_wENJqCxroZfT5YdKNmG3FkOqKm5yLpFxn1pWZTftl6n5f03YGo4sLR_HT2NqSaakLOwBkQU-PA9S19CjhQTSmrBkRTx8i8c-JzJGm7BjJPnr69OLnmlX_jpwEyZ6x-20c9Y9X4VJl4NizBnOGjSeHp9xHcbUy9Pd4HGjmsAfPlDy7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+biomechanics+using+the+finite+element+method+and+machine+learning%3A+Review+and+perspective&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Phellan%2C+Renzo&rft.au=Hachem%2C+Bahe&rft.au=Clin%2C+Julien&rft.au=Mac%E2%80%90Thiong%2C+Jean%E2%80%90Marc&rft.date=2021-01-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=1&rft.spage=7&rft.epage=18&rft_id=info:doi/10.1002%2Fmp.14602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_14602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon