CQformer: Learning Dynamics Across Slices in Medical Image Segmentation

Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 44; H. 2; S. 1043 - 1057
Hauptverfasser: Zhang, Shengjie, Shen, Xin, Chen, Xiang, Yu, Ziqi, Ren, Bohan, Yang, Haibo, Zhang, Xiao-Yong, Zhou, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2025
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we propose a cross instance query-guided Transformer architecture (CQformer) that leverages features from preceding slices to improve the segmentation performance of subsequent slices. Its key components include a cross-attention mechanism in an ODE formulation, which bridges the features of contiguous 2D slices of the 3D volumetric data. In addition, a regression head is employed to shorten the gap between the bottleneck and the prediction layer. Extensive experiments on 7 datasets with various modalities (CT, MRI) and tasks (organ, tissue, and lesion) demonstrate that CQformer outperforms previous state-of-the-art segmentation algorithms on 6 datasets by 0.44%-2.45%, and achieves the second highest performance of 88.30% on the BTCV dataset. The code is available at https://github.com/qbmizsj/CQformer .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2024.3477555