Laser coupling in waterjets subject to jet instabilities, laser parameters, and alignment errors
High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of ori...
Uloženo v:
| Vydáno v: | Optics express Ročník 31; číslo 8; s. 12967 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
10.04.2023
|
| ISSN: | 1094-4087, 1094-4087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies. |
|---|---|
| AbstractList | High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies. High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies. |
| Author | Wei, Meirong Liu, Yan Huang, Zixuan Wang, Ze Dong, Zulin Zhang, Tao |
| Author_xml | – sequence: 1 givenname: Meirong orcidid: 0000-0002-7128-9732 surname: Wei fullname: Wei, Meirong – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 3 givenname: Yan surname: Liu fullname: Liu, Yan – sequence: 4 givenname: Ze surname: Wang fullname: Wang, Ze – sequence: 5 givenname: Zulin surname: Dong fullname: Dong, Zulin – sequence: 6 givenname: Zixuan surname: Huang fullname: Huang, Zixuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37157445$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkE1LwzAYx4NM3Ise_AKSo4LbkiZp06OM-QKDXfQc0_TpyGjTmqSI397qJoienrff7zn8p2jkWgcIXVKyoCzly-16wSWlmThBE0pyPudEZqNf_RhNQ9gTQnmWZ2dozDIqMs7FBL1udACPTdt3tXU7bB1-1xH8HmLAoS_2YCKOLR7m4RaiLmxto4Vwi-tvs9NeNzAYw0a7Euva7lwDLmLwvvXhHJ1Wug5wcawz9HK_fl49zjfbh6fV3WZuWELinOVVKmWZkEIXjBlZypRBXhYlSwpBNZQVoVlGRCoqLow2OVSQAicklVSCYGyGrg9_O9--9RCiamwwUNfaQdsHlQwBiVQmCR_QqyPaFw2UqvO20f5D_aQyAMsDYHwbgodKGRt1tK2LXttaUaK-clfbtTrkPhg3f4yfp__ZT_Kpgqc |
| CitedBy_id | crossref_primary_10_1007_s00170_025_16289_x crossref_primary_10_1007_s00340_024_08360_4 crossref_primary_10_1063_5_0284466 crossref_primary_10_1016_j_jmatprotec_2024_118671 crossref_primary_10_1007_s00170_024_13063_3 crossref_primary_10_1007_s00170_025_16273_5 |
| Cites_doi | 10.1364/OE.378328 10.1364/OE.389497 10.1364/AO.46.001477 10.1177/0021998319848062 10.1016/j.rio.2021.100100 10.1364/AO.57.009835 10.1103/PhysRev.136.A1445 10.1016/j.optlastec.2020.106820 10.3788/IRLA201847.1206001 10.3390/pr9060918 10.1016/j.phpro.2012.10.033 10.1364/AO.46.000397 10.1016/j.jmapro.2013.08.002 10.1016/j.ijmultiphaseflow.2010.03.008 10.1007/s00170-004-2134-3 10.1006/jcph.2000.6537 10.1364/AO.12.000555 10.1007/s00170-018-03218-4 10.1016/0021-9991(88)90002-2 10.1364/AO.448462 10.1016/j.optcom.2007.02.027 10.1615/AtomizSpr.2014007885 10.1016/j.jmatprotec.2021.117067 10.1016/j.yofte.2019.102097 10.1142/S0218396X96000118 10.1016/j.optcom.2021.127677 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.481175 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 37157445 10_1364_OE_481175 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
| ID | FETCH-LOGICAL-c320t-39f688d20bab33c8d863e9dbd32b51aedf01770565f45cac9efe6e4006818e533 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000975289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Thu Oct 02 06:21:53 EDT 2025 Wed Feb 19 02:23:48 EST 2025 Sat Nov 29 06:06:52 EST 2025 Tue Nov 18 21:44:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c320t-39f688d20bab33c8d863e9dbd32b51aedf01770565f45cac9efe6e4006818e533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7128-9732 |
| OpenAccessLink | https://doi.org/10.1364/oe.481175 |
| PMID | 37157445 |
| PQID | 2811568224 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2811568224 pubmed_primary_37157445 crossref_citationtrail_10_1364_OE_481175 crossref_primary_10_1364_OE_481175 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-10 2023-Apr-10 20230410 |
| PublicationDateYYYYMMDD | 2023-04-10 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2023 |
| References | Cadavid (oe-31-8-12967-R25) 2005; 26 Launder (oe-31-8-12967-R33) 1983 Savović (oe-31-8-12967-R11) 2007; 46 Sun (oe-31-8-12967-R20) 2018; 47 Shinjo (oe-31-8-12967-R24) 2010; 36 Hale (oe-31-8-12967-R34) 1973; 12 Hock (oe-31-8-12967-R5) 2012; 39 Chew (oe-31-8-12967-R36) 1996; 4 Sun (oe-31-8-12967-R3) 2019; 102 Lin (oe-31-8-12967-R22) 2003 Guang (oe-31-8-12967-R13) 2018; 57 Rashed (oe-31-8-12967-R6) 2013; 15 Sussman (oe-31-8-12967-R29) 2000; 162 Osher (oe-31-8-12967-R30) 1988; 79 Marimuthu (oe-31-8-12967-R1) 2019; 53 Niu (oe-31-8-12967-R10) 2007; 274 Huang (oe-31-8-12967-R16) 2022; 508 Lay-Ekuakille (oe-31-8-12967-R15) 2013 Liu (oe-31-8-12967-R19) 2022; 61 Leggio (oe-31-8-12967-R8) 2021; 4 Zhou (oe-31-8-12967-R7) 2020; 55 Liu (oe-31-8-12967-R4) 2021; 137 Elsey (oe-31-8-12967-R12) 2007; 46 Zhang (oe-31-8-12967-R28) 2019; 27 Deng (oe-31-8-12967-R27) 2020; 28 Cheng (oe-31-8-12967-R26) 2021; 293 Guo (oe-31-8-12967-R21) 2021; 9 Phillip (oe-31-8-12967-R35) 1964; 136 Xiao (oe-31-8-12967-R23) 2014; 24 Okamoto (oe-31-8-12967-R32) 2021 |
| References_xml | – volume: 27 start-page: 38635 year: 2019 ident: oe-31-8-12967-R28 publication-title: Opt. Express doi: 10.1364/OE.378328 – start-page: 96 year: 1983 ident: oe-31-8-12967-R33 article-title: The numerical computation of turbulent flows – year: 2003 ident: oe-31-8-12967-R22 – volume: 28 start-page: 11128 year: 2020 ident: oe-31-8-12967-R27 publication-title: Opt. Express doi: 10.1364/OE.389497 – volume: 46 start-page: 1477 year: 2007 ident: oe-31-8-12967-R11 publication-title: Appl. Opt. doi: 10.1364/AO.46.001477 – volume: 53 start-page: 3787 year: 2019 ident: oe-31-8-12967-R1 publication-title: J. Compos. Mater. doi: 10.1177/0021998319848062 – volume: 4 start-page: 100100 year: 2021 ident: oe-31-8-12967-R8 publication-title: Res. Opt. doi: 10.1016/j.rio.2021.100100 – volume: 57 start-page: 9835 year: 2018 ident: oe-31-8-12967-R13 publication-title: Appl. Opt. doi: 10.1364/AO.57.009835 – volume: 136 start-page: A1445 year: 1964 ident: oe-31-8-12967-R35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.A1445 – year: 2013 ident: oe-31-8-12967-R15 – volume: 137 start-page: 106820 year: 2021 ident: oe-31-8-12967-R4 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106820 – volume: 47 start-page: 1206001 year: 2018 ident: oe-31-8-12967-R20 publication-title: Infrared Laser Eng. doi: 10.3788/IRLA201847.1206001 – volume: 9 start-page: 918 year: 2021 ident: oe-31-8-12967-R21 publication-title: Processes doi: 10.3390/pr9060918 – volume: 39 start-page: 225 year: 2012 ident: oe-31-8-12967-R5 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.10.033 – volume: 46 start-page: 397 year: 2007 ident: oe-31-8-12967-R12 publication-title: Appl. Opt. doi: 10.1364/AO.46.000397 – volume: 15 start-page: 524 year: 2013 ident: oe-31-8-12967-R6 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2013.08.002 – volume: 36 start-page: 513 year: 2010 ident: oe-31-8-12967-R24 publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2010.03.008 – volume: 26 start-page: 1246 year: 2005 ident: oe-31-8-12967-R25 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2134-3 – volume: 162 start-page: 301 year: 2000 ident: oe-31-8-12967-R29 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6537 – year: 2021 ident: oe-31-8-12967-R32 – volume: 12 start-page: 555 year: 1973 ident: oe-31-8-12967-R34 publication-title: Appl. Opt. doi: 10.1364/AO.12.000555 – volume: 102 start-page: 719 year: 2019 ident: oe-31-8-12967-R3 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-03218-4 – volume: 79 start-page: 12 year: 1988 ident: oe-31-8-12967-R30 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 61 start-page: 1994 year: 2022 ident: oe-31-8-12967-R19 publication-title: Appl. Opt. doi: 10.1364/AO.448462 – volume: 274 start-page: 315 year: 2007 ident: oe-31-8-12967-R10 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2007.02.027 – volume: 24 start-page: 281 year: 2014 ident: oe-31-8-12967-R23 publication-title: Atomization Sprays doi: 10.1615/AtomizSpr.2014007885 – volume: 293 start-page: 117067 year: 2021 ident: oe-31-8-12967-R26 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117067 – volume: 55 start-page: 102097 year: 2020 ident: oe-31-8-12967-R7 publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.102097 – volume: 4 start-page: 341 year: 1996 ident: oe-31-8-12967-R36 publication-title: J. Comp. Acous. doi: 10.1142/S0218396X96000118 – volume: 508 start-page: 127677 year: 2022 ident: oe-31-8-12967-R16 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2021.127677 |
| SSID | ssj0014797 |
| Score | 2.4750624 |
| Snippet | High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 12967 |
| Title | Laser coupling in waterjets subject to jet instabilities, laser parameters, and alignment errors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37157445 https://www.proquest.com/docview/2811568224 |
| Volume | 31 |
| WOSCitedRecordID | wos000975289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYBSQuiDflURmEENJuoInt2Dki1BWHbsuhKyouIXGcVVFJQh7QE7-d8SPprnaRlgOXqHGdhzxfxjOezzMIveKKZBmhgecnVHo0YxMvIenEy2WaCKkC-EgSU2yCz-ditYo-OUpQY8oJ8KIQ221U_VdRQxsIW2-d_QdxDzeFBvgNQocjiB2OVxL8DOal-kCWXbVx-1V-gT1Zf1Ntc9B0qV530QYnnGsiemvzdK-tttiYa3U68O-aJtP03E4w1k8tbUDVdekCQM6kXVQm07PaVgObw0R6DE3gWOltdKcXlqeXSTlQgdadmQd2MP3sOn1RZ9ckAqLDK46datUoOI3gmbqpVF3S5nSvmwEsxsQZRQpmiC3TcUHFk5CCCBbTt1TvkWW7eayP3c8X8dHJbBYvp6vl6-qHpyuM6Ui8K7eyh64HnEVaAx7_ng4RJ8ptIZ7-LV0WKnjau-FZ522XvzgkxjBZ3kG3nUeB31sk3EXXVHEP3TTMXtncR18NHnCPB7wu8IAH7PCA2xLDOT6Hh0Ns0IB3aDjEgAU8YAFbLDxAJ0fT5YePniur4UkSTFqPRHkoRBZM0iQlRIpMhERFWZqRIGV-orIctDQHw5jllMlERipXoaJ6M5EvFLgHD9F-URbqMcKpnxIuJJeMwffuc5HkEcvDCHxQLvwwH6E3_YDF0uWc16VPNrEJpIY0XkxjO7Yj9HLoWtlEK5d1etGPegxqUMe2kkKVXRMH8D8LNSV6hB5ZcQy3IdxnnFL25ApXP0W3doB-hvbbulPP0Q35s1039Rjt8ZUYm3WbsYHPHyaSiq4 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+coupling+in+waterjets+subject+to+jet+instabilities%2C+laser+parameters%2C+and+alignment+errors&rft.jtitle=Optics+express&rft.au=Wei%2C+Meirong&rft.au=Zhang%2C+Tao&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Ze&rft.date=2023-04-10&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=8&rft.spage=12967&rft_id=info:doi/10.1364%2FOE.481175&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |