Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem
Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims...
Uloženo v:
| Vydáno v: | Compel Ročník 38; číslo 1; s. 304 - 324 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bradford
Emerald Publishing Limited
24.01.2019
Emerald Group Publishing Limited |
| Témata: | |
| ISSN: | 0332-1649, 2054-5606 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.
Design/methodology/approach
A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.
Findings
Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.
Originality/value
The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus. |
|---|---|
| AbstractList | Purpose
In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.
Design/methodology/approach
A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.
Findings
Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.
Originality/value
The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus. PurposeIn the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.Design/methodology/approachA MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.FindingsThree test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.Originality/valueThe proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus. |
| Author | Mouassa, Souhil Bouktir, Tarek |
| Author_xml | – sequence: 1 givenname: Souhil surname: Mouassa fullname: Mouassa, Souhil email: mouassa@univ-setif.dz – sequence: 2 givenname: Tarek surname: Bouktir fullname: Bouktir, Tarek email: tbouktir@univ-setif.dz |
| BookMark | eNqFkU1PxCAQhonRxHX1F3gh8YwOsKXt0Wz8StasBz0T2tJdNrRUYDUaf7ys9aKJkQsZ8j4zmYcjtN-7XiN0SuGcUigu5sv7h6sFgYwwoAUBBsUemjDIZiQTIPbRBDhnhIpZeYiOQthAOmUGE_Rxv7XREFdtdB3Ni8aqj9ga12M3RNOZdxV3hbIr501cdzg6HJxNQav8SpNQK6tx96vJF6ss9lqND4N71R43Jgwq1ms8eFdZ3R2jg1bZoE--7yl6ur56nN-SxfLmbn65IDVnEIkW0NSgqjxrhFYwa3LRsFTyHNqM5q3KRdmIplKc67pi0FLBOG1LoQqoypbzKTob-6a5z1sdoty4re_TSMloDjPgRclSqhxTtXcheN3K2sSv9aNXxkoKcidbjrIlZHInW-5kJ5b_YgefDPi3fyg2UrrTXtnmD-jHv_JPZRWXHQ |
| CitedBy_id | crossref_primary_10_1080_1448837X_2020_1817238 crossref_primary_10_1093_ijlct_ctac054 crossref_primary_10_1038_s41598_025_92466_y crossref_primary_10_1080_01430750_2024_2345839 crossref_primary_10_1080_15325008_2023_2227176 crossref_primary_10_1016_j_chaos_2021_111257 crossref_primary_10_1109_ACCESS_2025_3532750 crossref_primary_10_1186_s43067_021_00041_y crossref_primary_10_1016_j_egyr_2025_05_056 crossref_primary_10_1016_j_seta_2023_103235 crossref_primary_10_1016_j_egyr_2024_12_020 crossref_primary_10_3233_JIFS_240848 crossref_primary_10_1109_ACCESS_2023_3336694 crossref_primary_10_35877_454RI_asci31106 crossref_primary_10_1007_s00500_020_05036_x crossref_primary_10_1016_j_meadig_2025_100004 crossref_primary_10_1108_AA_08_2019_0145 crossref_primary_10_3390_en16134896 crossref_primary_10_1007_s40998_021_00419_8 crossref_primary_10_1109_JSEN_2023_3267459 crossref_primary_10_1109_ACCESS_2023_3286930 crossref_primary_10_1038_s41598_024_57231_7 crossref_primary_10_1007_s12667_020_00390_z crossref_primary_10_1109_ACCESS_2021_3061503 crossref_primary_10_3390_en16135021 crossref_primary_10_1108_COMPEL_04_2021_0135 crossref_primary_10_3390_s23146303 crossref_primary_10_1186_s41601_020_00177_5 crossref_primary_10_1049_gtd2_13164 crossref_primary_10_1016_j_enconman_2024_118349 crossref_primary_10_1016_j_solener_2023_112241 crossref_primary_10_1080_01430750_2024_2304721 crossref_primary_10_1007_s00202_023_02188_5 crossref_primary_10_1016_j_knosys_2022_108762 crossref_primary_10_1016_j_renene_2024_120802 crossref_primary_10_3390_en12152968 crossref_primary_10_1016_j_ijepes_2025_110676 crossref_primary_10_1109_ACCESS_2023_3283573 crossref_primary_10_1109_TCYB_2020_2979930 crossref_primary_10_3390_math10030346 crossref_primary_10_1038_s41598_025_17366_7 crossref_primary_10_3390_math11051236 |
| Cites_doi | 10.1016/j.engappai.2012.06.008 10.1108/COMPEL-02-2015-0030 10.1109/TPWRD.1986.4308013 10.1109/TPWRS.2010.2051168 10.1109/MPER.1985.5526580 10.1109/TSMC.1987.289356 10.1007/s00202-011-0196-4 10.1016/j.enconman.2017.07.065 10.1016/j.ijepes.2004.07.006 10.1016/j.apenergy.2017.08.008 10.1016/j.ijepes.2013.11.049 10.1016/j.enconman.2014.06.003 10.1109/ISAP.2005.1599313 10.1109/TPWRS.2006.883687 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited 2018 |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited 2018 |
| DBID | AAYXX CITATION 7SC 7SP 7WY 7WZ 7XB 8AO 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F~G GNUQQ HCIFZ JQ2 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1108/COMPEL-05-2018-0208 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2054-5606 |
| EndPage | 324 |
| ExternalDocumentID | 10_1108_COMPEL_05_2018_0208 10.1108/COMPEL-05-2018-0208 |
| GroupedDBID | 0R 29F 4.4 5VS 70U 7WY 8AO 8FE 8FG 8FW 8R4 8R5 9E0 AADTA AADXL AAGBP AAMCF AATHL AAUDR ABIJV ABJCF ABKQV ABPTK ABSDC ACGFS ACGOD ACIWK ADOMW AEBVX AEBZA AEUCW AFKRA AFYHH AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ARAPS ASMFL AUCOK AZQEC BENPR BEZIV BGLVJ BPHCQ BPQFQ DWQXO EBS ECCUG EJD FNNZZ GEI GEL GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HZ IJT IPNFZ J1Y JI- K6 K6V K7- KBGRL L6V M0C M0N M2P M7S O9- P2P P62 PQBIZ PQEST PQQKQ PQUKI PRINS PROAC PTHSS Q2X RIG RWL TAE U5U X -~X 0R~ 490 6J9 AAYXX ABJNI ABYQI ACZLT ADFRT AFFHD AHMHQ AJZCB AODMV CCPQU CITATION HZ~ K6~ M42 PHGZM PHGZT PQGLB SBBZN 7SC 7SP 7XB 8FD AFNTC JQ2 L.- L.0 L7M L~C L~D PKEHL Q9U |
| ID | FETCH-LOGICAL-c320t-e60dc0ab75d6ea04d76d2ab7370f517fa769d6dba33ecb20f16231f96a80b9f33 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456511100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0332-1649 |
| IngestDate | Sat Aug 23 15:06:50 EDT 2025 Sat Nov 29 07:43:12 EST 2025 Tue Nov 18 21:13:31 EST 2025 Tue Mar 08 21:04:39 EST 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Power transmission systems Voltage stability Particle swarm optimization Multiobjective optimization Power losses |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-e60dc0ab75d6ea04d76d2ab7370f517fa769d6dba33ecb20f16231f96a80b9f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2170403892 |
| PQPubID | 31712 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1108_COMPEL_05_2018_0208 emerald_primary_10_1108_COMPEL-05-2018-0208 proquest_journals_2170403892 crossref_primary_10_1108_COMPEL_05_2018_0208 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-24 |
| PublicationDateYYYYMMDD | 2019-01-24 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | Bradford |
| PublicationPlace_xml | – name: Bradford |
| PublicationTitle | Compel |
| PublicationYear | 2019 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2020092517012976500_ref008) 2018 (key2020092517012976500_ref018) 2015 (key2020092517012976500_ref020) 2016; 46 (key2020092517012976500_ref013) 2017 (key2020092517012976500_ref031) 2011; 26 key2020092517012976500_ref019 (key2020092517012976500_ref016) 1985; PER-5 (key2020092517012976500_ref024) 2017 (key2020092517012976500_ref026) 2013; 26 (key2020092517012976500_ref029) 2006; 21 (key2020092517012976500_ref023) 2017 (key2020092517012976500_ref021) 2017; 20 (key2020092517012976500_ref017) 2018; 210 (key2020092517012976500_ref006) 2014 (key2020092517012976500_ref002) 2011; 93 (key2020092517012976500_ref003) 2017; 93 (key2020092517012976500_ref014) 1986; 1 (key2020092517012976500_ref005) 2014; 86 (key2020092517012976500_ref030) 2014 (key2020092517012976500_ref010) 2017; 150 (key2020092517012976500_ref009) 2015 (key2020092517012976500_ref028) 2005 (key2020092517012976500_ref001) 2005; 27 (key2020092517012976500_ref015) 2013 (key2020092517012976500_ref027) 2015; 10 (key2020092517012976500_ref011) 2014; 57 (key2020092517012976500_ref012) 2011 (key2020092517012976500_ref004) 2016; 35 (key2020092517012976500_ref025) 1987; 17 (key2020092517012976500_ref022) 2017 (key2020092517012976500_ref007) 2011 |
| References_xml | – ident: key2020092517012976500_ref019 – volume: 26 start-page: 390 issue: 1 year: 2013 ident: key2020092517012976500_ref026 article-title: Multi-objective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2012.06.008 – volume: 35 start-page: 350 issue: 1 year: 2016 ident: key2020092517012976500_ref004 article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems publication-title: Compel - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering doi: 10.1108/COMPEL-02-2015-0030 – volume: 1 start-page: 346 issue: 3 year: 1986 ident: key2020092517012976500_ref014 article-title: Estimating the voltage stability of a power system publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.1986.4308013 – volume: 93 start-page: 4099 issue: 9/12 year: 2017 ident: key2020092517012976500_ref003 article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing publication-title: The International Journal of Advanced Manufacturing Technology – volume: 26 start-page: 12 issue: 1 year: 2011 ident: key2020092517012976500_ref031 article-title: MATPOWER: Steady-State operations, planning, and analysis tools for power systems research and education, power systems publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2010.2051168 – volume: PER-5 start-page: 42 issue: 5 year: 1985 ident: key2020092517012976500_ref016 article-title: A united approach to optimal real and reactive power dispatch publication-title: IEEE Power Engineering Review doi: 10.1109/MPER.1985.5526580 – volume: 46 start-page: 79 issue: 1 year: 2016 ident: key2020092517012976500_ref020 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Applied Intelligence, Applied Intelligence – volume: 17 start-page: 654 issue: 4 year: 1987 ident: key2020092517012976500_ref025 article-title: An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1987.289356 – start-page: 657 volume-title: Applied Soft Computing Journal year: 2017 ident: key2020092517012976500_ref013 article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems – volume: 93 start-page: 103 issue: 2 year: 2011 ident: key2020092517012976500_ref002 article-title: Optimal reactive power dispatch using ant colony optimization algorithm publication-title: Electrical Engineering doi: 10.1007/s00202-011-0196-4 – year: 2018 ident: key2020092517012976500_ref008 article-title: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems EMO for many objectives – start-page: 1 year: 2011 ident: key2020092517012976500_ref007 article-title: Multi-objective optimization using evolutionary algorithms: an introduction – volume: 150 start-page: 90 year: 2017 ident: key2020092517012976500_ref010 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Conversion and Management, Elsevier doi: 10.1016/j.enconman.2017.07.065 – start-page: 206 volume-title: Electric Power Systems Research year: 2013 ident: key2020092517012976500_ref015 article-title: Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem – volume: 27 start-page: 13 issue: 1 year: 2005 ident: key2020092517012976500_ref001 article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm publication-title: International Journal of Electrical Power and Energy Systems doi: 10.1016/j.ijepes.2004.07.006 – volume: 210 start-page: 1073 year: 2018 ident: key2020092517012976500_ref017 article-title: Optimal distributed generation planning in active distribution networks considering integration of energy storage publication-title: Applied Energy, Elsevier doi: 10.1016/j.apenergy.2017.08.008 – start-page: 352 volume-title: Applied Soft Computing Journal year: 2017 ident: key2020092517012976500_ref024 article-title: Weighted elitism based ant lion optimizer to solve optimum VAr planning problem – volume: 20 issue: 3 year: 2017 ident: key2020092517012976500_ref021 article-title: Ant lion optimizer for solving optimal reactive power dispatch problem in power systems publication-title: Engineering Science and Technology, an International Journal – volume-title: Multi-Objective Swarm Intelligence: Theoretical Advances and Applications year: 2015 ident: key2020092517012976500_ref009 – volume: 57 start-page: 318 year: 2014 ident: key2020092517012976500_ref011 article-title: Multi objective optimal reactive power dispatch using a new multi objective strategy publication-title: International Journal of Electrical Power and Energy Systems, Elsevier doi: 10.1016/j.ijepes.2013.11.049 – start-page: 219 volume-title: International Journal of Electrical Power and Energy Systems year: 2011 ident: key2020092517012976500_ref012 article-title: Electrical power and energy systems solving multiobjective optimal reactive power dispatch using modified NSGA-II – volume: 10 start-page: 1 issue: 1 year: 2015 ident: key2020092517012976500_ref027 article-title: Recurrent multi-objective differential evolution approach for reactive power management publication-title: IET Generation, Transmission and Distribution – volume: 86 start-page: 548 year: 2014 ident: key2020092517012976500_ref005 article-title: Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems publication-title: Energy Conversion and Management, Elsevier Ltd doi: 10.1016/j.enconman.2014.06.003 – start-page: 1 year: 2014 ident: key2020092517012976500_ref006 article-title: NESTA, the NICTA energy system test case archive – start-page: 494 volume-title: Proceedings of the 13th International Conference On, Intelligent Systems Application to Power Systems year: 2005 ident: key2020092517012976500_ref028 article-title: Reactive power control based on particle swarm Multi-Objective optimization doi: 10.1109/ISAP.2005.1599313 – start-page: 210 volume-title: Applied Soft Computing Journal year: 2017 ident: key2020092517012976500_ref023 article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique – volume: 21 start-page: 1718 issue: 4 year: 2006 ident: key2020092517012976500_ref029 article-title: A comparative study on particle swarm optimization for optimal Steady-State performance of power systems publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2006.883687 – start-page: 441 volume-title: Applied Soft Computing Journal year: 2017 ident: key2020092517012976500_ref022 article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch – start-page: 1088 volume-title: International Journal of Electrisscal Power And Energy Systems year: 2015 ident: key2020092517012976500_ref018 article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration – start-page: 1010 volume-title: Control and Decision Conference (2014 CCDC), The 26th Chinese year: 2014 ident: key2020092517012976500_ref030 article-title: Solving multiobjective optimal reactive power dispatch using improved multiobjective particle swarm optimization |
| SSID | ssj0000950 |
| Score | 2.353546 |
| Snippet | Purpose
In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however,... PurposeIn the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however,... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 304 |
| SubjectTerms | Algorithms Archives & records Buses Data buses Deviation Electric potential Electric power Electric power loss Electric power systems Elitism Energy management Feasibility studies Fuzzy set theory Fuzzy sets Genetic algorithms Methods Multiple objective analysis Optimization Pareto optimum Particle swarm optimization Power dispatch Reactive power Test systems Voltage stability |
| Title | Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem |
| URI | https://www.emerald.com/insight/content/doi/10.1108/COMPEL-05-2018-0208/full/html https://www.proquest.com/docview/2170403892 |
| Volume | 38 |
| WOSCitedRecordID | wos000456511100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: 7WY dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM global customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: M0C dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: K7- dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: M7S dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: P5Z dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2054-5606 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000950 issn: 0332-1649 databaseCode: M2P dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71wQEOpTwqtpSVD9zAwrHXcXJCsNqqUrtLxEMULlEcO1C0u1m6oaf-eGYSL0srtZdeLNnxI8o3mRnbY38ALxWVW2m5815wnH-l3GpJUYRof6zTykXtQeETM5kkp6dpFhbcliGscqUTW0Xt6pLWyN-g64zt0bzKt4vfnFijaHc1UGhswjZ6NhGFdI1lttbEacvQKpSSHKcFabh1iJhvhh_G2eiEtoHRAiacqCqvWKZrx3PXKrq1O4cP7_rGu7ATPE72rhORR7Dh54_hwX_3ED6By_YYLq_tr079MfzcbIqIsRo1yiwc1WTF9Af23_ycsaZmKLNYcUqB5HyJQHs2u9ZJ2xZHRre0K1gQIxtzZ6jEUFZY4LJ5Cl8OR5-HRzzQMvBSSdFwHwtXisIa7WJfiIEzsZOYVUZUOjJVYeKUaKoKpTyKgagidLGiKo2LRNi0UmoPtub13D8DJpMYOxvERRw59Ay1RfdDVXpQVDiSFrYHcgVJXoY7y4k6Y5q3cxeR5B2OudA54ZgTjj14_a_Roruy4_bqrwLWN9S-IiQ9OFiBnYe_fZmvkd6__fFzuI89UYAal4MD2GrO__gXcK-8aM6W533YNF-_9WH7_WiSfcTcseGYjsWw34o1peYTppn-_hesE_vo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hitRyKNCH2PKoD_TUWnXsPA8IIR4CsWz3QCVubhw7LdXuZsumRUj8Jn4jM3mwgAQ3Dj3G8UNOPs-M7Zn5ADYUlRtpuHVOcNx_JdwEkrwIUf8YGyjrVYHC3ajXi09Pk_4MXLexMORW2crESlDbIqMz8q9oOmN7VK9ya_yHE2sU3a62FBo1LI7c5QVu2Sabh7v4fz9Jub93snPAG1YBnikpSu5CYTORmiiwoUuFb6PQSnxUkcgDL8rTKEyIZSlVyuEsRO6hheDlSZjGwiQ5HYCiyH_hU2YxchWU_ankTypGWKGU5LgNSZosR8S0s_PtuL_XpWtn1LgxJ2rMe5rwQTjwVCVUem5_4X_7QovwurGo2Xa9BJZgxo3ewPydPItv4aoKM-aF-V2Ld4ZwYgNEJCtQYg6bUFSWDn7ifMpfQ1YWDNckVhyQozyfIJAdGz7opGqLI6PZXReMiXGO2TMU0rgWWMPV8w6-P8v038PsqBi5ZWAyDrEzP0xDz6LlGxg0r1Qe-GmOIwXCdEC2ENBZk5OdqEEGutqbiVjXuNEi0IQbTbjpwJfbRuM6JcnT1T832Hqk9j1QdmC1BZdupNlET5H14enXH-HlwclxV3cPe0cr8Ap7JWc8Lv1VmC3P_7o1mMv-lWeT8_Vq4TD48dw4vAG5OlO6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE40PISS0vxAU5g1bHXeRyqCrVdUXVZ9gBSxcXEsQNFu5ulG6gq8cv4dcwkDksr0VsPHOP4ISef52HP-AN4rqjcSsud94Kj_5VxqyVFEaL-sU4rFzWJwsNkNEqPj7PxCvzqcmEorLKTiY2gdlVBe-TbaDpje1SvcrsMYRHj_cHu_BsnBik6ae3oNFqIHPnzM3TfFjuH-_ivX0g5OHi_94YHhgFeKClq7mPhCpHbRLvY56LvkthJfFSJKHWUlHkSZ8S4lCvlcUaijNBaiMoszlNhs5I2Q1H830hwjhROONYfl1oga9hhhVKSo0uShRuPiHVn793b8cGQjqBR-6acaDIvaMVLqcFL9dDovMHa__y11uFusLTZ63Zp3IMVP7sPd_66f_EB_GzSj3llv7ZinyHM2ASRyiqUpNOQosryyWecT_1lyuqK4VrFihMKoOcLBLhn00udNG1xZDTH24I5MdExd4LCG9cICxw-D-HDtUz_EazOqpl_DEymMXbWj_M4cmgRa4tmlyp1Py9xJC1sD2QHB1OEu9qJMmRiGp9NpKbFkBHaEIYMYagHr_40mrdXlVxd_WXA2T9qXwBoDzY7oJkg5RZmibInV79-BrcQfmZ4ODragNvYKcXocdnfhNX69Lt_CjeLH_XJ4nSrWUMMPl03DH8DYt9cpg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+ant+lion+optimization+algorithm+to+solve+large-scale+multi-objective+optimal+reactive+power+dispatch+problem&rft.jtitle=Compel&rft.au=Mouassa%2C+Souhil&rft.au=Bouktir%2C+Tarek&rft.date=2019-01-24&rft.issn=0332-1649&rft.volume=38&rft.issue=1&rft.spage=304&rft.epage=324&rft_id=info:doi/10.1108%2FCOMPEL-05-2018-0208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_COMPEL_05_2018_0208 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0332-1649&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0332-1649&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0332-1649&client=summon |