KRYLOV SUBSPACE SOLVERS IN PARALLEL NUMERICAL COMPUTATIONS OF PARTIAL DIFFERENTIAL EQUATIONS MODELING HEAT TRANSFER APPLICATIONS

In this study, parallel numerical algorithms for Krylov methods such as GMRES(k), Bi-CGM, Bi-CGSTAB, etc., for handling large-scale linear systems resulting from finite-difference analysis (FDA) and finite-element analysis (FEA) of coupled nonlinear partial differential equations (PDEs) describing p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part A, Applications Jg. 45; H. 5; S. 479 - 503
Hauptverfasser: Rathish Kumar, B. V., Kumar, Bipin, Shalini, Mehra, Mani, Chandra, Peeyush, Raghvendra, V., Singh, R. K., Mahindra, A. K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis Group 19.03.2004
Taylor & Francis
Schlagworte:
ISSN:1040-7782, 1521-0634
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, parallel numerical algorithms for Krylov methods such as GMRES(k), Bi-CGM, Bi-CGSTAB, etc., for handling large-scale linear systems resulting from finite-difference analysis (FDA) and finite-element analysis (FEA) of coupled nonlinear partial differential equations (PDEs) describing problems in heat transfer applications are discussed. Parallel code has been successfully implemented on an eight-noded cluster under ANULIB message-passing library environment. Bi-CGM and ILU-GMRES(k) are found to give good performance for linear systems resulting from FEA, whereas Bi-CGSTAB is seen to give good performance with linear systems resulting from FDA.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1040-7782
1521-0634
DOI:10.1080/10407780490269094