Numerical differentiation by radial basis functions approximation
Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unkn...
Uloženo v:
| Vydáno v: | Advances in computational mathematics Ročník 27; číslo 3; s. 247 - 272 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.10.2007
|
| Témata: | |
| ISSN: | 1019-7168, 1572-9044 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1019-7168 1572-9044 |
| DOI: | 10.1007/s10444-005-9001-0 |