Dirichlet Process Prior for Student’s t Graph Variational Autoencoders

Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instanc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future internet Ročník 13; číslo 3; s. 75
Hlavní autori: Zhao, Yuexuan, Huang, Jing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2021
Predmet:
ISSN:1999-5903, 1999-5903
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instance, standard normal distribution (N(0,1)). Although this kind of simple distribution has the advantage of convenient calculation, it will also make latent variables contain relatively little helpful information. The lack of adequate expression of nodes will inevitably affect the process of generating graphs, which will eventually lead to the discovery of only external relations and the neglect of some complex internal correlations. In this paper, we present a novel prior distribution for GVAE, called Dirichlet process (DP) construction for Student’s t (St) distribution. The DP allows the latent variables to adapt their complexity during learning and then cooperates with heavy-tailed St distribution to approach sufficient node representation. Experimental results show that this method can achieve a relatively better performance against the baselines.
AbstractList Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instance, standard normal distribution (N(0,1)). Although this kind of simple distribution has the advantage of convenient calculation, it will also make latent variables contain relatively little helpful information. The lack of adequate expression of nodes will inevitably affect the process of generating graphs, which will eventually lead to the discovery of only external relations and the neglect of some complex internal correlations. In this paper, we present a novel prior distribution for GVAE, called Dirichlet process (DP) construction for Student’s t (St) distribution. The DP allows the latent variables to adapt their complexity during learning and then cooperates with heavy-tailed St distribution to approach sufficient node representation. Experimental results show that this method can achieve a relatively better performance against the baselines.
Author Huang, Jing
Zhao, Yuexuan
Author_xml – sequence: 1
  givenname: Yuexuan
  orcidid: 0000-0002-5071-7021
  surname: Zhao
  fullname: Zhao, Yuexuan
– sequence: 2
  givenname: Jing
  surname: Huang
  fullname: Huang, Jing
BookMark eNpNUMtKAzEUDVLBWrvxCwbcCaM3j5k0y1K1LRQUfGxDJpPYlHFSk8zCnb_h7_klTq2oFy7ncDmcwz3HaND61iB0iuGCUgGX1mEKFIAXB2iIhRB5IYAO_vEjNI5xA_1QQcqSD9HiygWn141J2V3w2sTYo_Mhs_3ep642bfp8_4hZyuZBbdfZkwpOJedb1WTTLnnTal-bEE_QoVVNNOMfHKHHm-uH2SJf3c6Xs-kq15RAyjUwUlNCSqFFBRUoRYAxoLXBAjiDWhuhK8q4rlm5o1ZUE24Ur8CKQlA6Qsu9b-3VRm6De1HhTXrl5PfBh2epQnK6MdIUFpMJZ4VVlvGKKGyZqm2BdcmUqXTvdbb32gb_2pmY5MZ3of8sSlIA7auknPeq871KBx9jMPY3FYPcFS__iqdfBaN3kw
Cites_doi 10.1017/CBO9780511802478
10.1017/CBO9780511550683
10.1109/TSP.2009.2036049
10.1016/j.jmp.2011.08.004
10.1080/00401706.1974.10489150
10.1007/978-3-319-18968-0
10.1126/science.287.5461.2115a
10.1109/TSP.2019.2939079
10.1103/PhysRevE.64.046135
10.1109/78.978374
10.1609/aaai.v33i01.33015829
10.1214/aoms/1177698133
10.1109/MSP.2012.2235191
10.1080/10705511.2013.742382
10.1214/aoms/1177704250
10.1016/j.patcog.2006.05.006
10.24963/ijcai.2018/362
10.26599/BDMA.2018.9020029
10.1145/316194.316229
10.1109/TBDATA.2018.2850013
10.1002/9780470627242
10.1080/01621459.1994.10476468
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi13030075
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_e5f128745faf47b2a1f4adf51c64aebc
10_3390_fi13030075
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c320t-c042d32269c9b0b0aa204403de190740dce9cb347cd46e9cbf9b87ea7b0f95933
IEDL.DBID M0C
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Fri Oct 03 12:51:53 EDT 2025
Sun Nov 30 04:34:07 EST 2025
Sat Nov 29 07:16:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-c042d32269c9b0b0aa204403de190740dce9cb347cd46e9cbf9b87ea7b0f95933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5071-7021
OpenAccessLink https://www.proquest.com/docview/2503300377?pq-origsite=%requestingapplication%
PQID 2503300377
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_e5f128745faf47b2a1f4adf51c64aebc
proquest_journals_2503300377
crossref_primary_10_3390_fi13030075
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hill (ref_23) 1970; 13
Adamic (ref_25) 2001; 64
Zhang (ref_24) 2013; 20
Goodman (ref_13) 1963; 34
Escobar (ref_33) 1994; 89
ref_36
ref_35
ref_11
ref_32
ref_31
ref_30
Xue (ref_38) 2007; 8
Faloutsos (ref_27) 1999; 29
Sen (ref_44) 2008; 29
ref_19
Bazi (ref_15) 2007; 40
ref_18
Wang (ref_10) 2020; 2
ref_17
ref_39
ref_37
Arulampalam (ref_16) 2002; 50
Blei (ref_34) 2006; 1
Novey (ref_14) 2009; 58
Ord (ref_22) 1968; 39
Huang (ref_43) 2019; 67
ref_47
ref_46
ref_45
Gershman (ref_29) 2012; 56
ref_42
ref_41
Bryson (ref_21) 1974; 16
ref_40
ref_1
Zhang (ref_12) 2018; 6
ref_3
ref_2
Schmidt (ref_28) 2013; 30
ref_9
Barron (ref_20) 1986; 14
ref_8
ref_5
ref_4
ref_7
Adamic (ref_26) 2000; 287
ref_6
References_xml – ident: ref_7
– ident: ref_30
  doi: 10.1017/CBO9780511802478
– ident: ref_41
  doi: 10.1017/CBO9780511550683
– ident: ref_9
– volume: 1
  start-page: 121
  year: 2006
  ident: ref_34
  article-title: Variational inference for Dirichlet process mixtures
  publication-title: J. Bayesian Anal.
– volume: 58
  start-page: 1427
  year: 2009
  ident: ref_14
  article-title: A complex generalized Gaussian distribution—Characterization, generation, and estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2036049
– volume: 56
  start-page: 1
  year: 2012
  ident: ref_29
  article-title: A tutorial on Bayesian nonparametric models
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2011.08.004
– ident: ref_5
– ident: ref_32
– ident: ref_3
– ident: ref_47
– ident: ref_11
– volume: 16
  start-page: 61
  year: 1974
  ident: ref_21
  article-title: Heavy-tailed distributions: Properties and tests
  publication-title: J. Technometrics
  doi: 10.1080/00401706.1974.10489150
– volume: 8
  start-page: 35
  year: 2007
  ident: ref_38
  article-title: Multi-Task Learning for Classification with Dirichlet Process Priors
  publication-title: J. Mach. Learn. Res.
– ident: ref_31
  doi: 10.1007/978-3-319-18968-0
– ident: ref_39
– ident: ref_40
– volume: 287
  start-page: 2115
  year: 2000
  ident: ref_26
  article-title: Power-law distribution of the world wide web
  publication-title: Science
  doi: 10.1126/science.287.5461.2115a
– volume: 67
  start-page: 5417
  year: 2019
  ident: ref_43
  article-title: A novel Kullback-Leibler divergence minimization-based adaptive student’s t-filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2939079
– ident: ref_37
– volume: 64
  start-page: 046135
  year: 2001
  ident: ref_25
  article-title: Search in power-law networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.046135
– ident: ref_1
– ident: ref_18
– ident: ref_35
– volume: 50
  start-page: 174
  year: 2002
  ident: ref_16
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.978374
– ident: ref_46
  doi: 10.1609/aaai.v33i01.33015829
– volume: 39
  start-page: 1513
  year: 1968
  ident: ref_22
  article-title: The Discrete Student’s t Distribution
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177698133
– ident: ref_6
– ident: ref_8
– volume: 30
  start-page: 110
  year: 2013
  ident: ref_28
  article-title: Nonparametric Bayesian modeling of complex networks: An introduction
  publication-title: J. IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235191
– ident: ref_4
– volume: 14
  start-page: 336
  year: 1986
  ident: ref_20
  article-title: Entropy and the central limit theorem
  publication-title: J. Ann. Probab.
– volume: 13
  start-page: 617
  year: 1970
  ident: ref_23
  article-title: ACM Algorithm 395: Student’s t-distribution
  publication-title: Commun. ACM
– volume: 20
  start-page: 47
  year: 2013
  ident: ref_24
  article-title: Bayesian inference and application of robust growth curve models using Student’s t distribution
  publication-title: Struct. Equ. Model. A Multidiscip. J.
  doi: 10.1080/10705511.2013.742382
– volume: 34
  start-page: 152
  year: 1963
  ident: ref_13
  article-title: Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704250
– ident: ref_2
– volume: 40
  start-page: 619
  year: 2007
  ident: ref_15
  article-title: Image thresholding based on the EM algorithm and the generalized Gaussian distribution
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.05.006
– ident: ref_19
  doi: 10.24963/ijcai.2018/362
– volume: 2
  start-page: 35
  year: 2020
  ident: ref_10
  article-title: A brief review of network embedding
  publication-title: J. Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020029
– ident: ref_17
– volume: 29
  start-page: 251
  year: 1999
  ident: ref_27
  article-title: On power-law relationships of the internet topology
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/316194.316229
– ident: ref_36
– ident: ref_45
– volume: 6
  start-page: 3
  year: 2018
  ident: ref_12
  article-title: Network representation learning: A survey
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2850013
– ident: ref_42
  doi: 10.1002/9780470627242
– volume: 89
  start-page: 268
  year: 1994
  ident: ref_33
  article-title: Estimating normal means with a Dirichlet process prior
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1994.10476468
– volume: 29
  start-page: 93
  year: 2008
  ident: ref_44
  article-title: Collective classification in network data
  publication-title: AI Mag.
SSID ssj0000392667
Score 2.1436338
Snippet Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 75
SubjectTerms Airports
Bayesian nonparametric
Coders
Complexity
Dirichlet problem
Dirichlet process
Flexibility
Graph variational auto-encoder
Internet
Keywords
network representation learning
neural network
Neural networks
Nonparametric statistics
Normal distribution
Probability distribution
Student’s t distribution
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcXKR70ID6xWmVBr6HJZp_HKtaeiuCD3sI-MZdW2tSzX8Ov5ydxJ0m14sGLp4QQSPhPZmYnO_wGoUsfJGcC9gwz4xJqTZoo6VjCY3LxgUnOnauHTYjxWE4m6m5t1Bf0hDV44Ea4vmchq5nsQQcqDNFZoNoFlllOtTcWom8q1FoxVcfgmPY5Fw2PNI91fT-UEK0hQ_7IQDWo_1ccrpPLcBfttKtCPGjeZg9t-Ok-2l5jBR6gUQxOpX2OMuO2uT8ey9kcx1Unvm8IlR9v7wtc4VuAUOOnWAW3f_rwYFnNgFgJXcuH6HF483A9StoxCInNSVolNvqVi37HlVUmNanWBOZE585nUNmmznplTU6FdZTDaVBGCq-FSQNgh_Mj1JnOpv4Y4cxLrQgLOZM59ZTJQLyhcYViiWPEkC66WElTvDS0iyJWCSBg8S1gF12Bal93AKG6vhDtVrR2K_6yWxf1VpoXrdssCgKbqoDEESf_8YxTtEWgBaVuGeuhTjVf-jO0aV-rcjE_r7-YT5KDyDM
  priority: 102
  providerName: Directory of Open Access Journals
Title Dirichlet Process Prior for Student’s t Graph Variational Autoencoders
URI https://www.proquest.com/docview/2503300377
https://doaj.org/article/e5f128745faf47b2a1f4adf51c64aebc
Volume 13
WOSCitedRecordID wos000633661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6AEOpbRUbKErS_QakTh-JKeKXUGpKlYRlFcvUfwqe9nAbui5f6N_j1-Cx-sFqkq99GJHsQ-Rx_OefAPw0bpCcIk5w0yZhGmVJmVheCK8crGOF0IYE5pNyNGouLwsqxhwm8WyyoVMDILatBpj5HsU822IliI_3dwm2DUKs6uxhcYSrKBlgyV9x-nwMcaSeuUvhJyjkubeu99zY5TZqCf_0EMBrv8vaRxUzOH6_37ca3gVjUuyP78NG_DCTt7A2jPIwbdw5GXcWF97apH4j4Cfx-2UeOOVnM6BLu9__Z6RjnxGLGty7p3pGDAk-3ddi8CXWPy8CWeHB9-GR0nsppDonKZdoj17Gs--otSlSlXaNBTbTefGZuggp0bbUqucSW2YwEdXqkLaRqrUIXpx_g6WJ-3EbgHJbNGUlLucFzmzjBeOWsW8oaOp4VTRHuwuzra-mYNm1N7ZQArUTxTowQCP_XEHAl2HF-30Rx35prbcZQGS3zWOSUWbzLHGOJ5pwRqrdA92FhSpI_fN6idyvP_38jasUqxRCTVlO7DcTe_sB3ipf3bj2bQPS_Liqg8rg4NRddIP3rofv8qkH66ZHyv-3a9XX46rqwfYy9uF
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FgERyYEcMBGgJOFqx2735gFASCBNNGCERUG6mV-LLOHicIG78Bj_BR_EldHlJQEjccuBky7Ysueu5qrq6-j2Apz4owSWuGWbGJcyaNCmU44mIwcUHroRwrhObkPO5Ojws3q7Aj3EvDLZVjj6xc9Sutlgj36S43oZsKfLF8ecEVaNwdXWU0OhhMfNfv8Qp2_L53sto32eU7r462Jkmg6pAYnOatomNMHURxqKwhUlNqjVF2eXc-QwniqmzvrAmZ9I6JvA0FEZJr6VJA7L45vG9l-Ayy5XE_2omk7OaThqTDSFkz4Ka50W6GSqMERiX_4h7nTzAX96_C2m71_-3wbgB14bkmWz1aL8JK35xC9Z_o1S8DdPowyt7FNFIhj0Q8VjVDYnJOXnXE3n-_PZ9SVryGrm6yQfdVENBlGydtDUSe2Jz9x14fyGfchdWF_XC3wOSeaULykPOVc484ypQb1hM5Cx1nBo6gSejLcvjnhSkjJMptHh5bvEJbKOZz55AIu_uQt18Kge_UHoesk5yIOjApKE6C0y7wDMrmPbGTmBjREA5eJdleW7--_--_RiuTg_e7Jf7e_PZA1ij2I_T9c9twGrbnPiHcMWettWyedQBmcDHiwbLLyafMVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BNEYWgg_iVZBJ1GVz2-k82oUhKF4hmJub-AhxU-eJ3dxib8G482_4V_g5_BLm9AEaE3csXLVpmyad8_U8Zs58H8Bz5zPBJa4ZJtpGzOg4yjPLIxGCi_M8E8LaVmxCTqfZ4WE-W4KzYS8MtlUOPrF11LYyOEc-prjehmwpcuz7tojZ7mT7-FuEClK40jrIaXQQOXA_vofybfFyfzfY-gWlkzcfXu9FvcJAZFIaN5EJkLUB0iI3uY51rBRFCebUugSLxtgalxudMmksE3jqc51Jp6SOPTL6puG9N-CmDDUmthPO-OfL-Z04JB5CyI4RNU3zeOxLjBcYo_-Iga1UwF-RoA1vk9X_eWDW4G6fVJOd7i-4B0tufh9WfqNafAB7wbeX5mtAKen3RoRjWdUkJO3kfUfwef7z14I05C1yeJNPqi77iVKyc9JUSPiJTd8P4eO1fMo6LM-ruXsEJHGZyin3Kc9S5hjPPHWahQTPUMuppiN4Nti1OO7IQopQZKH1iyvrj-AVmvzyCST4bi9U9VHR-4vCcZ-0UgReeSY1VYlnynqeGMGU02YEGwMait7rLIorKDz-9-0tuB0wUrzbnx48gTsU23TatroNWG7qE7cJt8xpUy7qpy2mCXy5bqxcAF2tOoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dirichlet+Process+Prior+for+Student%E2%80%99s+t+Graph+Variational+Autoencoders&rft.jtitle=Future+internet&rft.date=2021-03-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=13&rft.issue=3&rft.spage=75&rft_id=info:doi/10.3390%2Ffi13030075&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon