KRYLOV SUBSPACE SOLVERS IN PARALLEL NUMERICAL COMPUTATIONS OF PARTIAL DIFFERENTIAL EQUATIONS MODELING HEAT TRANSFER APPLICATIONS

In this study, parallel numerical algorithms for Krylov methods such as GMRES(k), Bi-CGM, Bi-CGSTAB, etc., for handling large-scale linear systems resulting from finite-difference analysis (FDA) and finite-element analysis (FEA) of coupled nonlinear partial differential equations (PDEs) describing p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical heat transfer. Part A, Applications Ročník 45; číslo 5; s. 479 - 503
Hlavní autoři: Rathish Kumar, B. V., Kumar, Bipin, Shalini, Mehra, Mani, Chandra, Peeyush, Raghvendra, V., Singh, R. K., Mahindra, A. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis Group 19.03.2004
Taylor & Francis
Témata:
ISSN:1040-7782, 1521-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, parallel numerical algorithms for Krylov methods such as GMRES(k), Bi-CGM, Bi-CGSTAB, etc., for handling large-scale linear systems resulting from finite-difference analysis (FDA) and finite-element analysis (FEA) of coupled nonlinear partial differential equations (PDEs) describing problems in heat transfer applications are discussed. Parallel code has been successfully implemented on an eight-noded cluster under ANULIB message-passing library environment. Bi-CGM and ILU-GMRES(k) are found to give good performance for linear systems resulting from FEA, whereas Bi-CGSTAB is seen to give good performance with linear systems resulting from FDA.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1040-7782
1521-0634
DOI:10.1080/10407780490269094