Highly Continuous Interpolants for One-Step Ode Solvers and their Application to Runge-Kutta Methods

We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 34; H. 1; S. 22 - 47
Hauptverfasser: Papakostas, S. N., Ch. Tsitouras
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.02.1997
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge-Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determination of the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new methods for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of C2and C3continuous extensions for some fifth- and sixth-order Runge-Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use.
AbstractList We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge--Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determinationof the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new method for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of $C^2$ and $C^3$ continuous extensions for some fifth- and sixth-order Runge--Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use.
We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge-Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determination of the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new methods for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of C2and C3continuous extensions for some fifth- and sixth-order Runge-Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use.
Author Papakostas, S. N.
Ch. Tsitouras
Author_xml – sequence: 1
  givenname: S. N.
  surname: Papakostas
  fullname: Papakostas, S. N.
– sequence: 2
  fullname: Ch. Tsitouras
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2622671$$DView record in Pascal Francis
BookMark eNp9kFFLwzAQx4NMcE4_gOBDEF-rSdom7eMY6oaTgdPnkjTJllGTmqTCvr2dGwoKPh3H_X53x_8UDKyzCoALjG4wTtntEqGU4oyUZUZoXiByBIYYlXnCMEMDMNyNk938BJyGsEF9X-B0COTUrNbNFk6cjcZ2rgtwZqPyrWu4jQFq5-HCqmQZVQsXUsGlaz6UD5BbCeNaGQ_HbduYmkfjLIwOPnd2pZLHLkYOn1RcOxnOwLHmTVDnhzoCr_d3L5NpMl88zCbjeVKnBMWEUiGLnGEhRaGF1JQgrKnOJNe65kRkCouUMaQwk4XIRI6w4qKHZJbVuqTpCFzt97bevXcqxGrjOm_7k1VJCCO4QKyHrg8QDzVvtOe2NqFqvXnjflsRSghluMfwHqu9C8Er_U1gVO0ir_5E3jvsl1Ob-BVM9Nw0_5qXe3MTovM_z5Q5QWmWfgLhGJCf
CODEN SJNAEQ
CitedBy_id crossref_primary_10_1023_B_COAP_0000039490_61195_86
crossref_primary_10_1016_S0898_1221_99_00074_7
crossref_primary_10_1088_1742_6596_1564_1_012012
crossref_primary_10_1016_S0377_0427_98_00081_8
crossref_primary_10_1080_00207160304669
crossref_primary_10_1016_j_cam_2019_112515
crossref_primary_10_1109_72_977309
crossref_primary_10_1007_s11075_020_00908_7
Cites_doi 10.1145/114697.116811
10.1002/zamm.19480280603
10.1016/0898-1221(90)90064-Q
10.1137/0720056
10.1137/0715051
10.1137/0733046
10.1007/BF01386395
10.1145/114697.103150
10.1137/0730075
10.1145/23002.27645
10.1080/00207168908803734
10.1016/0898-1221(87)90066-6
10.1016/0377-0427(95)00039-9
10.1090/S0025-5718-1962-0136519-5
10.1145/7921.7923
10.1080/00207168908803792
10.1137/0720036
10.1090/S0025-5718-1991-1068811-2
10.1007/BF02252917
10.1137/0913084
10.1016/0771-050X(82)90001-8
10.1137/0709052
10.1137/0722060
10.1137/0724054
10.1016/0377-0427(90)90198-9
10.1007/BF02242920
10.1093/imamat/16.1.35
10.1007/BF01389580
ContentType Journal Article
Copyright Copyright 1997 Society for Industrial and Applied Mathematics
1997 INIST-CNRS
[Copyright] © 1997 Society for Industrial and Applied Mathematics
Copyright_xml – notice: Copyright 1997 Society for Industrial and Applied Mathematics
– notice: 1997 INIST-CNRS
– notice: [Copyright] © 1997 Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/S0036142994265802
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Business Premium Collection
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global (OCUL)
Agricultural Science Database
Computing Database
Military Database
ProQuest Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1095-7170
EndPage 47
ExternalDocumentID 2592426351
2622671
10_1137_S0036142994265802
2952034
GroupedDBID -DZ
-~X
.4S
.DC
123
2AX
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8WZ
A6W
AALVN
AAWIL
ABAWQ
ABBHK
ABDBF
ABFAN
ABJCF
ABKAD
ABMZU
ABPFR
ABPQH
ABUWG
ABXSQ
ABYWD
ACBEA
ACGFO
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUBG
ACUHS
ADBBV
ADODI
ADULT
AENEX
AEUPB
AFKRA
AFRAH
AFVYC
AFXHP
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ANXRF
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
CZ9
D1I
D1J
D1K
DQ2
DQDLB
DSRWC
DU5
DWQXO
EAP
EBS
ECEWR
EDO
EJD
EMK
EST
ESX
FEDTE
FRNLG
FVMVE
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
I-F
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NHB
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RSI
SA0
T9H
TAE
TN5
WH7
YNT
YXE
3EH
3R3
AASXH
AAYJJ
AAYXX
ABUFD
AFFHD
ARCSS
CITATION
H13
H~9
P0-
PQGLB
RNS
TUS
WHG
ZCG
IQODW
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c320t-66bd8571bdb8fbdf6201f6f4daffca2b4e1b3770e17d8b4b501eab201d44cf963
IEDL.DBID M1Q
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1137_S0036142994265802&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0036-1429
IngestDate Fri Jul 25 11:11:23 EDT 2025
Mon Jul 21 09:15:43 EDT 2025
Sat Nov 29 04:29:24 EST 2025
Tue Nov 18 21:33:55 EST 2025
Thu Jun 19 15:13:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interpolation formula
Differential equation
Numerical solution
Initial value problem
One step method
Numerical method
Runge Kutta method
High order derivative
Numerical stability
Equation system
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-66bd8571bdb8fbdf6201f6f4daffca2b4e1b3770e17d8b4b501eab201d44cf963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 922721807
PQPubID 666303
PageCount 26
ParticipantIDs proquest_journals_922721807
pascalfrancis_primary_2622671
crossref_primary_10_1137_S0036142994265802
crossref_citationtrail_10_1137_S0036142994265802
jstor_primary_2952034
PublicationCentury 1900
PublicationDate 1997-02-01
PublicationDateYYYYMMDD 1997-02-01
PublicationDate_xml – month: 02
  year: 1997
  text: 1997-02-01
  day: 01
PublicationDecade 1990
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: Philadelphia
PublicationTitle SIAM journal on numerical analysis
PublicationYear 1997
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Calvo M. (R5) 1990; 45
R21
R20
R23
R25
R24
R27
R26
R29
R28
R2
R3
R4
R6
R7
R9
R30
R10
R32
R31
R12
R34
R11
R33
R14
R35
R16
R18
R19
References_xml – ident: R29
  doi: 10.1145/114697.116811
– ident: R35
  doi: 10.1002/zamm.19480280603
– ident: R6
  doi: 10.1016/0898-1221(90)90064-Q
– ident: R30
  doi: 10.1137/0720056
– ident: R33
  doi: 10.1137/0715051
– ident: R27
  doi: 10.1137/0733046
– ident: R2
  doi: 10.1007/BF01386395
– ident: R19
  doi: 10.1145/114697.103150
– ident: R34
  doi: 10.1137/0730075
– ident: R12
  doi: 10.1145/23002.27645
– ident: R26
  doi: 10.1080/00207168908803734
– ident: R10
  doi: 10.1016/0898-1221(87)90066-6
– ident: R9
  doi: 10.1016/0377-0427(95)00039-9
– ident: R23
  doi: 10.1090/S0025-5718-1962-0136519-5
– ident: R11
  doi: 10.1145/7921.7923
– ident: R31
  doi: 10.1080/00207168908803792
– ident: R20
  doi: 10.1137/0720036
– ident: R24
  doi: 10.1090/S0025-5718-1991-1068811-2
– ident: R16
  doi: 10.1007/BF02252917
– ident: R25
  doi: 10.1137/0913084
– ident: R18
  doi: 10.1016/0771-050X(82)90001-8
– ident: R21
  doi: 10.1137/0709052
– ident: R28
  doi: 10.1137/0722060
– ident: R3
  doi: 10.1137/0724054
– ident: R4
  doi: 10.1016/0377-0427(90)90198-9
– ident: R32
  doi: 10.1007/BF02242920
– ident: R7
  doi: 10.1093/imamat/16.1.35
– volume: 45
  start-page: 69
  year: 1990
  ident: R5
  publication-title: Rev. Acad. Ciencias Zaragoza
– ident: R14
  doi: 10.1007/BF01389580
SSID ssj0003813
Score 1.5499643
Snippet We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value...
SourceID proquest
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algebra
Approximation
Construction
Contour lines
Cost functions
Differential equations
Exact sciences and technology
Higher order derivatives
Interpolation
Mathematics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Odes
Ordinary differential equations
Runge Kutta method
Sciences and techniques of general use
Title Highly Continuous Interpolants for One-Step Ode Solvers and their Application to Runge-Kutta Methods
URI https://www.jstor.org/stable/2952034
https://www.proquest.com/docview/922721807
Volume 34
WOSCitedRecordID wos10_1137_S0036142994265802&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: 7WY
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M0C
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: P5Z
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M0K
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M7P
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: K7-
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M7S
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: PATMY
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: KB.
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M1Q
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: BENPR
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M2O
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: false
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: M2P
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKJQiltKVD5yQDLHzcHxCbdkKabUP2iIKl5VfkSpVSWmySPx7xo43FarUC5dRYjtSlJnMjD2fvgF4p5QsrOOGGpOUNFNG01IKSbWzqG5mVMpsaDYh5vPy8lIuIzanjbDKjU8Mjto2xp-Rf5Sc42alTMSnm1_UN43yxdXYQWMLdjBPlp46f8a-Do4Yg9HAucvQ78aiJks9YzQO-jGJESov46HKJiz1yEQPk1Qtfqmqb3Fxz1uHEHS6-58v_xyexdyTHPXG8gIeuXoPdmMeSuJf3u7B09nA5dq-BOehINd_iOexuqrXzbolPVIRN8V11xLMesmidtTjxcji84ScNx5t3RJVWxLqEOTorkpOuoacoYNxlE7XXafILLSwbvfh2-nk4uQLjc0ZqEl50tGi0LbMBdNWl5W2VYGZRFVUmVVVZRTXmWM6FSJxTNhSZzpPmFMaF9ksMxXawSvYrpvavQbCjTKoh6QwnnmmsEqiuWRWSs4KTKfVCJKNblYmMpf7BhrXq7CDScXqnjpH8H545Kan7Xho8X5Q-LCSy5wnaTaCw38M4G6-wKRVsBEcbLS9in9-uxpU_ebB2QN40hPhemDMW9jubtfuEB6b391VezuGLfH9xxh2jifz5RneTQX18vgDyllyEuR0HKzdS74IchnkhZciXItzlMv8519i6wR0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BNFEXogjxiugsdGMysTPt7cwsjCECgVzuxSgm7Oq8mpCQFpleDT_K_-iZvoghYcfC7cy0aXveM1-_A_BWa5U7zy21NpE009ZQqYSixjsUN7M6Za5tNiEWC3l6qr6swJ_hX5gIqxx8YuuoXW3jHvkHxTkWKzIRny5-0tg0Kh6uDh00Oq2Y-avfWLGFj4e7KN53nO_vnXw-oH1TAWpTnjQ0z42TU8GMM7I0rswxApZ5mTldllZzk3lmUiESz4STJjPThHltcJHLMlvi8-N978H9LJUimtVM0NHxY_AbOX4Z-vn-EJWlkaEaB-OYwog4lf0mzhAGOyRkhGXqgJIpu5YaN6JDG_L21_6zj_UUnvS5NdnpjOEZrPhqHdb6PJv0Xiysw-P5yFUbnoOPUJfzKxJ5us6qZb0MpENiYtFfNYFgVk-OK08jHo4c7-6Rb3VEkweiK0facxayc40CIE1NvqID9ZTOlk2jybxt0R024PudvPomrFZ15V8A4VZblHuS28iskzut0BwypxRnOZYLegLJoAuF7ZnZY4OQ86Kt0FJR3FCfCbwfL7noaEluW7zRKti4kqspT9JsAtv_KNz1fI5JuWAT2Bq0q-g9WyhG1Xp56-wbeHhwMj8qjg4Xsy141JH-RhDQK1htLpd-Gx7YX81ZuHzd2hCBH3eth38Bk0NYDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Continuous+Interpolants+for+One-Step+ODE+Solvers+and+their+Application+to+Runge--Kutta+Methods&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Papakostas%2C+S.+N.&rft.au=Tsitouras%2C+Ch&rft.date=1997-02-01&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=34&rft.issue=1&rft.spage=22&rft.epage=47&rft_id=info:doi/10.1137%2FS0036142994265802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_S0036142994265802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon