Dirichlet Process Prior for Student’s t Graph Variational Autoencoders
Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instanc...
Uložené v:
| Vydané v: | Future internet Ročník 13; číslo 3; s. 75 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.03.2021
|
| Predmet: | |
| ISSN: | 1999-5903, 1999-5903 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instance, standard normal distribution (N(0,1)). Although this kind of simple distribution has the advantage of convenient calculation, it will also make latent variables contain relatively little helpful information. The lack of adequate expression of nodes will inevitably affect the process of generating graphs, which will eventually lead to the discovery of only external relations and the neglect of some complex internal correlations. In this paper, we present a novel prior distribution for GVAE, called Dirichlet process (DP) construction for Student’s t (St) distribution. The DP allows the latent variables to adapt their complexity during learning and then cooperates with heavy-tailed St distribution to approach sufficient node representation. Experimental results show that this method can achieve a relatively better performance against the baselines. |
|---|---|
| AbstractList | Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction. However, several pieces of research based on GVAE employ a plain prior distribution for latent variables, for instance, standard normal distribution (N(0,1)). Although this kind of simple distribution has the advantage of convenient calculation, it will also make latent variables contain relatively little helpful information. The lack of adequate expression of nodes will inevitably affect the process of generating graphs, which will eventually lead to the discovery of only external relations and the neglect of some complex internal correlations. In this paper, we present a novel prior distribution for GVAE, called Dirichlet process (DP) construction for Student’s t (St) distribution. The DP allows the latent variables to adapt their complexity during learning and then cooperates with heavy-tailed St distribution to approach sufficient node representation. Experimental results show that this method can achieve a relatively better performance against the baselines. |
| Author | Huang, Jing Zhao, Yuexuan |
| Author_xml | – sequence: 1 givenname: Yuexuan orcidid: 0000-0002-5071-7021 surname: Zhao fullname: Zhao, Yuexuan – sequence: 2 givenname: Jing surname: Huang fullname: Huang, Jing |
| BookMark | eNpNUMtKAzEUDVLBWrvxCwbcCaM3j5k0y1K1LRQUfGxDJpPYlHFSk8zCnb_h7_klTq2oFy7ncDmcwz3HaND61iB0iuGCUgGX1mEKFIAXB2iIhRB5IYAO_vEjNI5xA_1QQcqSD9HiygWn141J2V3w2sTYo_Mhs_3ep642bfp8_4hZyuZBbdfZkwpOJedb1WTTLnnTal-bEE_QoVVNNOMfHKHHm-uH2SJf3c6Xs-kq15RAyjUwUlNCSqFFBRUoRYAxoLXBAjiDWhuhK8q4rlm5o1ZUE24Ur8CKQlA6Qsu9b-3VRm6De1HhTXrl5PfBh2epQnK6MdIUFpMJZ4VVlvGKKGyZqm2BdcmUqXTvdbb32gb_2pmY5MZ3of8sSlIA7auknPeq871KBx9jMPY3FYPcFS__iqdfBaN3kw |
| Cites_doi | 10.1017/CBO9780511802478 10.1017/CBO9780511550683 10.1109/TSP.2009.2036049 10.1016/j.jmp.2011.08.004 10.1080/00401706.1974.10489150 10.1007/978-3-319-18968-0 10.1126/science.287.5461.2115a 10.1109/TSP.2019.2939079 10.1103/PhysRevE.64.046135 10.1109/78.978374 10.1609/aaai.v33i01.33015829 10.1214/aoms/1177698133 10.1109/MSP.2012.2235191 10.1080/10705511.2013.742382 10.1214/aoms/1177704250 10.1016/j.patcog.2006.05.006 10.24963/ijcai.2018/362 10.26599/BDMA.2018.9020029 10.1145/316194.316229 10.1109/TBDATA.2018.2850013 10.1002/9780470627242 10.1080/01621459.1994.10476468 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/fi13030075 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_e5f128745faf47b2a1f4adf51c64aebc 10_3390_fi13030075 |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c320t-c042d32269c9b0b0aa204403de190740dce9cb347cd46e9cbf9b87ea7b0f95933 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-5903 |
| IngestDate | Fri Oct 03 12:51:53 EDT 2025 Sun Nov 30 04:34:07 EST 2025 Sat Nov 29 07:16:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-c042d32269c9b0b0aa204403de190740dce9cb347cd46e9cbf9b87ea7b0f95933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5071-7021 |
| OpenAccessLink | https://www.proquest.com/docview/2503300377?pq-origsite=%requestingapplication% |
| PQID | 2503300377 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e5f128745faf47b2a1f4adf51c64aebc proquest_journals_2503300377 crossref_primary_10_3390_fi13030075 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hill (ref_23) 1970; 13 Adamic (ref_25) 2001; 64 Zhang (ref_24) 2013; 20 Goodman (ref_13) 1963; 34 Escobar (ref_33) 1994; 89 ref_36 ref_35 ref_11 ref_32 ref_31 ref_30 Xue (ref_38) 2007; 8 Faloutsos (ref_27) 1999; 29 Sen (ref_44) 2008; 29 ref_19 Bazi (ref_15) 2007; 40 ref_18 Wang (ref_10) 2020; 2 ref_17 ref_39 ref_37 Arulampalam (ref_16) 2002; 50 Blei (ref_34) 2006; 1 Novey (ref_14) 2009; 58 Ord (ref_22) 1968; 39 Huang (ref_43) 2019; 67 ref_47 ref_46 ref_45 Gershman (ref_29) 2012; 56 ref_42 ref_41 Bryson (ref_21) 1974; 16 ref_40 ref_1 Zhang (ref_12) 2018; 6 ref_3 ref_2 Schmidt (ref_28) 2013; 30 ref_9 Barron (ref_20) 1986; 14 ref_8 ref_5 ref_4 ref_7 Adamic (ref_26) 2000; 287 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_30 doi: 10.1017/CBO9780511802478 – ident: ref_41 doi: 10.1017/CBO9780511550683 – ident: ref_9 – volume: 1 start-page: 121 year: 2006 ident: ref_34 article-title: Variational inference for Dirichlet process mixtures publication-title: J. Bayesian Anal. – volume: 58 start-page: 1427 year: 2009 ident: ref_14 article-title: A complex generalized Gaussian distribution—Characterization, generation, and estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2036049 – volume: 56 start-page: 1 year: 2012 ident: ref_29 article-title: A tutorial on Bayesian nonparametric models publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2011.08.004 – ident: ref_5 – ident: ref_32 – ident: ref_3 – ident: ref_47 – ident: ref_11 – volume: 16 start-page: 61 year: 1974 ident: ref_21 article-title: Heavy-tailed distributions: Properties and tests publication-title: J. Technometrics doi: 10.1080/00401706.1974.10489150 – volume: 8 start-page: 35 year: 2007 ident: ref_38 article-title: Multi-Task Learning for Classification with Dirichlet Process Priors publication-title: J. Mach. Learn. Res. – ident: ref_31 doi: 10.1007/978-3-319-18968-0 – ident: ref_39 – ident: ref_40 – volume: 287 start-page: 2115 year: 2000 ident: ref_26 article-title: Power-law distribution of the world wide web publication-title: Science doi: 10.1126/science.287.5461.2115a – volume: 67 start-page: 5417 year: 2019 ident: ref_43 article-title: A novel Kullback-Leibler divergence minimization-based adaptive student’s t-filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2939079 – ident: ref_37 – volume: 64 start-page: 046135 year: 2001 ident: ref_25 article-title: Search in power-law networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.046135 – ident: ref_1 – ident: ref_18 – ident: ref_35 – volume: 50 start-page: 174 year: 2002 ident: ref_16 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: IEEE Trans. Signal Process doi: 10.1109/78.978374 – ident: ref_46 doi: 10.1609/aaai.v33i01.33015829 – volume: 39 start-page: 1513 year: 1968 ident: ref_22 article-title: The Discrete Student’s t Distribution publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177698133 – ident: ref_6 – ident: ref_8 – volume: 30 start-page: 110 year: 2013 ident: ref_28 article-title: Nonparametric Bayesian modeling of complex networks: An introduction publication-title: J. IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235191 – ident: ref_4 – volume: 14 start-page: 336 year: 1986 ident: ref_20 article-title: Entropy and the central limit theorem publication-title: J. Ann. Probab. – volume: 13 start-page: 617 year: 1970 ident: ref_23 article-title: ACM Algorithm 395: Student’s t-distribution publication-title: Commun. ACM – volume: 20 start-page: 47 year: 2013 ident: ref_24 article-title: Bayesian inference and application of robust growth curve models using Student’s t distribution publication-title: Struct. Equ. Model. A Multidiscip. J. doi: 10.1080/10705511.2013.742382 – volume: 34 start-page: 152 year: 1963 ident: ref_13 article-title: Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction) publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704250 – ident: ref_2 – volume: 40 start-page: 619 year: 2007 ident: ref_15 article-title: Image thresholding based on the EM algorithm and the generalized Gaussian distribution publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.05.006 – ident: ref_19 doi: 10.24963/ijcai.2018/362 – volume: 2 start-page: 35 year: 2020 ident: ref_10 article-title: A brief review of network embedding publication-title: J. Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020029 – ident: ref_17 – volume: 29 start-page: 251 year: 1999 ident: ref_27 article-title: On power-law relationships of the internet topology publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/316194.316229 – ident: ref_36 – ident: ref_45 – volume: 6 start-page: 3 year: 2018 ident: ref_12 article-title: Network representation learning: A survey publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2018.2850013 – ident: ref_42 doi: 10.1002/9780470627242 – volume: 89 start-page: 268 year: 1994 ident: ref_33 article-title: Estimating normal means with a Dirichlet process prior publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1994.10476468 – volume: 29 start-page: 93 year: 2008 ident: ref_44 article-title: Collective classification in network data publication-title: AI Mag. |
| SSID | ssj0000392667 |
| Score | 2.1436338 |
| Snippet | Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 75 |
| SubjectTerms | Airports Bayesian nonparametric Coders Complexity Dirichlet problem Dirichlet process Flexibility Graph variational auto-encoder Internet Keywords network representation learning neural network Neural networks Nonparametric statistics Normal distribution Probability distribution Student’s t distribution Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcXKR70ID6xWmVBr6HJZp_HKtaeiuCD3sI-MZdW2tSzX8Ov5ydxJ0m14sGLp4QQSPhPZmYnO_wGoUsfJGcC9gwz4xJqTZoo6VjCY3LxgUnOnauHTYjxWE4m6m5t1Bf0hDV44Ea4vmchq5nsQQcqDNFZoNoFlllOtTcWom8q1FoxVcfgmPY5Fw2PNI91fT-UEK0hQ_7IQDWo_1ccrpPLcBfttKtCPGjeZg9t-Ok-2l5jBR6gUQxOpX2OMuO2uT8ey9kcx1Unvm8IlR9v7wtc4VuAUOOnWAW3f_rwYFnNgFgJXcuH6HF483A9StoxCInNSVolNvqVi37HlVUmNanWBOZE585nUNmmznplTU6FdZTDaVBGCq-FSQNgh_Mj1JnOpv4Y4cxLrQgLOZM59ZTJQLyhcYViiWPEkC66WElTvDS0iyJWCSBg8S1gF12Bal93AKG6vhDtVrR2K_6yWxf1VpoXrdssCgKbqoDEESf_8YxTtEWgBaVuGeuhTjVf-jO0aV-rcjE_r7-YT5KDyDM priority: 102 providerName: Directory of Open Access Journals |
| Title | Dirichlet Process Prior for Student’s t Graph Variational Autoencoders |
| URI | https://www.proquest.com/docview/2503300377 https://doaj.org/article/e5f128745faf47b2a1f4adf51c64aebc |
| Volume | 13 |
| WOSCitedRecordID | wos000633661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6AEOpbRUbKErS_QakTh-JKeKXUGpKlYRlFcvUfwqe9nAbui5f6N_j1-Cx-sFqkq99GJHsQ-Rx_OefAPw0bpCcIk5w0yZhGmVJmVheCK8crGOF0IYE5pNyNGouLwsqxhwm8WyyoVMDILatBpj5HsU822IliI_3dwm2DUKs6uxhcYSrKBlgyV9x-nwMcaSeuUvhJyjkubeu99zY5TZqCf_0EMBrv8vaRxUzOH6_37ca3gVjUuyP78NG_DCTt7A2jPIwbdw5GXcWF97apH4j4Cfx-2UeOOVnM6BLu9__Z6RjnxGLGty7p3pGDAk-3ddi8CXWPy8CWeHB9-GR0nsppDonKZdoj17Gs--otSlSlXaNBTbTefGZuggp0bbUqucSW2YwEdXqkLaRqrUIXpx_g6WJ-3EbgHJbNGUlLucFzmzjBeOWsW8oaOp4VTRHuwuzra-mYNm1N7ZQArUTxTowQCP_XEHAl2HF-30Rx35prbcZQGS3zWOSUWbzLHGOJ5pwRqrdA92FhSpI_fN6idyvP_38jasUqxRCTVlO7DcTe_sB3ipf3bj2bQPS_Liqg8rg4NRddIP3rofv8qkH66ZHyv-3a9XX46rqwfYy9uF |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FgERyYEcMBGgJOFqx2735gFASCBNNGCERUG6mV-LLOHicIG78Bj_BR_EldHlJQEjccuBky7Ysueu5qrq6-j2Apz4owSWuGWbGJcyaNCmU44mIwcUHroRwrhObkPO5Ojws3q7Aj3EvDLZVjj6xc9Sutlgj36S43oZsKfLF8ecEVaNwdXWU0OhhMfNfv8Qp2_L53sto32eU7r462Jkmg6pAYnOatomNMHURxqKwhUlNqjVF2eXc-QwniqmzvrAmZ9I6JvA0FEZJr6VJA7L45vG9l-Ayy5XE_2omk7OaThqTDSFkz4Ka50W6GSqMERiX_4h7nTzAX96_C2m71_-3wbgB14bkmWz1aL8JK35xC9Z_o1S8DdPowyt7FNFIhj0Q8VjVDYnJOXnXE3n-_PZ9SVryGrm6yQfdVENBlGydtDUSe2Jz9x14fyGfchdWF_XC3wOSeaULykPOVc484ypQb1hM5Cx1nBo6gSejLcvjnhSkjJMptHh5bvEJbKOZz55AIu_uQt18Kge_UHoesk5yIOjApKE6C0y7wDMrmPbGTmBjREA5eJdleW7--_--_RiuTg_e7Jf7e_PZA1ij2I_T9c9twGrbnPiHcMWettWyedQBmcDHiwbLLyafMVw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BNEYWgg_iVZBJ1GVz2-k82oUhKF4hmJub-AhxU-eJ3dxib8G482_4V_g5_BLm9AEaE3csXLVpmyad8_U8Zs58H8Bz5zPBJa4ZJtpGzOg4yjPLIxGCi_M8E8LaVmxCTqfZ4WE-W4KzYS8MtlUOPrF11LYyOEc-prjehmwpcuz7tojZ7mT7-FuEClK40jrIaXQQOXA_vofybfFyfzfY-gWlkzcfXu9FvcJAZFIaN5EJkLUB0iI3uY51rBRFCebUugSLxtgalxudMmksE3jqc51Jp6SOPTL6puG9N-CmDDUmthPO-OfL-Z04JB5CyI4RNU3zeOxLjBcYo_-Iga1UwF-RoA1vk9X_eWDW4G6fVJOd7i-4B0tufh9WfqNafAB7wbeX5mtAKen3RoRjWdUkJO3kfUfwef7z14I05C1yeJNPqi77iVKyc9JUSPiJTd8P4eO1fMo6LM-ruXsEJHGZyin3Kc9S5hjPPHWahQTPUMuppiN4Nti1OO7IQopQZKH1iyvrj-AVmvzyCST4bi9U9VHR-4vCcZ-0UgReeSY1VYlnynqeGMGU02YEGwMait7rLIorKDz-9-0tuB0wUrzbnx48gTsU23TatroNWG7qE7cJt8xpUy7qpy2mCXy5bqxcAF2tOoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dirichlet+Process+Prior+for+Student%E2%80%99s+t+Graph+Variational+Autoencoders&rft.jtitle=Future+internet&rft.date=2021-03-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=13&rft.issue=3&rft.spage=75&rft_id=info:doi/10.3390%2Ffi13030075&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |