Design and Implementation of a Communication-Optimal Classifier for Distributed Kernel Support Vector Machines

We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector machines, a widely used classifier in statistical machine learning, for distributed memory clusters and supercomputers. The main computational bottleneck is the training phase, i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 28; číslo 4; s. 974 - 988
Hlavní autoři: You, Yang, Demmel, James, Czechowski, Kent, Song, Le, Vuduc, Rich
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector machines, a widely used classifier in statistical machine learning, for distributed memory clusters and supercomputers. The main computational bottleneck is the training phase, in which a statistical model is built from an input data set. Prior to our study, the parallel isoefficiency of a state-of-the-art implementation scaled as W = Ω(P 3 ), where W is the problem size and P the number of processors; this scaling is worse than even a one-dimensional block row dense matrix vector multiplication, which has W = Ω(P 2 ). This study considers a series of algorithmic refinements, leading ultimately to a Communication-Avoiding SVM method that improves the isoefficiency to nearly W = Ω(P). We evaluate these methods on 96 to 1,536 processors, and show average speedups of 3 - 16x (7× on average) over Dis-SMO, and a 95 percent weak-scaling efficiency on six real-world datasets, with only modest losses in overall classification accuracy. The source code can be downloaded at [1].
AbstractList Not provided.
We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector machines, a widely used classifier in statistical machine learning, for distributed memory clusters and supercomputers. The main computational bottleneck is the training phase, in which a statistical model is built from an input data set. Prior to our study, the parallel isoefficiency of a state-of-the-art implementation scaled as W = Ω(P 3 ), where W is the problem size and P the number of processors; this scaling is worse than even a one-dimensional block row dense matrix vector multiplication, which has W = Ω(P 2 ). This study considers a series of algorithmic refinements, leading ultimately to a Communication-Avoiding SVM method that improves the isoefficiency to nearly W = Ω(P). We evaluate these methods on 96 to 1,536 processors, and show average speedups of 3 - 16x (7× on average) over Dis-SMO, and a 95 percent weak-scaling efficiency on six real-world datasets, with only modest losses in overall classification accuracy. The source code can be downloaded at [1].
We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector machines, a widely used classifier in statistical machine learning, for distributed memory clusters and supercomputers. The main computational bottleneck is the training phase, in which a statistical model is built from an input data set. Prior to our study, the parallel isoefficiency of a state-of-the-art implementation scaled as W = Ω(P3), where W is the problem size and P the number of processors; this scaling is worse than even a one-dimensional block row dense matrix vector multiplication, which has W = Ω(P2). This study considers a series of algorithmic refinements, leading ultimately to a Communication-Avoiding SVM method that improves the isoefficiency to nearly W = Ω(P). We evaluate these methods on 96 to 1,536 processors, and show average speedups of 3 - 16x (7× on average) over Dis-SMO, and a 95 percent weak-scaling efficiency on six real-world datasets, with only modest losses in overall classification accuracy. The source code can be downloaded at [1].
Author Song, Le
Vuduc, Rich
You, Yang
Demmel, James
Czechowski, Kent
Author_xml – sequence: 1
  givenname: Yang
  surname: You
  fullname: You, Yang
  email: youyang@cs.berkeley.edu
  organization: Computer Science Division, UC Berkeley, CA
– sequence: 2
  givenname: James
  surname: Demmel
  fullname: Demmel, James
  email: demmel@cs.berkeley.edu
  organization: Computer Science Division, UC Berkeley, CA
– sequence: 3
  givenname: Kent
  surname: Czechowski
  fullname: Czechowski, Kent
  email: kentcz@gatech.edu
  organization: College of Computing, Georgia Tech, GA
– sequence: 4
  givenname: Le
  surname: Song
  fullname: Song, Le
  email: lsong@gatech.edu
  organization: College of Computing, Georgia Tech, GA
– sequence: 5
  givenname: Rich
  surname: Vuduc
  fullname: Vuduc, Rich
  email: richie@gatech.edu
  organization: College of Computing, Georgia Tech, GA
BackLink https://www.osti.gov/biblio/1536673$$D View this record in Osti.gov
BookMark eNp9kE1PFTEUhhuDiYD8AOOm0fVce9rpfCzNvSAEDCaA26bTOZWSmXZsOwv-vb1c4sKFq3PSPO_pm-eEHPngkZAPwDYArP9y_2N3t-EMmg1vWNdx8YYcg5RdxaETR2Vntax6Dv07cpLSE2NQS1YfE7_D5H55qv1Ir-Zlwhl91tkFT4Olmm7DPK_emZen6nbJbtYT3U46JWcdRmpDpDuXcnTDmnGk1xg9TvRuXZYQM_2JJhfiuzaPzmN6T95aPSU8e52n5OHi_H57Wd3cfrvafr2pjOAsV6btymy1aQbOGi4lWIajHEVtgXNhuejs0Nu67YGNeqglgG5hGEfd9aLphTglnw53Q8pOJeMymkcTvC91FEjRNO0e-nyAlhh-r5iyegpr9KWX4tDWdWE6Vig4UCaGlCJatcQiIT4rYGrvXu3dq7179eq-ZNp_MqXBi8IctZv-m_x4SDpE_PtTKxspBRN_AAfxk28
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_JSSC_2024_3412220
crossref_primary_10_1155_2022_4418606
crossref_primary_10_1007_s42514_021_00078_5
Cites_doi 10.1109/34.291440
10.1145/1961189.1961199
10.1109/TNN.2006.875989
10.1109/IPDPS.2014.88
10.1109/34.868688
10.1109/TNN.2006.878123
10.1145/1390156.1390170
10.1109/IPDPS.2013.32
10.1007/978-3-642-20429-6_10
10.1109/ICMLA.2010.53
10.1109/IPDPS.2015.117
10.1007/BF00994018
10.1016/S0305-0483(01)00026-3
10.1007/s11222-007-9033-z
10.1145/1150402.1150500
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
CorporateAuthor Univ. of California, Oakland, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Oakland, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1109/TPDS.2016.2608823
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 988
ExternalDocumentID 1536673
10_1109_TPDS_2016_2608823
7565530
Genre orig-research
GrantInformation_xml – fundername: BIGDATA
  grantid: 1R01GM108341; ONR N00014-15-1- 2340; NSF IIS-1218749
– fundername: Office of Advanced Scientific Computing Research
– fundername: LGE
– fundername: Office of Advanced Scientific Computing Research
  grantid: DE-SC0008700; AC02-05CH11231
– fundername: HP
  funderid: 10.13039/100004314
– fundername: Samsung
  funderid: 10.13039/100004358
– fundername: Applied Mathematics program
  grantid: DE-SC0010200
– fundername: Intel
  funderid: 10.13039/100002418
– fundername: Nokia
  funderid: 10.13039/100004356
– fundername: NSF
  funderid: 10.13039/100000001
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ABPTK
OTOTI
PQEST
RIC
ID FETCH-LOGICAL-c320t-c783207ac6b2062551f0ed5d34f1223f238fb9f47910dab4511a71bdda8936933
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397761600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Fri May 19 02:19:07 EDT 2023
Mon Jun 30 04:13:29 EDT 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 03:36:09 EST 2025
Wed Aug 27 02:30:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-c783207ac6b2062551f0ed5d34f1223f238fb9f47910dab4511a71bdda8936933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0008700; SC0010200; AC02-05CH11231
PQID 2174467380
PQPubID 85437
PageCount 15
ParticipantIDs proquest_journals_2174467380
osti_scitechconnect_1536673
crossref_primary_10_1109_TPDS_2016_2608823
ieee_primary_7565530
crossref_citationtrail_10_1109_TPDS_2016_2608823
PublicationCentury 2000
PublicationDate 2017-April-1
2017-4-1
20170401
2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April-1
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References grama (ref8) 2003
prokhorov (ref25) 0; 1
ref34
ref12
ref37
ref15
you (ref7) 2015
bertin-mahieux (ref13) 0
ref14
forgy (ref17) 1965; 21
ref30
joachims (ref3) 1998
ref33
ref32
si (ref35) 0
ref2
ref16
ref19
ref18
liao (ref28) 2013
leslie (ref5) 0; 7
guyon (ref31) 0
dongarra (ref26) 2014
platt (ref9) 1999
you (ref1) 2015
webb (ref24) 0
ref23
zanni (ref20) 2006; 7
hsieh (ref11) 2014
sonnenburg (ref29) 0; 10
(ref6) 2014
graf (ref10) 2004; 17
ref27
joachims (ref21) 1999
ref4
(ref36) 1998
fan (ref22) 2005; 6
References_xml – year: 2014
  ident: ref6
  article-title: NERSC systems
– volume: 1
  start-page: 1583
  year: 0
  ident: ref25
  article-title: Neural network competition
  publication-title: Proc Int Joint Conf Neural Network
– ident: ref32
  doi: 10.1109/34.291440
– year: 1998
  ident: ref3
  publication-title: Text Categorization with Support Vector Machines Learning with Many Relevant Features
– ident: ref14
  doi: 10.1145/1961189.1961199
– ident: ref12
  doi: 10.1109/TNN.2006.875989
– ident: ref16
  doi: 10.1109/IPDPS.2014.88
– year: 2015
  ident: ref1
  article-title: Source code of casvm
– ident: ref33
  doi: 10.1109/34.868688
– start-page: 566
  year: 2014
  ident: ref11
  article-title: A divide-and-conquer solver for kernel support vector machines
– volume: 21
  start-page: 768
  year: 1965
  ident: ref17
  article-title: Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
  publication-title: Biometrics
– volume: 10
  start-page: 1937
  year: 0
  ident: ref29
  article-title: Pascal large scale learning challenge
  publication-title: Proc 25th Int Conf Mach Learn
– volume: 7
  start-page: 566
  year: 0
  ident: ref5
  article-title: The spectrum kernel: A string kernel for SVM protein classification
  publication-title: Proc Pacific Symp Biocomputing
– ident: ref30
  doi: 10.1109/TNN.2006.878123
– ident: ref15
  doi: 10.1145/1390156.1390170
– ident: ref27
  doi: 10.1109/IPDPS.2013.32
– year: 2003
  ident: ref8
  publication-title: Introduction to Parallel Computing
– ident: ref18
  doi: 10.1007/978-3-642-20429-6_10
– year: 0
  ident: ref24
  article-title: Introducing the Webb Spam Corpus: Using Email Spam to Identify Web Spam Automatically
– ident: ref23
  doi: 10.1109/ICMLA.2010.53
– start-page: 185
  year: 1999
  ident: ref9
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods Support Vector Learning
– volume: 17
  start-page: 521
  year: 2004
  ident: ref10
  article-title: Parallel support vector machines: The Cascade SVM
  publication-title: Advances Neural Inf Process Syst
– start-page: 169
  year: 1999
  ident: ref21
  article-title: Making large scale SVM learning practical
  publication-title: Advances in Kernel Methods Support Vector Learning
– start-page: 701
  year: 0
  ident: ref35
  article-title: Memory efficient kernel approximation
  publication-title: Proc 31st Int Conf Mach Learn
– volume: 7
  start-page: 1467
  year: 2006
  ident: ref20
  article-title: Parallel software for training large scale support vector machines on multiprocessor systems
  publication-title: J Mach Learn Res
– start-page: 545
  year: 0
  ident: ref31
  article-title: Result analysis of the NIPS 2003 feature selection challenge
  publication-title: Proc Advances Neural Inf Process Syst
– year: 2015
  ident: ref7
  article-title: Appendix of casvm
– ident: ref37
  doi: 10.1109/IPDPS.2015.117
– start-page: 591
  year: 0
  ident: ref13
  article-title: The million song dataset
  publication-title: Proc Int Soc for Music Inf Retrieval Conf
– year: 2013
  ident: ref28
  article-title: Parallel k-means
– year: 2014
  ident: ref26
– year: 1998
  ident: ref36
  article-title: Covertype data set
– ident: ref2
  doi: 10.1007/BF00994018
– ident: ref4
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 6
  start-page: 1889
  year: 2005
  ident: ref22
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J Mach Learn Res
– ident: ref34
  doi: 10.1007/s11222-007-9033-z
– ident: ref19
  doi: 10.1145/1150402.1150500
SSID ssj0014504
Score 2.2698686
Snippet We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector machines, a widely used classifier in...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 974
SubjectTerms Classifiers
Communication
communication-avoidance
Computer Science
Data models
Distributed memory
Distributed memory algorithms
Engineering
Kernel
Kernels
Machine learning
Mathematical analysis
Matrix algebra
Matrix methods
Optimization
Partitioning algorithms
Processors
Program processors
Scaling
Source code
State of the art
statistical machine learning
Statistical models
Supercomputers
Support vector machines
Training
Title Design and Implementation of a Communication-Optimal Classifier for Distributed Kernel Support Vector Machines
URI https://ieeexplore.ieee.org/document/7565530
https://www.proquest.com/docview/2174467380
https://www.osti.gov/biblio/1536673
Volume 28
WOSCitedRecordID wos000397761600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4B6qEcCiUgwks-9ITq4F3vxtlj1YCQUClSQ5Wb5aeEFDYoCf39zDhOVNQKidPuYV_SeDzft_P4AL5UUnmJYYIPGiV41ReOm0EZeGmtjQ1SrliaJDahbm8H43FztwFf170wIYRUfBZ6dJpy-X7qnulX2YVC9FFLJOibSqllr9Y6Y1DVSSoQ2UXNG3TDnMEsRHMxuhv-oiKufg_BOyJK-SoGJVEVPEzRpf7ZkFOUudp53_ftwqeMJtm3pfk_w0Zo92BnpdTAsuPuwfZfYwc70A5T2QYzrWdpOvBjbkBq2TQyw141jfCfuKk84kuSfOZDxDDKEOiyIU3cJbGs4NlNmLVhwkghFNE8-50yAexHqtMM8324v7ocfb_mWXeBO1mKBXcK3Vwo4_q2FMiP6iKK4Gsvq1ggmogY5aNtYqUQanhjacKZUYX13gxIHlDKA9hqp204BGbr0glpq2iQ_SIyQDiCADAWwRQVMbEuiJUltMtDyUkbY6ITORGNJuNpMp7OxuvC-fqWp-VEjrcu7pCZ1hdmC3XhmMytEWXQqFxHNUVuoXH3JxXULpysVoHOHj3XRN0qkkgVR_9_5jF8LCnkp6qeE9hazJ7DKXxwfxYP89lZWqwvgh3lbw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hqNRygBaKCK_60FNVg3ftzWaPiBRRASlS04qb5acUCTYoCfx-ZhwnArWq1NPuYV_SeDzft_P4AD4rWXuJYYL3mlpw1RWOm14ZeGmtjQ1SrliaJDZRDwa929vmZgW-LnthQgip-Cwc02nK5fuxe6RfZSc1oo9KIkFfq5Qqi3m31jJnoKokFoj8ouINOmLOYRaiORne9H9SGVf3GOE7Ykr5KgolWRU8jNGp_tiSU5w53_y_L3wPGxlPstP5AvgAK6Hdgs2FVgPLrrsF6y8GD25D20-FG8y0nqX5wPe5Ball48gMe9U2wn_gtnKPL0kCmqOIgZQh1GV9mrlLclnBs8swacMdI41QxPPsd8oFsOtUqRmmH-HX-bfh2QXPygvcyVLMuKvR0UVtXNeWAhlSVUQRfOWligXiiYhxPtomqhrBhjeWZpyZurDemx4JBEq5A6vtuA27wGxVOiGtigb5L2IDBCQIAWMRTKGIi3VALCyhXR5LTuoYdzrRE9FoMp4m4-lsvA58Wd7yMJ_J8a-Lt8lMywuzhTqwT-bWiDNoWK6jqiI307j_kw5qBw4Wq0Bnn55qIm-KRFLF3t-f-QneXgyvr_TV98HlPrwrCQCkGp8DWJ1NHsMhvHFPs9F0cpQW7jOWWui2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Implementation+of+a+Communication-Optimal+Classifier+for+Distributed+Kernel+Support+Vector+Machines&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=You%2C+Yang&rft.au=Demmel%2C+James&rft.au=Czechowski%2C+Kent&rft.au=Song%2C+Le&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=28&rft.issue=4&rft.spage=974&rft.epage=988&rft_id=info:doi/10.1109%2FTPDS.2016.2608823&rft.externalDocID=7565530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon