Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Compel Ročník 38; číslo 1; s. 304 - 324
Hlavní autoři: Mouassa, Souhil, Bouktir, Tarek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bradford Emerald Publishing Limited 24.01.2019
Emerald Group Publishing Limited
Témata:
ISSN:0332-1649, 2054-5606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.
AbstractList Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.
PurposeIn the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.Design/methodology/approachA MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.FindingsThree test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.Originality/valueThe proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.
Author Mouassa, Souhil
Bouktir, Tarek
Author_xml – sequence: 1
  givenname: Souhil
  surname: Mouassa
  fullname: Mouassa, Souhil
  email: mouassa@univ-setif.dz
– sequence: 2
  givenname: Tarek
  surname: Bouktir
  fullname: Bouktir, Tarek
  email: tbouktir@univ-setif.dz
BookMark eNqFkU1PxCAQhonRxHX1F3gh8YwOsKXt0Wz8StasBz0T2tJdNrRUYDUaf7ys9aKJkQsZ8j4zmYcjtN-7XiN0SuGcUigu5sv7h6sFgYwwoAUBBsUemjDIZiQTIPbRBDhnhIpZeYiOQthAOmUGE_Rxv7XREFdtdB3Ni8aqj9ga12M3RNOZdxV3hbIr501cdzg6HJxNQav8SpNQK6tx96vJF6ss9lqND4N71R43Jgwq1ms8eFdZ3R2jg1bZoE--7yl6ur56nN-SxfLmbn65IDVnEIkW0NSgqjxrhFYwa3LRsFTyHNqM5q3KRdmIplKc67pi0FLBOG1LoQqoypbzKTob-6a5z1sdoty4re_TSMloDjPgRclSqhxTtXcheN3K2sSv9aNXxkoKcidbjrIlZHInW-5kJ5b_YgefDPi3fyg2UrrTXtnmD-jHv_JPZRWXHQ
CitedBy_id crossref_primary_10_1080_1448837X_2020_1817238
crossref_primary_10_1093_ijlct_ctac054
crossref_primary_10_1038_s41598_025_92466_y
crossref_primary_10_1080_01430750_2024_2345839
crossref_primary_10_1080_15325008_2023_2227176
crossref_primary_10_1016_j_chaos_2021_111257
crossref_primary_10_1109_ACCESS_2025_3532750
crossref_primary_10_1186_s43067_021_00041_y
crossref_primary_10_1016_j_egyr_2025_05_056
crossref_primary_10_1016_j_seta_2023_103235
crossref_primary_10_1016_j_egyr_2024_12_020
crossref_primary_10_3233_JIFS_240848
crossref_primary_10_1109_ACCESS_2023_3336694
crossref_primary_10_35877_454RI_asci31106
crossref_primary_10_1007_s00500_020_05036_x
crossref_primary_10_1016_j_meadig_2025_100004
crossref_primary_10_1108_AA_08_2019_0145
crossref_primary_10_3390_en16134896
crossref_primary_10_1007_s40998_021_00419_8
crossref_primary_10_1109_JSEN_2023_3267459
crossref_primary_10_1109_ACCESS_2023_3286930
crossref_primary_10_1038_s41598_024_57231_7
crossref_primary_10_1007_s12667_020_00390_z
crossref_primary_10_1109_ACCESS_2021_3061503
crossref_primary_10_3390_en16135021
crossref_primary_10_1108_COMPEL_04_2021_0135
crossref_primary_10_3390_s23146303
crossref_primary_10_1186_s41601_020_00177_5
crossref_primary_10_1049_gtd2_13164
crossref_primary_10_1016_j_enconman_2024_118349
crossref_primary_10_1016_j_solener_2023_112241
crossref_primary_10_1080_01430750_2024_2304721
crossref_primary_10_1007_s00202_023_02188_5
crossref_primary_10_1016_j_knosys_2022_108762
crossref_primary_10_1016_j_renene_2024_120802
crossref_primary_10_3390_en12152968
crossref_primary_10_1016_j_ijepes_2025_110676
crossref_primary_10_1109_ACCESS_2023_3283573
crossref_primary_10_1109_TCYB_2020_2979930
crossref_primary_10_3390_math10030346
crossref_primary_10_1038_s41598_025_17366_7
crossref_primary_10_3390_math11051236
Cites_doi 10.1016/j.engappai.2012.06.008
10.1108/COMPEL-02-2015-0030
10.1109/TPWRD.1986.4308013
10.1109/TPWRS.2010.2051168
10.1109/MPER.1985.5526580
10.1109/TSMC.1987.289356
10.1007/s00202-011-0196-4
10.1016/j.enconman.2017.07.065
10.1016/j.ijepes.2004.07.006
10.1016/j.apenergy.2017.08.008
10.1016/j.ijepes.2013.11.049
10.1016/j.enconman.2014.06.003
10.1109/ISAP.2005.1599313
10.1109/TPWRS.2006.883687
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2018
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2018
DBID AAYXX
CITATION
7SC
7SP
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1108/COMPEL-05-2018-0208
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2054-5606
EndPage 324
ExternalDocumentID 10_1108_COMPEL_05_2018_0208
10.1108/COMPEL-05-2018-0208
GroupedDBID 0R
29F
4.4
5VS
70U
7WY
8AO
8FE
8FG
8FW
8R4
8R5
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABIJV
ABJCF
ABKQV
ABPTK
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBVX
AEBZA
AEUCW
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BPQFQ
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ
IJT
IPNFZ
J1Y
JI-
K6
K6V
K7-
KBGRL
L6V
M0C
M0N
M2P
M7S
O9-
P2P
P62
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q2X
RIG
RWL
TAE
U5U
X
-~X
0R~
490
6J9
AAYXX
ABJNI
ABYQI
ACZLT
ADFRT
AFFHD
AHMHQ
AJZCB
AODMV
CCPQU
CITATION
HZ~
K6~
M42
PHGZM
PHGZT
PQGLB
SBBZN
7SC
7SP
7XB
8FD
AFNTC
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
Q9U
ID FETCH-LOGICAL-c320t-e60dc0ab75d6ea04d76d2ab7370f517fa769d6dba33ecb20f16231f96a80b9f33
IEDL.DBID M2P
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456511100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0332-1649
IngestDate Sat Aug 23 15:06:50 EDT 2025
Sat Nov 29 07:43:12 EST 2025
Tue Nov 18 21:13:31 EST 2025
Tue Mar 08 21:04:39 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Power transmission systems
Voltage stability
Particle swarm optimization
Multiobjective optimization
Power losses
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-e60dc0ab75d6ea04d76d2ab7370f517fa769d6dba33ecb20f16231f96a80b9f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2170403892
PQPubID 31712
PageCount 21
ParticipantIDs crossref_citationtrail_10_1108_COMPEL_05_2018_0208
emerald_primary_10_1108_COMPEL-05-2018-0208
proquest_journals_2170403892
crossref_primary_10_1108_COMPEL_05_2018_0208
PublicationCentury 2000
PublicationDate 2019-01-24
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-24
  day: 24
PublicationDecade 2010
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Compel
PublicationYear 2019
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2020092517012976500_ref008) 2018
(key2020092517012976500_ref018) 2015
(key2020092517012976500_ref020) 2016; 46
(key2020092517012976500_ref013) 2017
(key2020092517012976500_ref031) 2011; 26
key2020092517012976500_ref019
(key2020092517012976500_ref016) 1985; PER-5
(key2020092517012976500_ref024) 2017
(key2020092517012976500_ref026) 2013; 26
(key2020092517012976500_ref029) 2006; 21
(key2020092517012976500_ref023) 2017
(key2020092517012976500_ref021) 2017; 20
(key2020092517012976500_ref017) 2018; 210
(key2020092517012976500_ref006) 2014
(key2020092517012976500_ref002) 2011; 93
(key2020092517012976500_ref003) 2017; 93
(key2020092517012976500_ref014) 1986; 1
(key2020092517012976500_ref005) 2014; 86
(key2020092517012976500_ref030) 2014
(key2020092517012976500_ref010) 2017; 150
(key2020092517012976500_ref009) 2015
(key2020092517012976500_ref028) 2005
(key2020092517012976500_ref001) 2005; 27
(key2020092517012976500_ref015) 2013
(key2020092517012976500_ref027) 2015; 10
(key2020092517012976500_ref011) 2014; 57
(key2020092517012976500_ref012) 2011
(key2020092517012976500_ref004) 2016; 35
(key2020092517012976500_ref025) 1987; 17
(key2020092517012976500_ref022) 2017
(key2020092517012976500_ref007) 2011
References_xml – ident: key2020092517012976500_ref019
– volume: 26
  start-page: 390
  issue: 1
  year: 2013
  ident: key2020092517012976500_ref026
  article-title: Multi-objective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2012.06.008
– volume: 35
  start-page: 350
  issue: 1
  year: 2016
  ident: key2020092517012976500_ref004
  article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems
  publication-title: Compel - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering
  doi: 10.1108/COMPEL-02-2015-0030
– volume: 1
  start-page: 346
  issue: 3
  year: 1986
  ident: key2020092517012976500_ref014
  article-title: Estimating the voltage stability of a power system
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.1986.4308013
– volume: 93
  start-page: 4099
  issue: 9/12
  year: 2017
  ident: key2020092517012976500_ref003
  article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  ident: key2020092517012976500_ref031
  article-title: MATPOWER: Steady-State operations, planning, and analysis tools for power systems research and education, power systems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2010.2051168
– volume: PER-5
  start-page: 42
  issue: 5
  year: 1985
  ident: key2020092517012976500_ref016
  article-title: A united approach to optimal real and reactive power dispatch
  publication-title: IEEE Power Engineering Review
  doi: 10.1109/MPER.1985.5526580
– volume: 46
  start-page: 79
  issue: 1
  year: 2016
  ident: key2020092517012976500_ref020
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence, Applied Intelligence
– volume: 17
  start-page: 654
  issue: 4
  year: 1987
  ident: key2020092517012976500_ref025
  article-title: An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1987.289356
– start-page: 657
  volume-title: Applied Soft Computing Journal
  year: 2017
  ident: key2020092517012976500_ref013
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
– volume: 93
  start-page: 103
  issue: 2
  year: 2011
  ident: key2020092517012976500_ref002
  article-title: Optimal reactive power dispatch using ant colony optimization algorithm
  publication-title: Electrical Engineering
  doi: 10.1007/s00202-011-0196-4
– year: 2018
  ident: key2020092517012976500_ref008
  article-title: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems EMO for many objectives
– start-page: 1
  year: 2011
  ident: key2020092517012976500_ref007
  article-title: Multi-objective optimization using evolutionary algorithms: an introduction
– volume: 150
  start-page: 90
  year: 2017
  ident: key2020092517012976500_ref010
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Conversion and Management, Elsevier
  doi: 10.1016/j.enconman.2017.07.065
– start-page: 206
  volume-title: Electric Power Systems Research
  year: 2013
  ident: key2020092517012976500_ref015
  article-title: Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem
– volume: 27
  start-page: 13
  issue: 1
  year: 2005
  ident: key2020092517012976500_ref001
  article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm
  publication-title: International Journal of Electrical Power and Energy Systems
  doi: 10.1016/j.ijepes.2004.07.006
– volume: 210
  start-page: 1073
  year: 2018
  ident: key2020092517012976500_ref017
  article-title: Optimal distributed generation planning in active distribution networks considering integration of energy storage
  publication-title: Applied Energy, Elsevier
  doi: 10.1016/j.apenergy.2017.08.008
– start-page: 352
  volume-title: Applied Soft Computing Journal
  year: 2017
  ident: key2020092517012976500_ref024
  article-title: Weighted elitism based ant lion optimizer to solve optimum VAr planning problem
– volume: 20
  issue: 3
  year: 2017
  ident: key2020092517012976500_ref021
  article-title: Ant lion optimizer for solving optimal reactive power dispatch problem in power systems
  publication-title: Engineering Science and Technology, an International Journal
– volume-title: Multi-Objective Swarm Intelligence: Theoretical Advances and Applications
  year: 2015
  ident: key2020092517012976500_ref009
– volume: 57
  start-page: 318
  year: 2014
  ident: key2020092517012976500_ref011
  article-title: Multi objective optimal reactive power dispatch using a new multi objective strategy
  publication-title: International Journal of Electrical Power and Energy Systems, Elsevier
  doi: 10.1016/j.ijepes.2013.11.049
– start-page: 219
  volume-title: International Journal of Electrical Power and Energy Systems
  year: 2011
  ident: key2020092517012976500_ref012
  article-title: Electrical power and energy systems solving multiobjective optimal reactive power dispatch using modified NSGA-II
– volume: 10
  start-page: 1
  issue: 1
  year: 2015
  ident: key2020092517012976500_ref027
  article-title: Recurrent multi-objective differential evolution approach for reactive power management
  publication-title: IET Generation, Transmission and Distribution
– volume: 86
  start-page: 548
  year: 2014
  ident: key2020092517012976500_ref005
  article-title: Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems
  publication-title: Energy Conversion and Management, Elsevier Ltd
  doi: 10.1016/j.enconman.2014.06.003
– start-page: 1
  year: 2014
  ident: key2020092517012976500_ref006
  article-title: NESTA, the NICTA energy system test case archive
– start-page: 494
  volume-title: Proceedings of the 13th International Conference On, Intelligent Systems Application to Power Systems
  year: 2005
  ident: key2020092517012976500_ref028
  article-title: Reactive power control based on particle swarm Multi-Objective optimization
  doi: 10.1109/ISAP.2005.1599313
– start-page: 210
  volume-title: Applied Soft Computing Journal
  year: 2017
  ident: key2020092517012976500_ref023
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
– volume: 21
  start-page: 1718
  issue: 4
  year: 2006
  ident: key2020092517012976500_ref029
  article-title: A comparative study on particle swarm optimization for optimal Steady-State performance of power systems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2006.883687
– start-page: 441
  volume-title: Applied Soft Computing Journal
  year: 2017
  ident: key2020092517012976500_ref022
  article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch
– start-page: 1088
  volume-title: International Journal of Electrisscal Power And Energy Systems
  year: 2015
  ident: key2020092517012976500_ref018
  article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration
– start-page: 1010
  volume-title: Control and Decision Conference (2014 CCDC), The 26th Chinese
  year: 2014
  ident: key2020092517012976500_ref030
  article-title: Solving multiobjective optimal reactive power dispatch using improved multiobjective particle swarm optimization
SSID ssj0000950
Score 2.353546
Snippet Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however,...
PurposeIn the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however,...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 304
SubjectTerms Algorithms
Archives & records
Buses
Data buses
Deviation
Electric potential
Electric power
Electric power loss
Electric power systems
Elitism
Energy management
Feasibility studies
Fuzzy set theory
Fuzzy sets
Genetic algorithms
Methods
Multiple objective analysis
Optimization
Pareto optimum
Particle swarm optimization
Power dispatch
Reactive power
Test systems
Voltage stability
Title Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem
URI https://www.emerald.com/insight/content/doi/10.1108/COMPEL-05-2018-0208/full/html
https://www.proquest.com/docview/2170403892
Volume 38
WOSCitedRecordID wos000456511100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM global
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2054-5606
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000950
  issn: 0332-1649
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71wQEOpTwqtpSVD9zAwrHXcXJCsNqqUrtLxEMULlEcO1C0u1m6oaf-eGYSL0srtZdeLNnxI8o3mRnbY38ALxWVW2m5815wnH-l3GpJUYRof6zTykXtQeETM5kkp6dpFhbcliGscqUTW0Xt6pLWyN-g64zt0bzKt4vfnFijaHc1UGhswjZ6NhGFdI1lttbEacvQKpSSHKcFabh1iJhvhh_G2eiEtoHRAiacqCqvWKZrx3PXKrq1O4cP7_rGu7ATPE72rhORR7Dh54_hwX_3ED6By_YYLq_tr079MfzcbIqIsRo1yiwc1WTF9Af23_ycsaZmKLNYcUqB5HyJQHs2u9ZJ2xZHRre0K1gQIxtzZ6jEUFZY4LJ5Cl8OR5-HRzzQMvBSSdFwHwtXisIa7WJfiIEzsZOYVUZUOjJVYeKUaKoKpTyKgagidLGiKo2LRNi0UmoPtub13D8DJpMYOxvERRw59Ay1RfdDVXpQVDiSFrYHcgVJXoY7y4k6Y5q3cxeR5B2OudA54ZgTjj14_a_Roruy4_bqrwLWN9S-IiQ9OFiBnYe_fZmvkd6__fFzuI89UYAal4MD2GrO__gXcK-8aM6W533YNF-_9WH7_WiSfcTcseGYjsWw34o1peYTppn-_hesE_vo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hitRyKNCH2PKoD_TUWnXsPA8IIR4CsWz3QCVubhw7LdXuZsumRUj8Jn4jM3mwgAQ3Dj3G8UNOPs-M7Zn5ADYUlRtpuHVOcNx_JdwEkrwIUf8YGyjrVYHC3ajXi09Pk_4MXLexMORW2crESlDbIqMz8q9oOmN7VK9ya_yHE2sU3a62FBo1LI7c5QVu2Sabh7v4fz9Jub93snPAG1YBnikpSu5CYTORmiiwoUuFb6PQSnxUkcgDL8rTKEyIZSlVyuEsRO6hheDlSZjGwiQ5HYCiyH_hU2YxchWU_ankTypGWKGU5LgNSZosR8S0s_PtuL_XpWtn1LgxJ2rMe5rwQTjwVCVUem5_4X_7QovwurGo2Xa9BJZgxo3ewPydPItv4aoKM-aF-V2Ld4ZwYgNEJCtQYg6bUFSWDn7ifMpfQ1YWDNckVhyQozyfIJAdGz7opGqLI6PZXReMiXGO2TMU0rgWWMPV8w6-P8v038PsqBi5ZWAyDrEzP0xDz6LlGxg0r1Qe-GmOIwXCdEC2ENBZk5OdqEEGutqbiVjXuNEi0IQbTbjpwJfbRuM6JcnT1T832Hqk9j1QdmC1BZdupNlET5H14enXH-HlwclxV3cPe0cr8Ap7JWc8Lv1VmC3P_7o1mMv-lWeT8_Vq4TD48dw4vAG5OlO6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE40PISS0vxAU5g1bHXeRyqCrVdUXVZ9gBSxcXEsQNFu5ulG6gq8cv4dcwkDksr0VsPHOP4ISef52HP-AN4rqjcSsud94Kj_5VxqyVFEaL-sU4rFzWJwsNkNEqPj7PxCvzqcmEorLKTiY2gdlVBe-TbaDpje1SvcrsMYRHj_cHu_BsnBik6ae3oNFqIHPnzM3TfFjuH-_ivX0g5OHi_94YHhgFeKClq7mPhCpHbRLvY56LvkthJfFSJKHWUlHkSZ8S4lCvlcUaijNBaiMoszlNhs5I2Q1H830hwjhROONYfl1oga9hhhVKSo0uShRuPiHVn793b8cGQjqBR-6acaDIvaMVLqcFL9dDovMHa__y11uFusLTZ63Zp3IMVP7sPd_66f_EB_GzSj3llv7ZinyHM2ASRyiqUpNOQosryyWecT_1lyuqK4VrFihMKoOcLBLhn00udNG1xZDTH24I5MdExd4LCG9cICxw-D-HDtUz_EazOqpl_DEymMXbWj_M4cmgRa4tmlyp1Py9xJC1sD2QHB1OEu9qJMmRiGp9NpKbFkBHaEIYMYagHr_40mrdXlVxd_WXA2T9qXwBoDzY7oJkg5RZmibInV79-BrcQfmZ4ODragNvYKcXocdnfhNX69Lt_CjeLH_XJ4nSrWUMMPl03DH8DYt9cpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+ant+lion+optimization+algorithm+to+solve+large-scale+multi-objective+optimal+reactive+power+dispatch+problem&rft.jtitle=Compel&rft.au=Mouassa%2C+Souhil&rft.au=Bouktir%2C+Tarek&rft.date=2019-01-24&rft.issn=0332-1649&rft.volume=38&rft.issue=1&rft.spage=304&rft.epage=324&rft_id=info:doi/10.1108%2FCOMPEL-05-2018-0208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_COMPEL_05_2018_0208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0332-1649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0332-1649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0332-1649&client=summon