Integrated physical-layer secure visible light communication and positioning system based on polar codes
Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communic...
Saved in:
| Published in: | Optics express Vol. 31; no. 25; p. 41756 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
04.12.2023
|
| ISSN: | 1094-4087, 1094-4087 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communication parties is crucial for estimating channel states and designing secure communication schemes, this paper proposes an integrated visible light communication and positioning system which provides triple functionalities of high-accuracy indoor positioning, physical-layer secure visible light communication, and flicker mitigation illumination. A heterogeneous signal hybrid line coding scheme is proposed for the transmitter to converge the high-speed communication data signals and the low-speed positioning data signals, and a hybrid heterogeneous signal extraction scheme is proposed for the receiver to separate the hybrid heterogeneous signals with a high-bandwidth photodetector and a low-pass complementary metal-oxide-semiconductor (CMOS) image sensor. Based on the positioning information and the communication scheme, a polar codes-based forward error correction coding scheme is designed to achieve physical-layer security and transmission reliability simultaneously. Numerical results show that the proposed system can reach a secrecy code rate of 0.76 for a single-input single-output indoor VLC channel and a transmission efficiency of 0.38 without perceivable flicker. Experimental results show that the proposed system can achieve an average positioning accuracy of 3.35 cm and decrease the bit error rate of a legitimate receiver to a near error-free level (lower than 10
−7
) while keeping the bit error rate of an eavesdropper at 0.4887 (nearly 0.5) with a transmission data rate of 1 Mbps, resulting in near-zero suppression of the eavesdropped information and a high secrecy capacity of 0.9994. |
|---|---|
| AbstractList | Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communication parties is crucial for estimating channel states and designing secure communication schemes, this paper proposes an integrated visible light communication and positioning system which provides triple functionalities of high-accuracy indoor positioning, physical-layer secure visible light communication, and flicker mitigation illumination. A heterogeneous signal hybrid line coding scheme is proposed for the transmitter to converge the high-speed communication data signals and the low-speed positioning data signals, and a hybrid heterogeneous signal extraction scheme is proposed for the receiver to separate the hybrid heterogeneous signals with a high-bandwidth photodetector and a low-pass complementary metal-oxide-semiconductor (CMOS) image sensor. Based on the positioning information and the communication scheme, a polar codes-based forward error correction coding scheme is designed to achieve physical-layer security and transmission reliability simultaneously. Numerical results show that the proposed system can reach a secrecy code rate of 0.76 for a single-input single-output indoor VLC channel and a transmission efficiency of 0.38 without perceivable flicker. Experimental results show that the proposed system can achieve an average positioning accuracy of 3.35 cm and decrease the bit error rate of a legitimate receiver to a near error-free level (lower than 10
) while keeping the bit error rate of an eavesdropper at 0.4887 (nearly 0.5) with a transmission data rate of 1 Mbps, resulting in near-zero suppression of the eavesdropped information and a high secrecy capacity of 0.9994. Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communication parties is crucial for estimating channel states and designing secure communication schemes, this paper proposes an integrated visible light communication and positioning system which provides triple functionalities of high-accuracy indoor positioning, physical-layer secure visible light communication, and flicker mitigation illumination. A heterogeneous signal hybrid line coding scheme is proposed for the transmitter to converge the high-speed communication data signals and the low-speed positioning data signals, and a hybrid heterogeneous signal extraction scheme is proposed for the receiver to separate the hybrid heterogeneous signals with a high-bandwidth photodetector and a low-pass complementary metal-oxide-semiconductor (CMOS) image sensor. Based on the positioning information and the communication scheme, a polar codes-based forward error correction coding scheme is designed to achieve physical-layer security and transmission reliability simultaneously. Numerical results show that the proposed system can reach a secrecy code rate of 0.76 for a single-input single-output indoor VLC channel and a transmission efficiency of 0.38 without perceivable flicker. Experimental results show that the proposed system can achieve an average positioning accuracy of 3.35 cm and decrease the bit error rate of a legitimate receiver to a near error-free level (lower than 10 −7 ) while keeping the bit error rate of an eavesdropper at 0.4887 (nearly 0.5) with a transmission data rate of 1 Mbps, resulting in near-zero suppression of the eavesdropped information and a high secrecy capacity of 0.9994. Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communication parties is crucial for estimating channel states and designing secure communication schemes, this paper proposes an integrated visible light communication and positioning system which provides triple functionalities of high-accuracy indoor positioning, physical-layer secure visible light communication, and flicker mitigation illumination. A heterogeneous signal hybrid line coding scheme is proposed for the transmitter to converge the high-speed communication data signals and the low-speed positioning data signals, and a hybrid heterogeneous signal extraction scheme is proposed for the receiver to separate the hybrid heterogeneous signals with a high-bandwidth photodetector and a low-pass complementary metal-oxide-semiconductor (CMOS) image sensor. Based on the positioning information and the communication scheme, a polar codes-based forward error correction coding scheme is designed to achieve physical-layer security and transmission reliability simultaneously. Numerical results show that the proposed system can reach a secrecy code rate of 0.76 for a single-input single-output indoor VLC channel and a transmission efficiency of 0.38 without perceivable flicker. Experimental results show that the proposed system can achieve an average positioning accuracy of 3.35 cm and decrease the bit error rate of a legitimate receiver to a near error-free level (lower than 10-7) while keeping the bit error rate of an eavesdropper at 0.4887 (nearly 0.5) with a transmission data rate of 1 Mbps, resulting in near-zero suppression of the eavesdropped information and a high secrecy capacity of 0.9994.Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the characteristics of the channel instead of encryption algorithms and secret keys at application layer. Since precise location information of communication parties is crucial for estimating channel states and designing secure communication schemes, this paper proposes an integrated visible light communication and positioning system which provides triple functionalities of high-accuracy indoor positioning, physical-layer secure visible light communication, and flicker mitigation illumination. A heterogeneous signal hybrid line coding scheme is proposed for the transmitter to converge the high-speed communication data signals and the low-speed positioning data signals, and a hybrid heterogeneous signal extraction scheme is proposed for the receiver to separate the hybrid heterogeneous signals with a high-bandwidth photodetector and a low-pass complementary metal-oxide-semiconductor (CMOS) image sensor. Based on the positioning information and the communication scheme, a polar codes-based forward error correction coding scheme is designed to achieve physical-layer security and transmission reliability simultaneously. Numerical results show that the proposed system can reach a secrecy code rate of 0.76 for a single-input single-output indoor VLC channel and a transmission efficiency of 0.38 without perceivable flicker. Experimental results show that the proposed system can achieve an average positioning accuracy of 3.35 cm and decrease the bit error rate of a legitimate receiver to a near error-free level (lower than 10-7) while keeping the bit error rate of an eavesdropper at 0.4887 (nearly 0.5) with a transmission data rate of 1 Mbps, resulting in near-zero suppression of the eavesdropped information and a high secrecy capacity of 0.9994. |
| Author | Pan, Junxing Huang, Xia Fang, Junbin Lin, Jiajun Jiang, Canjian |
| Author_xml | – sequence: 1 givenname: Junbin surname: Fang fullname: Fang, Junbin – sequence: 2 givenname: Junxing orcidid: 0000-0002-1605-0112 surname: Pan fullname: Pan, Junxing – sequence: 3 givenname: Xia surname: Huang fullname: Huang, Xia – sequence: 4 givenname: Jiajun surname: Lin fullname: Lin, Jiajun – sequence: 5 givenname: Canjian surname: Jiang fullname: Jiang, Canjian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38087566$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0E9PwjAYBvDGYETQg1_A7KiHQbuNbj0agkpCwkXPy7v2BWq6DdvOZN_eImiM8dR_v-dN-ozIoGkbJOSG0QlLeTZdLyYzmjCWnZFLRkUWZ7TIB7_2QzJy7o1SluUivyDDtAiXM84vyW7ZeNxa8Kii_a53WoKJDfRoI4eysxh9aKcrg5HR252PZFvXXROU120TQRNSrdOHg262keudxzqqwIVx4X3fGrAho9BdkfMNGIfXp3VMXh8XL_PneLV-Ws4fVrFME-pjWUhUAhluBIdCwgaEElUKXOUVpxRSRcMXoOKoCi55EgAHJlOm8qKo5Cwdk7vj3L1t3zt0vqy1k2gMNNh2rkwETcRM5EUa6O2JdlWNqtxbXYPty-92Arg_Amlb5yxufgij5aH5cr0oj80HO_1jpfZfLXkL2vyT-AR9ood1 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3526265 crossref_primary_10_3390_e26121112 crossref_primary_10_3390_s24175609 crossref_primary_10_1109_JLT_2024_3415417 |
| Cites_doi | 10.1109/ACCESS.2018.2889119 10.1109/SURV.2014.012314.00178 10.1109/TIT.2011.2162275 10.1109/COMST.2020.2988615 10.1109/JIOT.2020.3004451 10.1109/JPROC.2016.2558521 10.1364/OE.474687 10.1109/JPHOT.2020.3032448 10.1109/JSAC.2017.2774429 10.1109/TWC.2023.3247458 10.1109/TIT.2009.2021379 10.1109/JLT.2015.2510021 10.1109/TCOMM.2018.2859943 10.1109/LPT.2016.2609683 10.1364/OE.485673 10.1109/JSAC.2015.2432513 10.1109/TCOMM.2017.2676815 10.3390/cryptography6030035 10.1109/LWC.2018.2820709 10.1109/JPHOT.2018.2869931 10.3390/s20051382 10.1109/JSEN.2020.2964380 10.1109/JPHOT.2017.2687947 10.1109/LPT.2018.2874311 10.1109/TIFS.2019.2904440 10.3390/photonics10030306 10.1109/JPHOT.2017.2689744 10.1145/3594718 10.1109/TCOMM.2022.3145578 10.3390/network2010004 10.1109/TCE.2004.1277847 10.1109/JLT.2022.3172921 10.1109/MNET.011.1900567 10.3390/photonics9090632 10.1364/OE.456076 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.502114 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 38087566 10_1364_OE_502114 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
| ID | FETCH-LOGICAL-c320t-c8ced9e1ef96a8cafa9d9b3a6d7b600a3d0797ab6ed86c62afa6a1c31d788bc53 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124478900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Sun Nov 09 12:56:45 EST 2025 Wed Feb 19 02:04:39 EST 2025 Sat Nov 29 06:07:09 EST 2025 Tue Nov 18 21:59:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c320t-c8ced9e1ef96a8cafa9d9b3a6d7b600a3d0797ab6ed86c62afa6a1c31d788bc53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1605-0112 |
| OpenAccessLink | https://doi.org/10.1364/oe.502114 |
| PMID | 38087566 |
| PQID | 2902959783 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2902959783 pubmed_primary_38087566 crossref_primary_10_1364_OE_502114 crossref_citationtrail_10_1364_OE_502114 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-04 2023-Dec-04 20231204 |
| PublicationDateYYYYMMDD | 2023-12-04 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2023 |
| References | Arikan (oe-31-25-41756-R31) 2009; 55 Yin (oe-31-25-41756-R13) 2018; 36 Mostafa (oe-31-25-41756-R7) 2015; 33 Li (oe-31-25-41756-R37) 2020; 12 Li (oe-31-25-41756-R3) 2021; 8 Zhu (oe-31-25-41756-R27) 2023; 22 Wei (oe-31-25-41756-R39) 2022; 40 Wang (oe-31-25-41756-R2) 2018; 66 Yang (oe-31-25-41756-R18) 2018; 30 Cho (oe-31-25-41756-R12) 2019; 14 Che (oe-31-25-41756-R23) 2018; 10 Li (oe-31-25-41756-R36) 2022; 9 Zeng (oe-31-25-41756-R33) 2022; 6 Zou (oe-31-25-41756-R4) 2016; 104 Liu (oe-31-25-41756-R21) 2023; 10 Pfeiffer (oe-31-25-41756-R28) 2022; 70 Pham (oe-31-25-41756-R11) 2019; 7 Fang (oe-31-25-41756-R34) 2017; 9 Zhang (oe-31-25-41756-R5) 2023; 55 Mukherjee (oe-31-25-41756-R6) 2014; 16 Cho (oe-31-25-41756-R9) 2022; 2 Jin (oe-31-25-41756-R20) 2022; 30 Pan (oe-31-25-41756-R38) 2017; 65 Haas (oe-31-25-41756-R1) 2016; 34 Cho (oe-31-25-41756-R14) 2018; 7 Li (oe-31-25-41756-R16) 2023; 31 Arfaoui (oe-31-25-41756-R17) 2020; 22 Chen (oe-31-25-41756-R19) 2022; 30 Fang (oe-31-25-41756-R35) 2017; 9 M. Rahman (oe-31-25-41756-R25) 2020; 20 Maheepala (oe-31-25-41756-R26) 2020; 20 Mahdavifar (oe-31-25-41756-R32) 2011; 57 Al-Moliki (oe-31-25-41756-R10) 2016; 28 Yang (oe-31-25-41756-R22) 2020; 34 Komine (oe-31-25-41756-R40) 2004; 50 |
| References_xml | – volume: 7 start-page: 3767 year: 2019 ident: oe-31-25-41756-R11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889119 – volume: 16 start-page: 1550 year: 2014 ident: oe-31-25-41756-R6 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/SURV.2014.012314.00178 – volume: 57 start-page: 6428 year: 2011 ident: oe-31-25-41756-R32 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2162275 – volume: 22 start-page: 1887 year: 2020 ident: oe-31-25-41756-R17 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2020.2988615 – volume: 8 start-page: 357 year: 2021 ident: oe-31-25-41756-R3 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3004451 – volume: 104 start-page: 1727 year: 2016 ident: oe-31-25-41756-R4 publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2558521 – volume: 30 start-page: 40455 year: 2022 ident: oe-31-25-41756-R19 publication-title: Opt. Express doi: 10.1364/OE.474687 – volume: 12 start-page: 1 year: 2020 ident: oe-31-25-41756-R37 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2020.3032448 – volume: 36 start-page: 162 year: 2018 ident: oe-31-25-41756-R13 publication-title: IEEE J. on Sel. Areas Commun. doi: 10.1109/JSAC.2017.2774429 – volume: 22 start-page: 6962 year: 2023 ident: oe-31-25-41756-R27 publication-title: IEEE Trans. on Wirel. Commun. doi: 10.1109/TWC.2023.3247458 – volume: 55 start-page: 3051 year: 2009 ident: oe-31-25-41756-R31 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2021379 – volume: 34 start-page: 1533 year: 2016 ident: oe-31-25-41756-R1 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2510021 – volume: 66 start-page: 6423 year: 2018 ident: oe-31-25-41756-R2 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2859943 – volume: 28 start-page: 2629 year: 2016 ident: oe-31-25-41756-R10 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2016.2609683 – volume: 31 start-page: 11923 year: 2023 ident: oe-31-25-41756-R16 publication-title: Opt. Express doi: 10.1364/OE.485673 – volume: 33 start-page: 1806 year: 2015 ident: oe-31-25-41756-R7 publication-title: IEEE J. Select. Areas Commun. doi: 10.1109/JSAC.2015.2432513 – volume: 65 start-page: 2291 year: 2017 ident: oe-31-25-41756-R38 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2017.2676815 – volume: 6 start-page: 35 year: 2022 ident: oe-31-25-41756-R33 publication-title: Cryptography doi: 10.3390/cryptography6030035 – volume: 7 start-page: 768 year: 2018 ident: oe-31-25-41756-R14 publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2820709 – volume: 10 start-page: 1 year: 2018 ident: oe-31-25-41756-R23 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2018.2869931 – volume: 20 start-page: 1382 year: 2020 ident: oe-31-25-41756-R25 publication-title: Sensors doi: 10.3390/s20051382 – volume: 20 start-page: 3971 year: 2020 ident: oe-31-25-41756-R26 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2964380 – volume: 9 start-page: 1 year: 2017 ident: oe-31-25-41756-R35 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2017.2687947 – volume: 30 start-page: 2001 year: 2018 ident: oe-31-25-41756-R18 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2874311 – volume: 14 start-page: 2633 year: 2019 ident: oe-31-25-41756-R12 publication-title: IEEE Trans. on Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2904440 – volume: 10 start-page: 306 year: 2023 ident: oe-31-25-41756-R21 publication-title: Photonics doi: 10.3390/photonics10030306 – volume: 9 start-page: 1 year: 2017 ident: oe-31-25-41756-R34 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2017.2689744 – volume: 55 start-page: 1 year: 2023 ident: oe-31-25-41756-R5 publication-title: ACM Comput. Surv. doi: 10.1145/3594718 – volume: 70 start-page: 1999 year: 2022 ident: oe-31-25-41756-R28 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3145578 – volume: 2 start-page: 53 year: 2022 ident: oe-31-25-41756-R9 publication-title: Network doi: 10.3390/network2010004 – volume: 50 start-page: 100 year: 2004 ident: oe-31-25-41756-R40 publication-title: IEEE Trans. on Consumer Electron. doi: 10.1109/TCE.2004.1277847 – volume: 40 start-page: 5083 year: 2022 ident: oe-31-25-41756-R39 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2022.3172921 – volume: 34 start-page: 134 year: 2020 ident: oe-31-25-41756-R22 publication-title: IEEE Network doi: 10.1109/MNET.011.1900567 – volume: 9 start-page: 632 year: 2022 ident: oe-31-25-41756-R36 publication-title: Photonics doi: 10.3390/photonics9090632 – volume: 30 start-page: 13331 year: 2022 ident: oe-31-25-41756-R20 publication-title: Opt. Express doi: 10.1364/OE.456076 |
| SSID | ssj0014797 |
| Score | 2.4640486 |
| Snippet | Visible light communication (VLC) with physical-layer security can provide information-theoretic security for the optical wireless channel based on the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 41756 |
| Title | Integrated physical-layer secure visible light communication and positioning system based on polar codes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38087566 https://www.proquest.com/docview/2902959783 |
| Volume | 31 |
| WOSCitedRecordID | wos001124478900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9RAFC6ccWEu4m67NKV4EJpoOkstR5EWBZ2ewwh9C7UyLW0mTLqlvfjbfbUknZYZ0IOXEFKVBOp9vHrrVwi9klJzWmYk0ZbYpMgJT3gmdaKItVOSciaY9odN0ONjtljwk5jBb_1xArSu2XbLm_8qangGwnats_8g7v6j8ADuQehwBbHD9a8E_6kjgNAxbCFWyUr8dKzNLrZuJq6d3PVLrZxf7mrKdx0igTYg1nH5SIMnep64vU67vELjPOGJ64Nvh2btvPFsz2bb9BUdnuAxlvtuarnsQXgiYjtIve22TQ-rOHmx7DeKz_GksKX4tqmH4Yks96UeIURggkoFBxK81LitRp0bNX_AVlYONGgB9gy5VLfnpIC1n8_elGCXhM7TgTib716eOXMU_eQPdu2wX8ehA3Q9oyV39X9ffs36lFNBOY3UU_Cnt_1_jtCt7s192-UKh8QbJqd30O3oUeB3AQl30TVT30M3fWWvau-jsx0e8D4ecMADjnjAHg94Dw8Y8IAHeMABD9jjAcO4xwP2eHiAvn6Ynb7_mMTjNRKVZ-k6UUwZzc3UWE4EU8IKrrnMBdFUghkscp3CkghJjGZEkQwmEDFV-VRTxqQq84fosD6vzWOEbapTYYRMLZjXpZCSOZo-8IVFIaTlfIRedwtXqcg9745AWVU-oUqKaj6rwnKP0Mt-ahMIVy6b9KJb_QrUoctxidqcb9oq42nGSxfPHKFHQSz9ZzoxPrly5Ck62mH4GTpcX2zMc3RD_Vgv24sxOqALNvZRm7HHzm-VCIx_ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+physical-layer+secure+visible+light+communication+and+positioning+system+based+on+polar+codes&rft.jtitle=Optics+express&rft.au=Fang%2C+Junbin&rft.au=Pan%2C+Junxing&rft.au=Huang%2C+Xia&rft.au=Lin%2C+Jiajun&rft.date=2023-12-04&rft.eissn=1094-4087&rft.volume=31&rft.issue=25&rft.spage=41756&rft_id=info:doi/10.1364%2FOE.502114&rft_id=info%3Apmid%2F38087566&rft.externalDocID=38087566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |