Minimizing the computation latency of FDMA‐based wireless powered edge computing network
The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of binary and continuous variables, which is computationally expensive for traditional techniques and difficult to solve within the channel coherence...
Saved in:
| Published in: | IET communications Vol. 17; no. 17; pp. 2030 - 2039 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Stevenage
John Wiley & Sons, Inc
01.10.2023
Wiley |
| Subjects: | |
| ISSN: | 1751-8628, 1751-8636 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of binary and continuous variables, which is computationally expensive for traditional techniques and difficult to solve within the channel coherence time under time‐varying condition. Using machine learning models to output variable values is also challenging. Hence, designing efficient and low‐complexity algorithms is crucial for optimal network performance. This paper focuses on the computation latency of the FDMA‐based WP‐MEC network and proposes a task‐offloading algorithm to minimize the total completion delay (TCD). The TCD minimization is modelled as a 0–1 MIP problem and is decomposed into a master problem of optimizing the offloading decision and the sub‐problem of optimizing other parameters under a given offloading decision. The sub‐problem is solved using optimization method, while the master problem is solved using a deep reinforcement learning algorithm. Simulation results show that the proposed algorithm can achieve almost minimal TCD with low complexity. |
|---|---|
| AbstractList | The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of binary and continuous variables, which is computationally expensive for traditional techniques and difficult to solve within the channel coherence time under time‐varying condition. Using machine learning models to output variable values is also challenging. Hence, designing efficient and low‐complexity algorithms is crucial for optimal network performance. This paper focuses on the computation latency of the FDMA‐based WP‐MEC network and proposes a task‐offloading algorithm to minimize the total completion delay (TCD). The TCD minimization is modelled as a 0–1 MIP problem and is decomposed into a master problem of optimizing the offloading decision and the sub‐problem of optimizing other parameters under a given offloading decision. The sub‐problem is solved using optimization method, while the master problem is solved using a deep reinforcement learning algorithm. Simulation results show that the proposed algorithm can achieve almost minimal TCD with low complexity. Abstract The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of binary and continuous variables, which is computationally expensive for traditional techniques and difficult to solve within the channel coherence time under time‐varying condition. Using machine learning models to output variable values is also challenging. Hence, designing efficient and low‐complexity algorithms is crucial for optimal network performance. This paper focuses on the computation latency of the FDMA‐based WP‐MEC network and proposes a task‐offloading algorithm to minimize the total completion delay (TCD). The TCD minimization is modelled as a 0–1 MIP problem and is decomposed into a master problem of optimizing the offloading decision and the sub‐problem of optimizing other parameters under a given offloading decision. The sub‐problem is solved using optimization method, while the master problem is solved using a deep reinforcement learning algorithm. Simulation results show that the proposed algorithm can achieve almost minimal TCD with low complexity. The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of binary and continuous variables, which is computationally expensive for traditional techniques and difficult to solve within the channel coherence time under time‐varying condition. Using machine learning models to output variable values is also challenging. Hence, designing efficient and low‐complexity algorithms is crucial for optimal network performance. This paper focuses on the computation latency of the FDMA‐based WP‐MEC network and proposes a task‐offloading algorithm to minimize the total completion delay (TCD). The TCD minimization is modelled as a 0–1 MIP problem and is decomposed into a master problem of optimizing the offloading decision and the sub‐problem of optimizing other parameters under a given offloading decision. The sub‐problem is solved using optimization method, while the master problem is solved using a deep reinforcement learning algorithm. Simulation results show that the proposed algorithm can achieve almost minimal TCD with low complexity. |
| Author | Chen, Xi Chi, Kaikai Wei, Xinchen Jiang, Guodong Chen, Gang Zhang, Shubin |
| Author_xml | – sequence: 1 givenname: Xi surname: Chen fullname: Chen, Xi organization: School of Computer Science and Technology Zhejiang University of Technology Hangzhou China – sequence: 2 givenname: Guodong surname: Jiang fullname: Jiang, Guodong organization: School of Computer Science and Technology Zhejiang University of Technology Hangzhou China – sequence: 3 givenname: Kaikai orcidid: 0000-0003-4751-2049 surname: Chi fullname: Chi, Kaikai organization: School of Computer Science and Technology Zhejiang University of Technology Hangzhou China – sequence: 4 givenname: Shubin surname: Zhang fullname: Zhang, Shubin organization: School of Computer Science and Technology Zhejiang University of Technology Hangzhou China – sequence: 5 givenname: Xinchen orcidid: 0000-0002-4907-8672 surname: Wei fullname: Wei, Xinchen organization: School of Computer Science and Technology Zhejiang University of Technology Hangzhou China – sequence: 6 givenname: Gang surname: Chen fullname: Chen, Gang organization: School of Automation Zhejiang Institute of Mechanical and Electrical Engineering Hangzhou China |
| BookMark | eNo9kc9Kw0AQxhdRsK1efIKAN6F1_2dzLNVqocWLXrwsm82kbm2zcTel1JOP4DP6JKatFgZm-PjmNwNfF51WvgKErggeEMyzW7ta0wGhMpUnqENSQfpKMnl6nKk6R90YFxgLITnvoNeZq9zKfbpqnjRvkFi_qteNaZyvkqVpoLLbxJfJ-G42_Pn6zk2EItm4AEuIMan9BkIrQDH_39xxKmg2PrxfoLPSLCNc_vUeehnfP48e-9Onh8loOO1bRnHTL5nNUiWBC6qMzEsscmlsShm1qoSUWSiKEgwoJpVNc14oQjAYm4m04FRmrIcmB27hzULXwa1M2GpvnN4LPsy1CY2zS9AME4E5ppSTtjJpuMyxoJRhzkShoGVdH1h18B9riI1e-HWo2vfb3YzSjAipWtfNwWWDjzFAebxKsN7loHc56H0O7BdzB3z_ |
| Cites_doi | 10.1109/TMC.2018.2885268 10.1109/INFOCOM41043.2020.9155418 10.1109/ACCESS.2021.3078539 10.1109/TCOMM.2019.2912605 10.1109/TWC.2022.3188302 10.1109/TWC.2021.3067709 10.1109/TCOMM.2022.3162263 10.1109/TMC.2019.2928811 10.1109/JIOT.2021.3057360 10.1109/WCNC51071.2022.9771984 10.1109/TII.2018.2852491 10.1109/TWC.2018.2821664 10.1109/WCNC51071.2022.9771592 10.1109/TCOMM.2023.3237854 10.1017/CBO9780511804441 10.1109/JIOT.2017.2750180 10.1016/j.comcom.2022.04.017 10.1109/TPDS.2021.3129618 |
| ContentType | Journal Article |
| Copyright | 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W DOA |
| DOI | 10.1049/cmu2.12676 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8636 |
| EndPage | 2039 |
| ExternalDocumentID | oai_doaj_org_article_3015040224124196a46b052230435d8e 10_1049_cmu2_12676 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB AAYXX ABJCF ABQXS ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFAZI AFFHD AFKRA AGXDD AIAGR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION CS3 DU5 EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PTHSS QWB RNS ROL RUI S0W U5U UNMZH WIN ZL0 ~ZZ DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c320t-f3c9786e4528a6bf05b6ac7232c8fe73ceddfeae8368c7b4d8110eac957d42693 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077077700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8628 |
| IngestDate | Fri Oct 03 12:47:46 EDT 2025 Wed Aug 13 10:59:46 EDT 2025 Wed Oct 29 21:22:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-f3c9786e4528a6bf05b6ac7232c8fe73ceddfeae8368c7b4d8110eac957d42693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4751-2049 0000-0002-4907-8672 |
| OpenAccessLink | https://doaj.org/article/3015040224124196a46b052230435d8e |
| PQID | 3092291568 |
| PQPubID | 1936360 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3015040224124196a46b052230435d8e proquest_journals_3092291568 crossref_primary_10_1049_cmu2_12676 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-00 20231001 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET communications |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_12_4_1 e_1_2_12_3_1 Li C. (e_1_2_12_11_1) 2019; 93 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 Shi K. (e_1_2_12_16_1) 2023; 224 Zhang G. (e_1_2_12_17_1) 2022; 55 e_1_2_12_20_1 e_1_2_12_21_1 Shakarami A. (e_1_2_12_8_1) 2020; 182 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – ident: e_1_2_12_3_1 doi: 10.1109/TMC.2018.2885268 – ident: e_1_2_12_13_1 doi: 10.1109/INFOCOM41043.2020.9155418 – ident: e_1_2_12_18_1 doi: 10.1109/ACCESS.2021.3078539 – ident: e_1_2_12_4_1 doi: 10.1109/TCOMM.2019.2912605 – ident: e_1_2_12_6_1 doi: 10.1109/TWC.2022.3188302 – ident: e_1_2_12_14_1 doi: 10.1109/TWC.2021.3067709 – volume: 182 issue: 107496 year: 2020 ident: e_1_2_12_8_1 article-title: A survey on the computation offloading approaches in mobile edge computing: A machine learning‐based perspective publication-title: Comput. Networks – ident: e_1_2_12_23_1 – ident: e_1_2_12_7_1 doi: 10.1109/TCOMM.2022.3162263 – volume: 224 issue: 109584 year: 2023 ident: e_1_2_12_16_1 article-title: Joint task processing/offloading mode selection and resource‐allocation for backscatter‐aided and wireless‐powered MEC publication-title: Comput. Networks – ident: e_1_2_12_22_1 doi: 10.1109/TMC.2019.2928811 – ident: e_1_2_12_10_1 doi: 10.1109/JIOT.2021.3057360 – ident: e_1_2_12_12_1 doi: 10.1109/WCNC51071.2022.9771984 – volume: 55 start-page: 1 issue: 101861 year: 2022 ident: e_1_2_12_17_1 article-title: Time allocation improvement method for UAV‐based wireless energy transfer cooperative mobile edge publication-title: Phys. Commun. – volume: 93 start-page: 1 issue: 101897 year: 2019 ident: e_1_2_12_11_1 article-title: Stochastic computation resource allocation for mobile edge computing powered by wireless energy transfer publication-title: Ad Hoc Networks – ident: e_1_2_12_2_1 doi: 10.1109/TII.2018.2852491 – ident: e_1_2_12_24_1 doi: 10.1109/TWC.2018.2821664 – ident: e_1_2_12_15_1 doi: 10.1109/WCNC51071.2022.9771592 – ident: e_1_2_12_9_1 doi: 10.1109/TCOMM.2023.3237854 – ident: e_1_2_12_21_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_12_5_1 doi: 10.1109/JIOT.2017.2750180 – ident: e_1_2_12_20_1 doi: 10.1016/j.comcom.2022.04.017 – ident: e_1_2_12_19_1 doi: 10.1109/TPDS.2021.3129618 |
| SSID | ssj0055644 |
| Score | 2.3374565 |
| Snippet | The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization of... Abstract The 0–1 mixed integer programming problem of binary offloading on wireless powered mobile edge computing (WP‐MEC) networks requires joint optimization... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 2030 |
| SubjectTerms | Algorithms Bandwidths Complexity Continuity (mathematics) Convex analysis convex programming Deep learning delay estimation Edge computing Energy consumption frequency division multiple access Integer programming Internet of Things Linear programming Machine learning Mixed integer Mobile computing Network latency Optimization Power Radio frequency Scheduling Unmanned aerial vehicles Wireless networks Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kuNCF-MRqlQHdxrYzk8nMsj6KmxYXCsVNyNzMQKFNpQ9BV36C3-iXeGeSSMGFGyGbhEwS7k3uOSeZnEvIZSKFscbEEYCWkUCMi4xwLhA5xGvFMg6h2UQyHKrRSD-stfryc8JKe-AycG3uJbkISIOLlpmQpoOkAWU4j3NlffVF1lOLqbIGx7EMbVwRG7sRcnZVG5MK3Ybpil11mfQuI2tQFBz7fxXkgDL9XbJT0UPaKy9rj2zYYp9sr5kGHpDnwbgYT8fvuEKRvVEIfRlCgOkk8xT4jc4c7d8Oel8fnx6lcuoNiSdY0-iLb4qGG_xbtGqkP05RTgY_JE_9u8eb-6jqkBABZ51l5DigCpRWxExl0rhObGQGCbIkUM4mHGyeO5tZxaWCxIhcIdpjqdVxkvt_WPkRaRSzwh4TmjCXx2C7yplMCMM0MC8tULGAZOBMk1zUwUpfSiOMNHzAFjr1IU1DSJvk2sfxZw9vXh02YErTKqXpXyltkladhbR6ohY4SDOmUW2qk_84xynZ8o3jy2l5LdJYzlf2jGzC63K8mJ-Hm-kbVrTLWA priority: 102 providerName: Directory of Open Access Journals |
| Title | Minimizing the computation latency of FDMA‐based wireless powered edge computing network |
| URI | https://www.proquest.com/docview/3092291568 https://doaj.org/article/3015040224124196a46b052230435d8e |
| Volume | 17 |
| WOSCitedRecordID | wos001077077700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8636 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbppof20KYvsk2yCNqrG68ky9IpJG2WXLIsfUDIxVhjqSwk3s3uptCe-hP6G_NLMqOV20Ahl4AxWH5gPNLMN9L4-xh7X2rlvHNFBmB1pjDGZU6FEIEcxmsjaglRbKIcj83ZmZ2kCbdlKqvsfGJ01M0MaI58X-ZWCIvZhjmYX2WkGkWrq0lC4xHbJKYy1WObR8fjyefOFxeFjnKuGCOHGWJ30xGUKrsPl9fiw1BoYhu5E5Iic_9_jjlGm9Hzh77nFnuWcCY_XHeMF2zDty_Z0zvsg6_Y-em0nV5Of-EBRxjIIQo8REvxi5qw9E8-C3z06fTw5vcfCncNJ2bjC3SOfE7qathA03HpTnpOu64qf82-jY6_fjzJktRCBlLkqyxIwHRSe1UIU2sX8sLpGkqEW2CCLyX4pgm-9kZqA6VTjUHYgD7bFmVDP8PKN6zXzlq_zXgpQlOAH5rgaqWcsCAoR8HUB7SA4PrsXfe1q_maUaOKK-HKVmSTKtqkz47IEH-vIBbs2DBbfK_SoKokTdeoiEJws7pW2uUIKGWOILAxvs92OxtVaWguq38Genv_6R32hLTl15V7u6y3Wlz7PfYYfqymy8Ug9bRBTOIHVDL6BfeT4vwWGA_g3g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlYtDzF0BYsAcvQjO049qJChTJq1c4IiSJVbNLYsdFIbWaYmYLKik_ol_BRfAn3OglUQmLXBVI2cR5S4qNzzvXjXoDnuZLWW5slzhmVSNS4xMoQopFDvda8FC4Wm8hHI310ZN4twY9uLwwtq-w4MRJ1NXE0Rr4pUsO5wWhDv5p-TqhqFM2udiU0Gljs-_OvGLLNt_Z2sH9fcD54e_hmN2mrCiRO8HSRBOEwclJeZlyXyoY0s6p0OToLp4PPhfNVFXzptVDa5VZWGhUS6clkeUX7PgW-9xpcl8T-cang-475s0zF4rGoyP0EIwXdpUOVZtOdnvGXfa4ot8klAYx1Av6Sgahtg9X_7a_cgZXWRbPtBvZ3YcnX9-D2pdyK9-HjcFyPT8ff8IShyWUulq-IOGQnJUUK52wS2GBnuP3z-wWJecUob_MJUj-bUu04bKDBxvZJek_drJl_AB-u5OMewnI9qf0jYDkPVeZ8XwdbSmm5cZwiMAzsnOIu2B4863q3mDb5Qoo4zy9NQRgoIgZ68Jo6_vcdlOM7Nkxmn4qWMgpBg1Eyeiw8jCqlsinaZZGixa2078F6h4miJZ558QcQj_99-Snc3D0cHhQHe6P9NbjF0bs1axTXYXkxO_MbcMN9WYznsycR4wyOrxo-vwBAeTs5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAc-C1iaQFLwDFs1nYc-1BVhWVFVbraA0hVLyF2bLRSm112t6By4hF4Hh6nT8KMk0AlJG49IOUS50dK_Hm--ezxDMDzXEnrrc0S54xKJHJcYmUI0ZFDvta8FC4Wm8jHY314aCZr8LPbC0NhlZ1NjIa6mjmaI--L1HBuUG3ofmjDIibD0c78c0IVpGiltSun0UBk3599Rfm23N4bYl-_4Hz05v3rt0lbYSBxgqerJAiHKkp5mXFdKhvSzKrS5ehlOB18LpyvquBLr4XSLrey0siWaKpMlle0B1Tge6_A1Rw1Jo2uSXbUsUCWqVhIFtl5kKBq0F1qVGn67uSUvxxwRXlOLpBhrBnwFyVEnhvd_p__0B241XrXbLcZDndhzdf34OaFnIv34ehgWk9Ppt_whKHzy1wsaxHxyY5LUhBnbBbYaHiwe_79B5F8xSif8zFSAptTTTlsoEnI9kl6T93E0m_Ah0v5uAewXs9q_xBYzkOVOT_QwZZSWm4cJ2WGgs8p7oLtwbOup4t5k0ekiOv_0hSEhyLioQevCAS_76Dc37FhtvhUtKakEDRJJaPvhYdRpVQ2RTdapOj6Vtr3YKvDR9EapGXxBxyP_n35KVxH1BTv9sb7m3CDo0vXhC5uwfpqceofwzX3ZTVdLp5EuDP4eNno-QX4RkQb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimizing+the+computation+latency+of+FDMA%E2%80%90based+wireless+powered+edge+computing+network&rft.jtitle=IET+communications&rft.au=Chen%2C+Xi&rft.au=Jiang%2C+Guodong&rft.au=Chi%2C+Kaikai&rft.au=Zhang%2C+Shubin&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=17&rft.spage=2030&rft.epage=2039&rft_id=info:doi/10.1049%2Fcmu2.12676&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon |