Research on gas concentration identification based on sparrow search algorithm optimization SVR

To address the challenge of quantitatively identifying mixed gases, we developed a gas concentration identification algorithm based on the sparrow search algorithm (SSA) and optimized support vector regression (SVR). The Tent chaotic mapping operator is employed to initialize the population, enhanci...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal on smart sensing and intelligent systems Ročník 18; číslo 1
Hlavní autori: Zhang, Yuanman, Zou, Yanan, Wu, Qingyun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Sydney Sciendo 01.01.2025
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Predmet:
ISSN:1178-5608, 1178-5608
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To address the challenge of quantitatively identifying mixed gases, we developed a gas concentration identification algorithm based on the sparrow search algorithm (SSA) and optimized support vector regression (SVR). The Tent chaotic mapping operator is employed to initialize the population, enhancing population diversity, and improving the algorithm’s global search capability. By optimizing SVR parameters with SSA, we propose an enhanced TSSA-SVR model. Evaluated on mixed gas datasets, TSSA-SVR achieves a prediction accuracy of 94.47%, outperforming comparative algorithms such as Genetic Algorithm (GA)-SVR and PSO-SVR, while demonstrating improved convergence compared to the baseline SSA-SVR. The experimental results demonstrate significant performance enhancements, offering an effective solution for precise gas concentration identification in complex environments.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1178-5608
1178-5608
DOI:10.2478/ijssis-2025-0038