Multispectral radiometric temperature measurement algorithm for turbine blades based on moving narrow-band spectral windows

This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the mea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics express Ročník 29; číslo 3; s. 4405
Hlavní autori: Zhao, Yingze, Lv, Jinguang, Zheng, Kaifeng, Tao, Jin, Qin, Yuxin, Wang, Weibiao, Wang, Chao, Liang, Jingqiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2021
ISSN:1094-4087, 1094-4087
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.
AbstractList This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.
This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.
Author Zheng, Kaifeng
Liang, Jingqiu
Wang, Chao
Zhao, Yingze
Wang, Weibiao
Lv, Jinguang
Tao, Jin
Qin, Yuxin
Author_xml – sequence: 1
  givenname: Yingze
  surname: Zhao
  fullname: Zhao, Yingze
– sequence: 2
  givenname: Jinguang
  surname: Lv
  fullname: Lv, Jinguang
– sequence: 3
  givenname: Kaifeng
  surname: Zheng
  fullname: Zheng, Kaifeng
– sequence: 4
  givenname: Jin
  surname: Tao
  fullname: Tao, Jin
– sequence: 5
  givenname: Yuxin
  surname: Qin
  fullname: Qin, Yuxin
– sequence: 6
  givenname: Weibiao
  surname: Wang
  fullname: Wang, Weibiao
– sequence: 7
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 8
  givenname: Jingqiu
  surname: Liang
  fullname: Liang, Jingqiu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33771019$$D View this record in MEDLINE/PubMed
BookMark eNptkUlLBDEQhYMo7gf_gOSohx6zTS9HkXEBZS56bqo71WOkk4xJ2kH887bMKCKeXkF9rwreOyDbzjsk5ISzCZe5upjPJoqrUqktss9ZpTLFymL717xHDmJ8YYyroip2yZ6URcEZr_bJx8PQJxOX2KYAPQ2gjbeYgmlpQrvEAGkISC1CHNWiSxT6hQ8mPVva-UDHdWMc0qYHjZE2EFFT76j1b8YtqIMQ_CprwGn682VlnPareER2OugjHm_0kDxdzx6vbrP7-c3d1eV91krBUtZInALkSsupEo0UOWqQZSc64KXqRK5FJ_O84pXkgEJOmdZVmwuuhRRVqRp5SM7Wd5fBvw4YU21NbLHvwaEfYi2mLBdlxbkc0dMNOjQWdb0MxkJ4r78DG4HzNdAGH2PA7gfhrP4qo57P6nUZI3vxh21NgmS8G1Mw_T-OT9PwjVw
CitedBy_id crossref_primary_10_1016_j_infrared_2023_104573
crossref_primary_10_1016_j_infrared_2022_104385
crossref_primary_10_1038_s41377_023_01312_1
crossref_primary_10_1016_j_measurement_2022_112224
crossref_primary_10_1364_AO_567549
crossref_primary_10_1016_j_infrared_2022_104204
crossref_primary_10_1016_j_measurement_2025_118964
crossref_primary_10_1016_j_applthermaleng_2024_124811
crossref_primary_10_1016_j_optlastec_2025_112885
crossref_primary_10_1364_AO_493812
crossref_primary_10_3390_app14093726
crossref_primary_10_1109_JSEN_2025_3531960
crossref_primary_10_1016_j_applthermaleng_2025_127648
crossref_primary_10_1016_j_measen_2024_101633
crossref_primary_10_1109_TIM_2021_3135546
crossref_primary_10_1177_01423312231168922
crossref_primary_10_1117_1_OE_61_12_124109
Cites_doi 10.7449/2004/Superalloys_2004_707_712
10.1016/j.jallcom.2017.01.288
10.1364/AO.56.004654
10.1177/0003702816644757
10.1016/j.proci.2010.07.042
10.1007/s10765-008-0446-5
10.1063/1.5007225
10.1364/AO.56.008492
10.1016/j.measurement.2016.02.054
10.1021/ef401374y
10.1088/0957-0233/26/10/105203
10.1016/j.infrared.2016.11.014
10.1007/s10043-015-0155-9
10.1364/OE.25.030560
10.1016/j.infrared.2017.04.013
10.1364/OE.26.025706
10.1016/j.ijheatmasstransfer.2018.09.008
10.18178/ijmerr
10.1016/j.ijheatmasstransfer.2009.12.053
10.3390/en12112185
10.1016/j.engfailanal.2014.06.003
10.1364/AO.55.002169
10.1063/1.3596567
10.1038/s41377-019-0231-1
10.1016/j.infrared.2020.103273
10.1049/iet-rpg.2019.0119
10.1016/j.ijheatmasstransfer.2017.06.133
10.1115/1.4024678
10.1016/j.expthermflusci.2019.110017
10.1038/lsa.2012.24
10.1177/0003702818823239
10.1061/(ASCE)AS.1943-5525.0000296
10.1364/AO.43.001799
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.414844
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 33771019
10_1364_OE_414844
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c320t-b3e5aa64d3542b326eda38f2fa184f26d2f36691931ae2350dd9c621d232984b3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614617700116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Thu Oct 02 05:59:03 EDT 2025
Wed Feb 19 02:28:36 EST 2025
Tue Nov 18 21:32:34 EST 2025
Sat Nov 29 02:57:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-b3e5aa64d3542b326eda38f2fa184f26d2f36691931ae2350dd9c621d232984b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.414844
PMID 33771019
PQID 2506289113
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2506289113
pubmed_primary_33771019
crossref_primary_10_1364_OE_414844
crossref_citationtrail_10_1364_OE_414844
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2021
References Sahlberg (oe-29-3-4405-R12) 2019; 73
Deep (oe-29-3-4405-R28) 2017; 56
Zhang (oe-29-3-4405-R34) 2016; 70
Wen (oe-29-3-4405-R30) 2010; 53
Liang (oe-29-3-4405-R13) 2018; 26
Talghader (oe-29-3-4405-R29) 2012; 1
Zhang (oe-29-3-4405-R23) 2020; 106
Garg (oe-29-3-4405-R2) 2013; 26
Zhao (oe-29-3-4405-R3) 2019; 128
Bouvry (oe-29-3-4405-R19) 2017; 83
Kong (oe-29-3-4405-R33) 2017; 703
Kumari (oe-29-3-4405-R5) 2014; 45
Liu (oe-29-3-4405-R17) 2019; 13
Zhang (oe-29-3-4405-R32) 2017; 114
Zhu (oe-29-3-4405-R8) 2020; 9
Gao (oe-29-3-4405-R27) 2015; 26
Yan (oe-29-3-4405-R26) 2013; 27
Sade (oe-29-3-4405-R10) 2004; 43
Sun (oe-29-3-4405-R25) 2011; 33
Ni (oe-29-3-4405-R9) 2017; 56
Wang (oe-29-3-4405-R21) 2018; 89
Lü (oe-29-3-4405-R7) 2016; 55
Okada (oe-29-3-4405-R1) 2004; 2004
Manara (oe-29-3-4405-R20) 2017; 80
Yuan (oe-29-3-4405-R31) 2009; 30
Ketui (oe-29-3-4405-R18) 2016; 86
Yan (oe-29-3-4405-R24) 2020; 112
Gao (oe-29-3-4405-R11) 2014; 23
Dewangan (oe-29-3-4405-R6) 2015; 4
Lin (oe-29-3-4405-R22) 2019; 12
Fu (oe-29-3-4405-R15) 2011; 82
Estevadeordal (oe-29-3-4405-R16) 2014; 136
Xing (oe-29-3-4405-R14) 2017; 25
References_xml – volume: 2004
  start-page: 707
  year: 2004
  ident: oe-29-3-4405-R1
  publication-title: Super alloy
  doi: 10.7449/2004/Superalloys_2004_707_712
– volume: 703
  start-page: 125
  year: 2017
  ident: oe-29-3-4405-R33
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.288
– volume: 56
  start-page: 4654
  year: 2017
  ident: oe-29-3-4405-R9
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.004654
– volume: 70
  start-page: 1717
  year: 2016
  ident: oe-29-3-4405-R34
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702816644757
– volume: 33
  start-page: 735
  year: 2011
  ident: oe-29-3-4405-R25
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.07.042
– volume: 30
  start-page: 227
  year: 2009
  ident: oe-29-3-4405-R31
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-008-0446-5
– volume: 89
  start-page: 054903
  year: 2018
  ident: oe-29-3-4405-R21
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5007225
– volume: 56
  start-page: 8492
  year: 2017
  ident: oe-29-3-4405-R28
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.008492
– volume: 86
  start-page: 133
  year: 2016
  ident: oe-29-3-4405-R18
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.02.054
– volume: 27
  start-page: 6754
  year: 2013
  ident: oe-29-3-4405-R26
  publication-title: Fuel
  doi: 10.1021/ef401374y
– volume: 26
  start-page: 105203
  year: 2015
  ident: oe-29-3-4405-R27
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/10/105203
– volume: 80
  start-page: 120
  year: 2017
  ident: oe-29-3-4405-R20
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.11.014
– volume: 23
  start-page: 17
  year: 2014
  ident: oe-29-3-4405-R11
  publication-title: Proc. SPIE
  doi: 10.1007/s10043-015-0155-9
– volume: 25
  start-page: 30560
  year: 2017
  ident: oe-29-3-4405-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.25.030560
– volume: 83
  start-page: 78
  year: 2017
  ident: oe-29-3-4405-R19
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.04.013
– volume: 26
  start-page: 25706
  year: 2018
  ident: oe-29-3-4405-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.26.025706
– volume: 128
  start-page: 378
  year: 2019
  ident: oe-29-3-4405-R3
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.008
– volume: 4
  start-page: 216
  year: 2015
  ident: oe-29-3-4405-R6
  publication-title: IJMERR
  doi: 10.18178/ijmerr
– volume: 53
  start-page: 2035
  year: 2010
  ident: oe-29-3-4405-R30
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.12.053
– volume: 12
  start-page: 2185
  year: 2019
  ident: oe-29-3-4405-R22
  publication-title: Energies
  doi: 10.3390/en12112185
– volume: 45
  start-page: 234
  year: 2014
  ident: oe-29-3-4405-R5
  publication-title: Eng. Failure Anal.
  doi: 10.1016/j.engfailanal.2014.06.003
– volume: 55
  start-page: 2169
  year: 2016
  ident: oe-29-3-4405-R7
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.002169
– volume: 82
  start-page: 064902
  year: 2011
  ident: oe-29-3-4405-R15
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3596567
– volume: 9
  start-page: 1
  year: 2020
  ident: oe-29-3-4405-R8
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-019-0231-1
– volume: 106
  start-page: 103273
  year: 2020
  ident: oe-29-3-4405-R23
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103273
– volume: 13
  start-page: 1833
  year: 2019
  ident: oe-29-3-4405-R17
  publication-title: IET Renewable Power Generation
  doi: 10.1049/iet-rpg.2019.0119
– volume: 114
  start-page: 1037
  year: 2017
  ident: oe-29-3-4405-R32
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.06.133
– volume: 136
  start-page: 031004
  year: 2014
  ident: oe-29-3-4405-R16
  publication-title: J. Turbomachinery
  doi: 10.1115/1.4024678
– volume: 112
  start-page: 110017
  year: 2020
  ident: oe-29-3-4405-R24
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2019.110017
– volume: 1
  start-page: e24
  year: 2012
  ident: oe-29-3-4405-R29
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2012.24
– volume: 73
  start-page: 653
  year: 2019
  ident: oe-29-3-4405-R12
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702818823239
– volume: 26
  start-page: 422
  year: 2013
  ident: oe-29-3-4405-R2
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000296
– volume: 43
  start-page: 1799
  year: 2004
  ident: oe-29-3-4405-R10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.001799
SSID ssj0014797
Score 2.4877512
Snippet This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4405
Title Multispectral radiometric temperature measurement algorithm for turbine blades based on moving narrow-band spectral windows
URI https://www.ncbi.nlm.nih.gov/pubmed/33771019
https://www.proquest.com/docview/2506289113
Volume 29
WOSCitedRecordID wos000614617700116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3by9MwFA_7Pi98L-LdeRlRfBBGdU3SNnkUmYjoNx8mzKeSNqkOtq50F4eif7snl3Yd-oE--FJGmiaw34-Tc05yfkHoKcTTKlN5FBjhlMBo5wQCiBEIzRORFyTMqLKXTSTn53w2Ex96vR9NLcxukZQl3-9F9V-hhjYA25TO_gPc7aDQAL8BdHgC7PD8K-BtSa0toDS197VUpsDe6PAPjQyV11AeLg-5waFcfF7V882XpTtzuK0z43pmC6n0emiWOWW2FJYu91Ba1cYgswn3ZpavENmvvHvuPd1JZQWg9b5qD3m4_LTNzX6Cob61nHq3s2Sam9SpX0ltX-0NkZwX-tA-dUO89ZrhPmVBwuaUs1lxnJmFoBIiV7_UejvsMx_zbphujSpjtjL7d2tPYwZoTMbPGQR1TkayA3C1tAhTmoAX5e3ysbR28-oEXSJJJIxRfP9z3G5CsUQkXowKZnrRznOGrjZfHnszF4Qo1lWZXkfXfIyBXzpu3EA9Xd5EV-xZ33x9C30_YgjuMAR3GII7DMEtQzAwBHuGYMcQbBmCVyV2DMEdhuB2Fs-Q2-jj6_H01ZvA38ER5JSMNkFGdSRlzBSNGMnA19dKUl6QQoacFSRWpKBxLCAMCKUmNBopJfKYhAo8dcFZRu-g03JV6nsIMz7ieRIRUeicyaKAwDaBj-WooEJRTvroWfNfprkXqDf3pCxSu-sas3QyTh0CffSk7Vo5VZY_dXrcAJKCzTQbYbLUq-06Bbc_JhyWedpHdx1S7TANsvcvfPMAnR1I_RCdbuqtfoQu5zuArh6gk2TGBza1M7B0-gWP1pj5
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+radiometric+temperature+measurement+algorithm+for+turbine+blades+based+on+moving+narrow-band+spectral+windows&rft.jtitle=Optics+express&rft.au=Zhao%2C+Yingze&rft.au=Lv%2C+Jinguang&rft.au=Zheng%2C+Kaifeng&rft.au=Tao%2C+Jin&rft.date=2021-02-01&rft.eissn=1094-4087&rft.volume=29&rft.issue=3&rft.spage=4405&rft_id=info:doi/10.1364%2FOE.414844&rft_id=info%3Apmid%2F33771019&rft.externalDocID=33771019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon