A Heuristically Assisted Deep Reinforcement Learning Approach for Network Slice Placement

Network Slice placement with the problem of allocation of resources from a virtualized substrate network is an optimization problem which can be formulated as a multi-objective Integer Linear Programming (ILP) problem. However, to cope with the complexity of such a continuous task and seeking for op...

Full description

Saved in:
Bibliographic Details
Published in:IEEE eTransactions on network and service management Vol. 19; no. 4; pp. 4794 - 4806
Main Authors: Alves Esteves, Jose Jurandir, Boubendir, Amina, Guillemin, Fabrice, Sens, Pierre
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1932-4537, 1932-4537
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network Slice placement with the problem of allocation of resources from a virtualized substrate network is an optimization problem which can be formulated as a multi-objective Integer Linear Programming (ILP) problem. However, to cope with the complexity of such a continuous task and seeking for optimality and automation, the use of Machine Learning (ML) techniques appear as a promising approach. We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization heuristic based on the "Power of Two Choices" principle. The DRL algorithm uses the so-called Asynchronous Advantage Actor Critic (A3C) algorithm for fast learning, and Graph Convolutional Networks (GCN) to automate feature extraction from the physical substrate network. The proposed Heuristically-Assisted DRL (HA-DRL) allows for the acceleration of the learning process and substantial gain in resource usage when compared against other state-of-the-art approaches, as evidenced by evaluation results.
AbstractList Network Slice placement with the problem of allocation of resources from a virtualized substrate network is an optimization problem which can be formulated as a multi-objective Integer Linear Programming (ILP) problem. However, to cope with the complexity of such a continuous task and seeking for optimality and automation, the use of Machine Learning (ML) techniques appear as a promising approach. We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization heuristic based on the "Power of Two Choices" principle. The DRL algorithm uses the so-called Asynchronous Advantage Actor Critic (A3C) algorithm for fast learning, and Graph Convolutional Networks (GCN) to automate feature extraction from the physical substrate network. The proposed Heuristically-Assisted DRL (HA-DRL) allows for the acceleration of the learning process and substantial gain in resource usage when compared against other state-of-the-art approaches, as evidenced by evaluation results.
Network Slice placement with the problem of allocation of resources from a virtualized substrate network is an optimization problem which can be formulated as a multiobjective Integer Linear Programming (ILP) problem. However, to cope with the complexity of such a continuous task and seeking for optimality and automation, the use of Machine Learning (ML) techniques appear as a promising approach. We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization heuristic based on the "Power of Two Choices" principle. The DRL algorithm uses the so-called Asynchronous Advantage Actor Critic (A3C) algorithm for fast learning, and Graph Convolutional Networks (GCN) to automate feature extraction from the physical substrate network. The proposed Heuristically-Assisted DRL (HA-DRL) allows for the acceleration of the learning process and substantial gain in resource usage when compared against other state-of-theart approaches, as evidenced by evaluation results.
Author Guillemin, Fabrice
Sens, Pierre
Boubendir, Amina
Alves Esteves, Jose Jurandir
Author_xml – sequence: 1
  givenname: Jose Jurandir
  orcidid: 0000-0002-1365-7277
  surname: Alves Esteves
  fullname: Alves Esteves, Jose Jurandir
  email: josejurandir.alvesesteves@orange.com
  organization: Orange Labs, Chatilon, France
– sequence: 2
  givenname: Amina
  orcidid: 0000-0002-7472-148X
  surname: Boubendir
  fullname: Boubendir, Amina
  email: amina.boubendir@orange.com
  organization: Orange Labs, Chatilon, France
– sequence: 3
  givenname: Fabrice
  orcidid: 0000-0001-5960-2274
  surname: Guillemin
  fullname: Guillemin, Fabrice
  email: fabrice.guillemin@orange.com
  organization: Orange Labs, Chatilon, France
– sequence: 4
  givenname: Pierre
  orcidid: 0000-0002-5156-7715
  surname: Sens
  fullname: Sens, Pierre
  email: pierre.sens@lip6.fr
  organization: LIP6-Inria, Sorbonne University, Paris, France
BackLink https://hal.science/hal-03954579$$DView record in HAL
BookMark eNp9kEtLxDAUhYMo-PwB4ibgysWMuUnTpsvia4TxgTMuXIU03mi0tmPSUfz3tlRFXLi6r-9cDmeTrNZNjYTsAhsDsPxwfjm7GHPGYSxAcGBihWxALvgokSJb_dWvk80YnxiTCnK-Qe4KOsFl8LH11lTVBy1i7Aa8p8eIC3qDvnZNsPiCdUunaELt6wdaLBahMfaRdjd6ie17E57prPIW6XVlBnqbrDlTRdz5qlvk9vRkfjQZTa_Ozo-K6ch2PmGESiIY58pSqVLIUjKHDm1pEpfeW2tsaqE0hjuZlRmqxIHlkKRcJFmiMEWxRQ6Gv4-m0ovgX0z40I3xelJMdb9jIpeJzPI36Nj9ge3svy4xtvqpWYa6s6d5loHkTKmeygbKhibGgE5b35rWN3UbjK80MN1nrvvMdZ-5_sq8U8If5beh_zR7g8Yj4g-fp4IrnohPh9WPJA
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNSM_2023_3287651
crossref_primary_10_1109_COMST_2024_3390613
crossref_primary_10_1109_TPDS_2023_3310013
crossref_primary_10_1109_TNSM_2024_3454758
crossref_primary_10_1109_JIOT_2023_3264253
crossref_primary_10_1109_TNSM_2024_3437217
crossref_primary_10_1109_TNSM_2023_3258692
crossref_primary_10_1109_MCOM_006_2200534
crossref_primary_10_1109_TCCN_2024_3349452
crossref_primary_10_1002_dac_5463
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_1109_JIOT_2024_3356750
crossref_primary_10_3390_s25103139
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1007_s10922_023_09773_w
crossref_primary_10_1002_ett_5016
crossref_primary_10_1109_TNSM_2022_3175910
Cites_doi 10.23919/CNSM50824.2020.9269099
10.1109/ICCV.2017.43
10.1109/SURV.2013.013013.00155
10.1016/j.neucom.2018.01.025
10.23919/CNSM.2017.8255993
10.1109/COMST.2015.2477041
10.1016/j.ejor.2016.01.003
10.1109/NFV-SDN.2017.8169880
10.1109/CCNC49032.2021.9369463
10.1007/s10846-017-0731-2
10.1109/TCYB.2013.2253094
10.1109/INFCOM.2009.5061987
10.1109/TNSM.2019.2947905
10.1109/71.963420
10.1109/JSAC.2020.2986662
10.1109/CLOUD.2016.0057
10.1109/INFCOMW.2019.8845184
10.1109/COMST.2018.2884835
10.1016/j.ins.2019.05.012
10.1145/3326285.3329056
10.1109/ACCESS.2015.2507158
10.1007/s10732-007-9031-5
10.23919/JCC.2019.12.001
10.1109/CCNC.2018.8319276
10.1109/INFCOMW.2019.8845171
10.1016/j.endm.2016.03.028
10.1109/TNSM.2016.2598420
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
1XC
VOOES
DOI 10.1109/TNSM.2021.3132103
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1932-4537
EndPage 4806
ExternalDocumentID oai:HAL:hal-03954579v1
10_1109_TNSM_2021_3132103
9632824
Genre orig-research
GrantInformation_xml – fundername: European Commission
  funderid: 10.13039/501100000780
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c3211-e85e1affbb88b35b50fefecba4f6dccac6c1baa2f57b7e84f1c2146234748e6e3
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Tue Oct 14 20:44:27 EDT 2025
Sun Nov 30 04:16:37 EST 2025
Sat Nov 29 03:13:15 EST 2025
Tue Nov 18 22:30:52 EST 2025
Wed Aug 27 02:18:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Automation
Deep Reinforcement Learning
Placement
Large Scale
Optimization
Network Slicing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3211-e85e1affbb88b35b50fefecba4f6dccac6c1baa2f57b7e84f1c2146234748e6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1365-7277
0000-0001-5960-2274
0000-0002-7472-148X
0000-0002-5156-7715
OpenAccessLink https://hal.science/hal-03954579
PQID 2771520881
PQPubID 85504
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_03954579v1
crossref_citationtrail_10_1109_TNSM_2021_3132103
proquest_journals_2771520881
crossref_primary_10_1109_TNSM_2021_3132103
ieee_primary_9632824
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
(ref2) 2020
ref1
ref17
ref16
ref19
ref18
Fischer (ref4) 2011
Mnih (ref24)
ref25
ref20
ref21
Bianchi (ref26); 242
Defferrard (ref22)
ref28
ref27
ref29
ref8
Sutton (ref34) 2015
ref7
ref9
(ref3) 2017
Kipf (ref23)
ref6
ref5
References_xml – ident: ref10
  doi: 10.23919/CNSM50824.2020.9269099
– ident: ref27
  doi: 10.1109/ICCV.2017.43
– ident: ref8
  doi: 10.1109/SURV.2013.013013.00155
– ident: ref13
  doi: 10.1016/j.neucom.2018.01.025
– ident: ref16
  doi: 10.23919/CNSM.2017.8255993
– ident: ref1
  doi: 10.1109/COMST.2015.2477041
– ident: ref32
  doi: 10.1016/j.ejor.2016.01.003
– ident: ref35
  doi: 10.1109/NFV-SDN.2017.8169880
– ident: ref17
  doi: 10.1109/CCNC49032.2021.9369463
– ident: ref29
  doi: 10.1007/s10846-017-0731-2
– volume-title: Reinforcement learning: An introduction
  year: 2015
  ident: ref34
– ident: ref28
  doi: 10.1109/TCYB.2013.2253094
– ident: ref15
  doi: 10.1109/INFCOM.2009.5061987
– ident: ref20
  doi: 10.1109/TNSM.2019.2947905
– ident: ref33
  doi: 10.1109/71.963420
– year: 2020
  ident: ref2
  article-title: Management and orchestration; 5G Network Resource Model (NRM); Stage 2 and stage 3 (Release 17)
– ident: ref11
  doi: 10.1109/JSAC.2020.2986662
– ident: ref14
  doi: 10.1109/CLOUD.2016.0057
– volume: 242
  start-page: 169
  volume-title: Proc. 20th Eur. Conf. Artif. Intell.
  ident: ref26
  article-title: Heuristically accelerated reinforcement learning: Theoretical and experimental results
– start-page: 1
  year: 2011
  ident: ref4
  article-title: ALEVIN–A framework to develop, compare, and analyze virtual network embedding algorithms
  publication-title: Open Access J. Electron. Commun. EASST
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Asynchronous methods for deep reinforcement learning
– ident: ref21
  doi: 10.1109/INFCOMW.2019.8845184
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR)
  ident: ref23
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2017
  ident: ref3
  article-title: Network functions Virtualisation (NFV); evolution and ecosystem; report on network slicing support
– ident: ref7
  doi: 10.1109/COMST.2018.2884835
– ident: ref18
  doi: 10.1016/j.ins.2019.05.012
– ident: ref19
  doi: 10.1145/3326285.3329056
– ident: ref30
  doi: 10.1109/ACCESS.2015.2507158
– ident: ref25
  doi: 10.1007/s10732-007-9031-5
– ident: ref5
  doi: 10.23919/JCC.2019.12.001
– start-page: 3844
  volume-title: Proc. 30th Int. Conf. Neural Process. Syst. (NIPS)
  ident: ref22
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref31
  doi: 10.1109/CCNC.2018.8319276
– ident: ref12
  doi: 10.1109/INFCOMW.2019.8845171
– ident: ref9
  doi: 10.1016/j.endm.2016.03.028
– ident: ref6
  doi: 10.1109/TNSM.2016.2598420
SSID ssj0058192
Score 2.404942
Snippet Network Slice placement with the problem of allocation of resources from a virtualized substrate network is an optimization problem which can be formulated as...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4794
SubjectTerms Algorithms
automation
Bandwidth
Computer Science
Convergence
Deep learning
deep reinforcement learning
Feature extraction
Integer programming
large scale
Linear programming
Machine learning
Network slicing
Networking and Internet Architecture
Optimization
Placement
Random access memory
Reinforcement learning
Substrates
Training
Title A Heuristically Assisted Deep Reinforcement Learning Approach for Network Slice Placement
URI https://ieeexplore.ieee.org/document/9632824
https://www.proquest.com/docview/2771520881
https://hal.science/hal-03954579
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB1ik0N7yEfTEidOEKGn0k1Wu1pLOpp84ENiTJ1CelokeZQEjBPi2JB_H41WNoWWQm_L7gh29bSjGWn0HsBXXRmpNLdZXhiRiZAyZzqvVFaVuStsSYoiPopNyOFQ3d3p0QZ8X5-FQcRYfIandBn38idPbkFLZWdhsIQMQbSgJWWvOau18roVEXulXUue67Pb4fgmZH8FPyVuQr7SxErzTuuBqh6jnMofPjhOLFfb__dKO7CVAkjWbxDfhQ2cfYKPv9EK7sGvPhvgoqFgNtPpGwsYEJoTdoH4zH5gZEt1cWGQJYLVe9ZP7OIsPGPDpjqcjafBkbARrbWT9Wf4eXV5ez7IkoRC5sJX8wxVhdx4b61SoedtlXv06KwRvjcJ4Lme49aYwlfSSlTCc0dK30UppFDYw_ILtGdPM9wHJqWZeC-NsNaLwjqtsdQh3uRWhU5A1YF81cG1S_ziJHMxrWOekeuaMKkJkzph0oFv6ybPDbnGv4xPAmprO6LFHvSva7qXlzoEglIveQf2CKO1VYKnA90VyHX6R-d1IWUIXoKX5Qd_b3UIHwo67BCLV7rQfn1Z4BFsuuXr4_zlOA6_d1YO2Lk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RSxwxEB7UFtQH22rFa20bSp_E1c1u9pI8Hlq50nOReoI-hSQ3aQvHKeoJ_ffN5HJHQRH6tuxOYDdfdjKTTL4P4IturFSau6KsrChETJkLXTaqaOrSV64mRZGQxCZk26rLS322BPuLszCImIrP8IAu017-6NpPaansMA6WmCGIZXhByln5tNbc7zZE7ZX3LXmpD4ft-WnM_yp-QOyEfK6KlWee5V9U95gEVR554TS1nLz6v5d6DRs5hGS9GeZvYAknm7D-D7HgFlz1WB-nMxJmOx7_YREFwnPEjhFv2A9MfKk-LQ2yTLH6k_UyvziLz1g7qw9n5-PoStgZrbaT9Vu4OPk6POoXWUSh8PGreYGqQW5DcE6p2PeuKQMG9M6K0B1F-HzXc2dtFRrpJCoRuCet76oWUijsYr0NK5PrCe4Ak9KOQpBWOBdE5bzWWOsYcXKnYieg6kA572DjM8M4CV2MTco0Sm0IE0OYmIxJB_YWTW5m9BrPGX-OqC3siBi73xsYulfWOoaCUj_wDmwRRgurDE8Hducgm_yX3plKyhi-RD_L3z3d6hOs9oenAzP41n5_D2sVHX1IpSy7sHJ_O8UP8NI_3P--u_2YhuJfxMfcAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Heuristically+Assisted+Deep+Reinforcement+Learning+Approach+for+Network+Slice+Placement&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Alves+Esteves%2C+Jose+Jurandir&rft.au=Boubendir%2C+Amina&rft.au=Guillemin%2C+Fabrice&rft.au=Sens%2C+Pierre&rft.date=2022-12-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=19&rft.issue=4&rft.spage=4794&rft.epage=4806&rft_id=info:doi/10.1109%2FTNSM.2021.3132103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2021_3132103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon