Research on gas concentration identification based on sparrow search algorithm optimization SVR

To address the challenge of quantitatively identifying mixed gases, we developed a gas concentration identification algorithm based on the sparrow search algorithm (SSA) and optimized support vector regression (SVR). The Tent chaotic mapping operator is employed to initialize the population, enhanci...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal on smart sensing and intelligent systems Ročník 18; číslo 1
Hlavní autoři: Zhang, Yuanman, Zou, Yanan, Wu, Qingyun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Sydney Sciendo 01.01.2025
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1178-5608, 1178-5608
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To address the challenge of quantitatively identifying mixed gases, we developed a gas concentration identification algorithm based on the sparrow search algorithm (SSA) and optimized support vector regression (SVR). The Tent chaotic mapping operator is employed to initialize the population, enhancing population diversity, and improving the algorithm’s global search capability. By optimizing SVR parameters with SSA, we propose an enhanced TSSA-SVR model. Evaluated on mixed gas datasets, TSSA-SVR achieves a prediction accuracy of 94.47%, outperforming comparative algorithms such as Genetic Algorithm (GA)-SVR and PSO-SVR, while demonstrating improved convergence compared to the baseline SSA-SVR. The experimental results demonstrate significant performance enhancements, offering an effective solution for precise gas concentration identification in complex environments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1178-5608
1178-5608
DOI:10.2478/ijssis-2025-0038