A Learnable Prior Improves Inverse Tumor Growth Modeling

Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 44; H. 3; S. 1297 - 1307
Hauptverfasser: Weidner, Jonas, Ezhov, Ivan, Balcerak, Michal, Metz, Marie-Christin, Litvinov, Sergey, Kaltenbach, Sebastian, Feiner, Leonhard, Lux, Laurin, Kofler, Florian, Lipkova, Jana, Latz, Jonas, Rueckert, Daniel, Menze, Bjoern, Wiestler, Benedikt
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2025
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
AbstractList Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
Author Balcerak, Michal
Kaltenbach, Sebastian
Feiner, Leonhard
Kofler, Florian
Ezhov, Ivan
Menze, Bjoern
Litvinov, Sergey
Lipkova, Jana
Metz, Marie-Christin
Latz, Jonas
Wiestler, Benedikt
Weidner, Jonas
Lux, Laurin
Rueckert, Daniel
Author_xml – sequence: 1
  givenname: Jonas
  orcidid: 0009-0003-6784-9738
  surname: Weidner
  fullname: Weidner, Jonas
  email: j.weidner@tum.de
  organization: Department of Computer Science and the Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
– sequence: 2
  givenname: Ivan
  orcidid: 0000-0002-0862-6513
  surname: Ezhov
  fullname: Ezhov, Ivan
  email: ivan.ezhov@tum.de
  organization: Department of Computer Science and the Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
– sequence: 3
  givenname: Michal
  surname: Balcerak
  fullname: Balcerak, Michal
  email: michal.balcerak@uzh.ch
  organization: Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
– sequence: 4
  givenname: Marie-Christin
  surname: Metz
  fullname: Metz, Marie-Christin
  email: marie.metz@tum.de
  organization: Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
– sequence: 5
  givenname: Sergey
  surname: Litvinov
  fullname: Litvinov, Sergey
  email: slitvinov@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– sequence: 6
  givenname: Sebastian
  orcidid: 0000-0002-4261-7282
  surname: Kaltenbach
  fullname: Kaltenbach, Sebastian
  email: skaltenbach@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– sequence: 7
  givenname: Leonhard
  surname: Feiner
  fullname: Feiner, Leonhard
  email: leo.feiner@tum.de
  organization: Department of Computer Science and the Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
– sequence: 8
  givenname: Laurin
  orcidid: 0009-0003-7359-6212
  surname: Lux
  fullname: Lux, Laurin
  email: laurin.lux@tum.de
  organization: Department of Computer Science and the Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
– sequence: 9
  givenname: Florian
  surname: Kofler
  fullname: Kofler, Florian
  email: florian.kofler@helmholtz-munich.de
  organization: Helmholtz AI, Helmholtz Zentrum München, Oberschleißheim, Germany
– sequence: 10
  givenname: Jana
  surname: Lipkova
  fullname: Lipkova, Jana
  email: jlipkova@hs.uci.edu
  organization: Department of Pathology, The University of California at Irvine, Irvine, CA, USA
– sequence: 11
  givenname: Jonas
  orcidid: 0000-0002-4600-0247
  surname: Latz
  fullname: Latz, Jonas
  email: jonas.latz@manchester.ac.uk
  organization: Department of Mathematics, The University of Manchester, Manchester, U.K
– sequence: 12
  givenname: Daniel
  orcidid: 0000-0002-5683-5889
  surname: Rueckert
  fullname: Rueckert, Daniel
  email: daniel.rueckert@tum.de
  organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K
– sequence: 13
  givenname: Bjoern
  orcidid: 0000-0003-4136-5690
  surname: Menze
  fullname: Menze, Bjoern
  email: bjoern.menze@uzh.ch
  organization: Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
– sequence: 14
  givenname: Benedikt
  orcidid: 0000-0002-2963-7772
  surname: Wiestler
  fullname: Wiestler, Benedikt
  email: b.wiestler@tum.de
  organization: Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39514352$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1Lw0AQxRep2A-9exDJ0Uvq7FeaPRbRGmjRQwVvYZNMdCUfdTep-N-7pVXEg6eB4ffem3ljMmjaBgk5pzClFNT1epVMGTAx5UIJYOyIjKiUccikeB6QEbBZHAJEbEjGzr0BUCFBnZAhV5IKLtmIxPNgido2OqsweLSmtUFSb2y7RRckzRatw2Dd1369sO1H9xqs2gIr07yckuNSVw7PDnNCnu5u1zf34fJhkdzMl2HOGXShZowjUM5UXpSohECFWUZZrJWMNJMKkeYSPKs5FlBqFmGGlOYZ5hKl5hNytff1R7336Lq0Ni7HqtINtr1LuffiPsRnTMjlAe2zGot0Y02t7Wf6_a0HYA_ktnXOYvmDUEh3haa-0HRXaHoo1EuiP5LcdLozbdNZbar_hBd7oUHEXzkzEQuI-Bd9HIE6
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_ejmp_2024_104881
crossref_primary_10_1038_s41467_025_60366_4
Cites_doi 10.1007/s00259-018-4180-3
10.1109/TMI.2014.2377694
10.1158/0008-5472.CAN-05-3166
10.1109/TMI.2019.2902044
10.1109/TMI.2022.3221913
10.1007/978-3-319-24571-3_51
10.7759/cureus.6914
10.1016/j.media.2024.103423
10.1093/imamat/hxae011
10.3892/ijo.2016.3595
10.1016/S0140-6736(23)01054-1
10.1093/noajnl/vdad171
10.1098/rsos.221444
10.1109/CVPR.2016.90
10.2307/1932409.JSTOR1932409
10.1038/s41571-020-00447-z
10.1142/S0219525902000572
10.1137/22S1472814
10.2307/2682801
10.1016/j.media.2022.102672
10.1162/106365603321828970
10.3390/cancers12030728
10.1016/j.cma.2017.08.009
10.1016/j.bulm.2004.08.001
10.1007/978-3-030-72084-1_15
10.1080/02664763.2018.1441383
10.1093/neuonc/noaa200
10.1007/978-3-030-87199-4_8
10.1093/imammb/dqq011
10.1016/j.neuroimage.2024.120583
10.1097/nen.0b013e31802d9000
10.1109/TMI.2023.3298637
10.1145/2330784.2330919
10.1016/j.jtbi.2013.01.014
10.1016/j.radonc.2023.109663
10.1098/rsif.2021.0922
10.3389/fnins.2020.00125
10.1162/106365601750190398
10.1007/s00285-015-0888-x
10.1007/978-3-030-59713-9_53
10.1056/NEJMicm1704713
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2024.3494022
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1307
ExternalDocumentID 39514352
10_1109_TMI_2024_3494022
10748406
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: European High Performance Computing Joint Undertaking (EuroHPC)
  grantid: DCoMEX 956201-H2020-JTI-EuroHPC-2019-1
– fundername: Helmut Horten Stiftung; Helmut-Horten-Foundation
  funderid: 10.13039/501100013850
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 504320104
  funderid: 10.13039/501100001659
– fundername: NIH
  grantid: R01CA269948
– fundername: NCI NIH HHS
  grantid: R01 CA269948
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c320t-a223e01329cdfe944e9ebb128a956a259ee1c50320a3ed0fa26ebe11cbec5e5a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447560800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sun Nov 09 14:27:57 EST 2025
Wed Jul 30 01:47:48 EDT 2025
Tue Nov 18 22:12:49 EST 2025
Sat Nov 29 08:06:21 EST 2025
Wed Aug 27 01:45:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-a223e01329cdfe944e9ebb128a956a259ee1c50320a3ed0fa26ebe11cbec5e5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0862-6513
0000-0003-4136-5690
0000-0002-2963-7772
0000-0002-5683-5889
0000-0002-4600-0247
0009-0003-7359-6212
0009-0003-6784-9738
0000-0002-4261-7282
PMID 39514352
PQID 3128322301
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_39514352
crossref_primary_10_1109_TMI_2024_3494022
crossref_citationtrail_10_1109_TMI_2024_3494022
proquest_miscellaneous_3128322301
ieee_primary_10748406
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Pabisz (ref10) 2024
ref24
Jin (ref22); 36
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Zhao (ref21) 2022
Balcerak (ref19) 2023
38495563 - ArXiv. 2024 Nov 6:arXiv:2403.04500v2.
References_xml – volume: 36
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: PETAL: Physics emulation through averaged linearizations for solving inverse problems
– ident: ref44
  doi: 10.1007/s00259-018-4180-3
– ident: ref25
  doi: 10.1109/TMI.2014.2377694
– ident: ref36
  doi: 10.1158/0008-5472.CAN-05-3166
– ident: ref12
  doi: 10.1109/TMI.2019.2902044
– ident: ref5
  doi: 10.1109/TMI.2022.3221913
– ident: ref11
  doi: 10.1007/978-3-319-24571-3_51
– ident: ref38
  doi: 10.7759/cureus.6914
– ident: ref15
  doi: 10.1016/j.media.2024.103423
– ident: ref18
  doi: 10.1093/imamat/hxae011
– ident: ref40
  doi: 10.3892/ijo.2016.3595
– ident: ref1
  doi: 10.1016/S0140-6736(23)01054-1
– ident: ref45
  doi: 10.1093/noajnl/vdad171
– ident: ref6
  doi: 10.1098/rsos.221444
– year: 2023
  ident: ref19
  article-title: Individualizing glioma radiotherapy planning by optimization of data and physics-informed discrete loss
  publication-title: arXiv:2312.05063
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.2307/1932409.JSTOR1932409
– ident: ref3
  doi: 10.1038/s41571-020-00447-z
– ident: ref8
  doi: 10.1142/S0219525902000572
– ident: ref16
  doi: 10.1137/22S1472814
– ident: ref29
  doi: 10.2307/2682801
– ident: ref14
  doi: 10.1016/j.media.2022.102672
– ident: ref28
  doi: 10.1162/106365603321828970
– ident: ref43
  doi: 10.3390/cancers12030728
– year: 2022
  ident: ref21
  article-title: Learning to solve PDE-constrained inverse problems with graph networks
  publication-title: arXiv:2206.00711
– ident: ref9
  doi: 10.1016/j.cma.2017.08.009
– ident: ref37
  doi: 10.1016/j.bulm.2004.08.001
– ident: ref13
  doi: 10.1007/978-3-030-72084-1_15
– ident: ref33
  doi: 10.1080/02664763.2018.1441383
– ident: ref2
  doi: 10.1093/neuonc/noaa200
– ident: ref17
  doi: 10.1007/978-3-030-87199-4_8
– ident: ref7
  doi: 10.1093/imammb/dqq011
– ident: ref20
  doi: 10.1016/j.neuroimage.2024.120583
– ident: ref24
  doi: 10.1097/nen.0b013e31802d9000
– ident: ref42
  doi: 10.1109/TMI.2023.3298637
– ident: ref32
  doi: 10.1145/2330784.2330919
– ident: ref41
  doi: 10.1016/j.jtbi.2013.01.014
– ident: ref4
  doi: 10.1016/j.radonc.2023.109663
– ident: ref34
  doi: 10.1098/rsif.2021.0922
– ident: ref23
  doi: 10.3389/fnins.2020.00125
– year: 2024
  ident: ref10
  article-title: Augmenting MRI scan data with real-time predictions of glioblastoma brain tumor evolution using faster exponential time integrators
  publication-title: arXiv:2402.02273
– ident: ref27
  doi: 10.1162/106365601750190398
– ident: ref31
  doi: 10.1007/s00285-015-0888-x
– ident: ref35
  doi: 10.1007/978-3-030-59713-9_53
– ident: ref39
  doi: 10.1056/NEJMicm1704713
– reference: 38495563 - ArXiv. 2024 Nov 6:arXiv:2403.04500v2.
SSID ssj0014509
Score 2.474066
Snippet Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1297
SubjectTerms Algorithms
Biological system modeling
Brain - diagnostic imaging
Brain modeling
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
CMA-ES
Computational modeling
Deep Learning
evolutionary sampling
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Individualized brain tumor modeling
inverse biophysics
learnable prior
Magnetic Resonance Imaging - methods
Mathematical models
Models, Biological
MRI
Predictive models
Radiation therapy
Robustness
Training
Tumors
Title A Learnable Prior Improves Inverse Tumor Growth Modeling
URI https://ieeexplore.ieee.org/document/10748406
https://www.ncbi.nlm.nih.gov/pubmed/39514352
https://www.proquest.com/docview/3128322301
Volume 44
WOSCitedRecordID wos001447560800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5skaIHn1Xro0Tw4iFtNrtpskcRqx4qPVToLWySCRa0lbT19zuzSUs9KHgLYTeE-WaZmZ3HB3ATqizASBhXJXSalETPNQkBIhI_zMNQijzKLdlE-PISjcd6WDWr214YRLTFZ9jhR5vLz2bpkq_Kulw8SAFJrwa1MOyVzVrrlIEKynoOn0fGej1_lZP0dHc0eKZI0FcdnsVCRmsHGlJbT8H_YY4sv8rvrqY1Of39f_7sAexVvqVzVyrDIWzh9Ah2NyYOHkFjUOXSjyG6c-xwVe6dcobFZFY45Q0Dzh2evlHM0RktP-j1I4XqizeHadO4eb0Jr_2H0f2TW_EouKn0vYVryAVAzqnoNMtRK4Uak4QMk6HgyFD8gyjSgJnUjcTMy43fI2iFSAnfAAMjT6A-nU3xDJxckpQzoTi5pmSoaJn2PJNkJhAmjXQLuitxxmk1ZJy5Lt5jG2x4OiYsYsYirrBowe16x2c5YOOPtU2W88a6UsQtuF5BFtPp4JSHmeJsOY-lYComCrNEC05LLNe7Vypw_stXL2DHZ7JfW3B2CfVFscQr2E6_FpN50SYVHEdtq4Lfar_S0A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB584ePg-1GfEbx4SJvNbprssYgvbEsPFXoLm2SCgraStv5-ZzZp0YOCtxB2Q5hvlpnZeXwAV6HKAoyEcVVCp0lJ9FyTECAi8cM8DKXIo9ySTYTdbjQY6F7VrG57YRDRFp9hnR9tLj8bpVO-Kmtw8SAFJM1FWGbqrKpda540UEFZ0eHz0Fiv6c-ykp5u9DuPFAv6qs7TWMhsrcOq1NZX8H8YJMuw8ruzaY3O3dY_f3cbNivv0mmV6rADCzjchY1vMwd3YbVTZdP3IGo5drwqd085veJ1VDjlHQOOHZ6_UYzR6U_f6fU9BeuTF4eJ07h9fR-e7277Nw9uxaTgptL3Jq4hJwA5q6LTLEetFGpMEjJNhsIjQxEQokgD5lI3EjMvN36TwBUiJYQDDIw8gKXhaIhH4OSSpJwJxek1JUNFy7TnmSQzgTBppGvQmIkzTqsx48x28RbbcMPTMWERMxZxhUUNruc7PsoRG3-s3Wc5f1tXirgGlzPIYjofnPQwQxxNx7EUTMZEgZaowWGJ5Xz3TAWOf_nqBaw99DvtuP3YfTqBdZ-pf2352SksTYopnsFK-jl5HRfnVhG_AJus1TE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learnable+Prior+Improves+Inverse+Tumor+Growth+Modeling&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Weidner%2C+Jonas&rft.au=Ezhov%2C+Ivan&rft.au=Balcerak%2C+Michal&rft.au=Metz%2C+Marie-Christin&rft.date=2025-03-01&rft.eissn=1558-254X&rft.volume=44&rft.issue=3&rft.spage=1297&rft_id=info:doi/10.1109%2FTMI.2024.3494022&rft_id=info%3Apmid%2F39514352&rft.externalDocID=39514352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon