Highly Continuous Interpolants for One-Step Ode Solvers and their Application to Runge-Kutta Methods
We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on numerical analysis Jg. 34; H. 1; S. 22 - 47 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.02.1997
|
| Schlagworte: | |
| ISSN: | 0036-1429, 1095-7170 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge-Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determination of the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new methods for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of C2and C3continuous extensions for some fifth- and sixth-order Runge-Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use. |
|---|---|
| AbstractList | We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge--Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determinationof the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new method for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of $C^2$ and $C^3$ continuous extensions for some fifth- and sixth-order Runge--Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use. We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value problems of ODEs of arbitrary order. For the construction of these interpolants one uses, along with the numerical data of the discrete solution of a problem provided by a typical one-step method at endstep points, high-order derivative approximations of this solution. This approach has two main advantages. It allows an easy way of construction of high-order Runge-Kutta and Nystrom interpolants with reduced cost in additional function evaluations that also preserve the one-step nature of the underlying discrete ODE solver. Moreover, for problems which are known to possess a solution of high smoothness, the approximating interpolant resembles this characteristic, a property that on occasion might be desirable. An analysis of the stability behavior of such interpolatory processes is carried out in the general case. A new numerical technique concerning the accurate determination of the stability behavior of numerical schemes involving higher order derivatives and/or approximations of the solution from previous grid-points over nonequidistant meshes is presented. This technique actually turns out to be of a wider interest, as it allows us to infer, in certain cases, more accurate results concerning the stability of, for example, the BDF formulas over variable stepsize grids. Moreover it may be used as a framework for analyzing more complex (and supposedly more promising) types of methods, as they are the general linear methods for first- and second-order differential equations. Many particular variants of the new methods for first-order differential equations that have good prospects of finding a practical implementation are fully analyzed with respect to their stability characteristics. A detailed application concerning the construction of C2and C3continuous extensions for some fifth- and sixth-order Runge-Kutta pairs, supplemented by a detailed study of the local truncation error characteristics of a class of interpolants of this type, is also provided. Various numerical examples show, in these cases, several advantages of the newly proposed technique with respect to function evaluation cost and global error behavior, in comparison with others currently in use. |
| Author | Papakostas, S. N. Ch. Tsitouras |
| Author_xml | – sequence: 1 givenname: S. N. surname: Papakostas fullname: Papakostas, S. N. – sequence: 2 fullname: Ch. Tsitouras |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2622671$$DView record in Pascal Francis |
| BookMark | eNp9kFFLwzAQx4NMcE4_gOBDEF-rSdom7eMY6oaTgdPnkjTJllGTmqTCvr2dGwoKPh3H_X53x_8UDKyzCoALjG4wTtntEqGU4oyUZUZoXiByBIYYlXnCMEMDMNyNk938BJyGsEF9X-B0COTUrNbNFk6cjcZ2rgtwZqPyrWu4jQFq5-HCqmQZVQsXUsGlaz6UD5BbCeNaGQ_HbduYmkfjLIwOPnd2pZLHLkYOn1RcOxnOwLHmTVDnhzoCr_d3L5NpMl88zCbjeVKnBMWEUiGLnGEhRaGF1JQgrKnOJNe65kRkCouUMaQwk4XIRI6w4qKHZJbVuqTpCFzt97bevXcqxGrjOm_7k1VJCCO4QKyHrg8QDzVvtOe2NqFqvXnjflsRSghluMfwHqu9C8Er_U1gVO0ir_5E3jvsl1Ob-BVM9Nw0_5qXe3MTovM_z5Q5QWmWfgLhGJCf |
| CODEN | SJNAEQ |
| CitedBy_id | crossref_primary_10_1023_B_COAP_0000039490_61195_86 crossref_primary_10_1016_S0898_1221_99_00074_7 crossref_primary_10_1088_1742_6596_1564_1_012012 crossref_primary_10_1016_S0377_0427_98_00081_8 crossref_primary_10_1080_00207160304669 crossref_primary_10_1016_j_cam_2019_112515 crossref_primary_10_1109_72_977309 crossref_primary_10_1007_s11075_020_00908_7 |
| Cites_doi | 10.1145/114697.116811 10.1002/zamm.19480280603 10.1016/0898-1221(90)90064-Q 10.1137/0720056 10.1137/0715051 10.1137/0733046 10.1007/BF01386395 10.1145/114697.103150 10.1137/0730075 10.1145/23002.27645 10.1080/00207168908803734 10.1016/0898-1221(87)90066-6 10.1016/0377-0427(95)00039-9 10.1090/S0025-5718-1962-0136519-5 10.1145/7921.7923 10.1080/00207168908803792 10.1137/0720036 10.1090/S0025-5718-1991-1068811-2 10.1007/BF02252917 10.1137/0913084 10.1016/0771-050X(82)90001-8 10.1137/0709052 10.1137/0722060 10.1137/0724054 10.1016/0377-0427(90)90198-9 10.1007/BF02242920 10.1093/imamat/16.1.35 10.1007/BF01389580 |
| ContentType | Journal Article |
| Copyright | Copyright 1997 Society for Industrial and Applied Mathematics 1997 INIST-CNRS [Copyright] © 1997 Society for Industrial and Applied Mathematics |
| Copyright_xml | – notice: Copyright 1997 Society for Industrial and Applied Mathematics – notice: 1997 INIST-CNRS – notice: [Copyright] © 1997 Society for Industrial and Applied Mathematics |
| DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
| DOI | 10.1137/S0036142994265802 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Business Premium Collection Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global (OCUL) Agricultural Science Database Computing Database Military Database ProQuest Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1095-7170 |
| EndPage | 47 |
| ExternalDocumentID | 2592426351 2622671 10_1137_S0036142994265802 2952034 |
| GroupedDBID | -DZ -~X .4S .DC 123 2AX 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8WZ A6W AALVN AAWIL ABAWQ ABBHK ABDBF ABFAN ABJCF ABKAD ABMZU ABPFR ABPQH ABUWG ABXSQ ABYWD ACBEA ACGFO ACGOD ACHJO ACIWK ACMTB ACNCT ACPRK ACTMH ACUBG ACUHS ADBBV ADODI ADULT AENEX AEUPB AFKRA AFRAH AFVYC AFXHP AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG ANXRF ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CS3 CZ9 D1I D1J D1K DQ2 DQDLB DSRWC DU5 DWQXO EAP EBS ECEWR EDO EJD EMK EST ESX FEDTE FRNLG FVMVE GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF I-F IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S MVM N9A NHB P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RSI SA0 T9H TAE TN5 WH7 YNT YXE 3EH 3R3 AASXH AAYJJ AAYXX ABUFD AFFHD ARCSS CITATION H13 H~9 P0- PQGLB RNS TUS WHG ZCG IQODW 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c320t-66bd8571bdb8fbdf6201f6f4daffca2b4e1b3770e17d8b4b501eab201d44cf963 |
| IEDL.DBID | M1Q |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1137_S0036142994265802&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0036-1429 |
| IngestDate | Fri Jul 25 11:11:23 EDT 2025 Mon Jul 21 09:15:43 EDT 2025 Sat Nov 29 04:29:24 EST 2025 Tue Nov 18 21:33:55 EST 2025 Thu Jun 19 15:13:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Interpolation formula Differential equation Numerical solution Initial value problem One step method Numerical method Runge Kutta method High order derivative Numerical stability Equation system |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-66bd8571bdb8fbdf6201f6f4daffca2b4e1b3770e17d8b4b501eab201d44cf963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| PQID | 922721807 |
| PQPubID | 666303 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_922721807 pascalfrancis_primary_2622671 crossref_primary_10_1137_S0036142994265802 crossref_citationtrail_10_1137_S0036142994265802 jstor_primary_2952034 |
| PublicationCentury | 1900 |
| PublicationDate | 1997-02-01 |
| PublicationDateYYYYMMDD | 1997-02-01 |
| PublicationDate_xml | – month: 02 year: 1997 text: 1997-02-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Philadelphia, PA |
| PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia |
| PublicationTitle | SIAM journal on numerical analysis |
| PublicationYear | 1997 |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher_xml | – name: Society for Industrial and Applied Mathematics |
| References | Calvo M. (R5) 1990; 45 R21 R20 R23 R25 R24 R27 R26 R29 R28 R2 R3 R4 R6 R7 R9 R30 R10 R32 R31 R12 R34 R11 R33 R14 R35 R16 R18 R19 |
| References_xml | – ident: R29 doi: 10.1145/114697.116811 – ident: R35 doi: 10.1002/zamm.19480280603 – ident: R6 doi: 10.1016/0898-1221(90)90064-Q – ident: R30 doi: 10.1137/0720056 – ident: R33 doi: 10.1137/0715051 – ident: R27 doi: 10.1137/0733046 – ident: R2 doi: 10.1007/BF01386395 – ident: R19 doi: 10.1145/114697.103150 – ident: R34 doi: 10.1137/0730075 – ident: R12 doi: 10.1145/23002.27645 – ident: R26 doi: 10.1080/00207168908803734 – ident: R10 doi: 10.1016/0898-1221(87)90066-6 – ident: R9 doi: 10.1016/0377-0427(95)00039-9 – ident: R23 doi: 10.1090/S0025-5718-1962-0136519-5 – ident: R11 doi: 10.1145/7921.7923 – ident: R31 doi: 10.1080/00207168908803792 – ident: R20 doi: 10.1137/0720036 – ident: R24 doi: 10.1090/S0025-5718-1991-1068811-2 – ident: R16 doi: 10.1007/BF02252917 – ident: R25 doi: 10.1137/0913084 – ident: R18 doi: 10.1016/0771-050X(82)90001-8 – ident: R21 doi: 10.1137/0709052 – ident: R28 doi: 10.1137/0722060 – ident: R3 doi: 10.1137/0724054 – ident: R4 doi: 10.1016/0377-0427(90)90198-9 – ident: R32 doi: 10.1007/BF02242920 – ident: R7 doi: 10.1093/imamat/16.1.35 – volume: 45 start-page: 69 year: 1990 ident: R5 publication-title: Rev. Acad. Ciencias Zaragoza – ident: R14 doi: 10.1007/BF01389580 |
| SSID | ssj0003813 |
| Score | 1.5499643 |
| Snippet | We suggest a general method for the construction of highly continuous interpolants for one-step methods applied to the numerical solution of initial value... |
| SourceID | proquest pascalfrancis crossref jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Algebra Approximation Construction Contour lines Cost functions Differential equations Exact sciences and technology Higher order derivatives Interpolation Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Odes Ordinary differential equations Runge Kutta method Sciences and techniques of general use |
| Title | Highly Continuous Interpolants for One-Step Ode Solvers and their Application to Runge-Kutta Methods |
| URI | https://www.jstor.org/stable/2952034 https://www.proquest.com/docview/922721807 |
| Volume | 34 |
| WOSCitedRecordID | wos10_1137_S0036142994265802&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: 7WY dateStart: 19660101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M0C dateStart: 19660101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: P5Z dateStart: 19660101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M0K dateStart: 19660101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M7P dateStart: 19640101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: K7- dateStart: 19660101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M7S dateStart: 19640101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: PATMY dateStart: 19660101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: KB. dateStart: 19660101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M1Q dateStart: 19640101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: BENPR dateStart: 19660101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M2O dateStart: 19640101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: false ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: M2P dateStart: 19640101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKJQiltKVD5yQDLHzcHxCbdkKabUP2iIKl5VfkSpVSWmySPx7xo43FarUC5dRYjtSlJnMjD2fvgF4p5QsrOOGGpOUNFNG01IKSbWzqG5mVMpsaDYh5vPy8lIuIzanjbDKjU8Mjto2xp-Rf5Sc42alTMSnm1_UN43yxdXYQWMLdjBPlp46f8a-Do4Yg9HAucvQ78aiJks9YzQO-jGJESov46HKJiz1yEQPk1Qtfqmqb3Fxz1uHEHS6-58v_xyexdyTHPXG8gIeuXoPdmMeSuJf3u7B09nA5dq-BOehINd_iOexuqrXzbolPVIRN8V11xLMesmidtTjxcji84ScNx5t3RJVWxLqEOTorkpOuoacoYNxlE7XXafILLSwbvfh2-nk4uQLjc0ZqEl50tGi0LbMBdNWl5W2VYGZRFVUmVVVZRTXmWM6FSJxTNhSZzpPmFMaF9ksMxXawSvYrpvavQbCjTKoh6QwnnmmsEqiuWRWSs4KTKfVCJKNblYmMpf7BhrXq7CDScXqnjpH8H545Kan7Xho8X5Q-LCSy5wnaTaCw38M4G6-wKRVsBEcbLS9in9-uxpU_ebB2QN40hPhemDMW9jubtfuEB6b391VezuGLfH9xxh2jifz5RneTQX18vgDyllyEuR0HKzdS74IchnkhZciXItzlMv8519i6wR0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BNFEXogjxiugsdGMysTPt7cwsjCECgVzuxSgm7Oq8mpCQFpleDT_K_-iZvoghYcfC7cy0aXveM1-_A_BWa5U7zy21NpE009ZQqYSixjsUN7M6Za5tNiEWC3l6qr6swJ_hX5gIqxx8YuuoXW3jHvkHxTkWKzIRny5-0tg0Kh6uDh00Oq2Y-avfWLGFj4e7KN53nO_vnXw-oH1TAWpTnjQ0z42TU8GMM7I0rswxApZ5mTldllZzk3lmUiESz4STJjPThHltcJHLMlvi8-N978H9LJUimtVM0NHxY_AbOX4Z-vn-EJWlkaEaB-OYwog4lf0mzhAGOyRkhGXqgJIpu5YaN6JDG_L21_6zj_UUnvS5NdnpjOEZrPhqHdb6PJv0Xiysw-P5yFUbnoOPUJfzKxJ5us6qZb0MpENiYtFfNYFgVk-OK08jHo4c7-6Rb3VEkweiK0facxayc40CIE1NvqID9ZTOlk2jybxt0R024PudvPomrFZ15V8A4VZblHuS28iskzut0BwypxRnOZYLegLJoAuF7ZnZY4OQ86Kt0FJR3FCfCbwfL7noaEluW7zRKti4kqspT9JsAtv_KNz1fI5JuWAT2Bq0q-g9WyhG1Xp56-wbeHhwMj8qjg4Xsy141JH-RhDQK1htLpd-Gx7YX81ZuHzd2hCBH3eth38Bk0NYDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Continuous+Interpolants+for+One-Step+ODE+Solvers+and+their+Application+to+Runge--Kutta+Methods&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Papakostas%2C+S.+N.&rft.au=Tsitouras%2C+Ch&rft.date=1997-02-01&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=34&rft.issue=1&rft.spage=22&rft.epage=47&rft_id=info:doi/10.1137%2FS0036142994265802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_S0036142994265802 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon |