Laser coupling in waterjets subject to jet instabilities, laser parameters, and alignment errors

High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express Jg. 31; H. 8; S. 12967
Hauptverfasser: Wei, Meirong, Zhang, Tao, Liu, Yan, Wang, Ze, Dong, Zulin, Huang, Zixuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 10.04.2023
ISSN:1094-4087, 1094-4087
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.
AbstractList High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.
High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.
Author Wei, Meirong
Liu, Yan
Huang, Zixuan
Wang, Ze
Dong, Zulin
Zhang, Tao
Author_xml – sequence: 1
  givenname: Meirong
  orcidid: 0000-0002-7128-9732
  surname: Wei
  fullname: Wei, Meirong
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 3
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
– sequence: 4
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
– sequence: 5
  givenname: Zulin
  surname: Dong
  fullname: Dong, Zulin
– sequence: 6
  givenname: Zixuan
  surname: Huang
  fullname: Huang, Zixuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37157445$$D View this record in MEDLINE/PubMed
BookMark eNplkE1LwzAYx4NM3Ise_AKSo4LbkiZp06OM-QKDXfQc0_TpyGjTmqSI397qJoienrff7zn8p2jkWgcIXVKyoCzly-16wSWlmThBE0pyPudEZqNf_RhNQ9gTQnmWZ2dozDIqMs7FBL1udACPTdt3tXU7bB1-1xH8HmLAoS_2YCKOLR7m4RaiLmxto4Vwi-tvs9NeNzAYw0a7Euva7lwDLmLwvvXhHJ1Wug5wcawz9HK_fl49zjfbh6fV3WZuWELinOVVKmWZkEIXjBlZypRBXhYlSwpBNZQVoVlGRCoqLow2OVSQAicklVSCYGyGrg9_O9--9RCiamwwUNfaQdsHlQwBiVQmCR_QqyPaFw2UqvO20f5D_aQyAMsDYHwbgodKGRt1tK2LXttaUaK-clfbtTrkPhg3f4yfp__ZT_Kpgqc
CitedBy_id crossref_primary_10_1007_s00170_025_16289_x
crossref_primary_10_1007_s00340_024_08360_4
crossref_primary_10_1063_5_0284466
crossref_primary_10_1016_j_jmatprotec_2024_118671
crossref_primary_10_1007_s00170_024_13063_3
crossref_primary_10_1007_s00170_025_16273_5
Cites_doi 10.1364/OE.378328
10.1364/OE.389497
10.1364/AO.46.001477
10.1177/0021998319848062
10.1016/j.rio.2021.100100
10.1364/AO.57.009835
10.1103/PhysRev.136.A1445
10.1016/j.optlastec.2020.106820
10.3788/IRLA201847.1206001
10.3390/pr9060918
10.1016/j.phpro.2012.10.033
10.1364/AO.46.000397
10.1016/j.jmapro.2013.08.002
10.1016/j.ijmultiphaseflow.2010.03.008
10.1007/s00170-004-2134-3
10.1006/jcph.2000.6537
10.1364/AO.12.000555
10.1007/s00170-018-03218-4
10.1016/0021-9991(88)90002-2
10.1364/AO.448462
10.1016/j.optcom.2007.02.027
10.1615/AtomizSpr.2014007885
10.1016/j.jmatprotec.2021.117067
10.1016/j.yofte.2019.102097
10.1142/S0218396X96000118
10.1016/j.optcom.2021.127677
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.481175
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 37157445
10_1364_OE_481175
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c320t-39f688d20bab33c8d863e9dbd32b51aedf01770565f45cac9efe6e4006818e533
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000975289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Thu Oct 02 06:21:53 EDT 2025
Wed Feb 19 02:23:48 EST 2025
Sat Nov 29 06:06:52 EST 2025
Tue Nov 18 21:44:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-39f688d20bab33c8d863e9dbd32b51aedf01770565f45cac9efe6e4006818e533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7128-9732
OpenAccessLink https://doi.org/10.1364/oe.481175
PMID 37157445
PQID 2811568224
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2811568224
pubmed_primary_37157445
crossref_citationtrail_10_1364_OE_481175
crossref_primary_10_1364_OE_481175
PublicationCentury 2000
PublicationDate 2023-04-10
2023-Apr-10
20230410
PublicationDateYYYYMMDD 2023-04-10
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2023
References Cadavid (oe-31-8-12967-R25) 2005; 26
Launder (oe-31-8-12967-R33) 1983
Savović (oe-31-8-12967-R11) 2007; 46
Sun (oe-31-8-12967-R20) 2018; 47
Shinjo (oe-31-8-12967-R24) 2010; 36
Hale (oe-31-8-12967-R34) 1973; 12
Hock (oe-31-8-12967-R5) 2012; 39
Chew (oe-31-8-12967-R36) 1996; 4
Sun (oe-31-8-12967-R3) 2019; 102
Lin (oe-31-8-12967-R22) 2003
Guang (oe-31-8-12967-R13) 2018; 57
Rashed (oe-31-8-12967-R6) 2013; 15
Sussman (oe-31-8-12967-R29) 2000; 162
Osher (oe-31-8-12967-R30) 1988; 79
Marimuthu (oe-31-8-12967-R1) 2019; 53
Niu (oe-31-8-12967-R10) 2007; 274
Huang (oe-31-8-12967-R16) 2022; 508
Lay-Ekuakille (oe-31-8-12967-R15) 2013
Liu (oe-31-8-12967-R19) 2022; 61
Leggio (oe-31-8-12967-R8) 2021; 4
Zhou (oe-31-8-12967-R7) 2020; 55
Liu (oe-31-8-12967-R4) 2021; 137
Elsey (oe-31-8-12967-R12) 2007; 46
Zhang (oe-31-8-12967-R28) 2019; 27
Deng (oe-31-8-12967-R27) 2020; 28
Cheng (oe-31-8-12967-R26) 2021; 293
Guo (oe-31-8-12967-R21) 2021; 9
Phillip (oe-31-8-12967-R35) 1964; 136
Xiao (oe-31-8-12967-R23) 2014; 24
Okamoto (oe-31-8-12967-R32) 2021
References_xml – volume: 27
  start-page: 38635
  year: 2019
  ident: oe-31-8-12967-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.378328
– start-page: 96
  year: 1983
  ident: oe-31-8-12967-R33
  article-title: The numerical computation of turbulent flows
– year: 2003
  ident: oe-31-8-12967-R22
– volume: 28
  start-page: 11128
  year: 2020
  ident: oe-31-8-12967-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.389497
– volume: 46
  start-page: 1477
  year: 2007
  ident: oe-31-8-12967-R11
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.001477
– volume: 53
  start-page: 3787
  year: 2019
  ident: oe-31-8-12967-R1
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998319848062
– volume: 4
  start-page: 100100
  year: 2021
  ident: oe-31-8-12967-R8
  publication-title: Res. Opt.
  doi: 10.1016/j.rio.2021.100100
– volume: 57
  start-page: 9835
  year: 2018
  ident: oe-31-8-12967-R13
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.009835
– volume: 136
  start-page: A1445
  year: 1964
  ident: oe-31-8-12967-R35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.A1445
– year: 2013
  ident: oe-31-8-12967-R15
– volume: 137
  start-page: 106820
  year: 2021
  ident: oe-31-8-12967-R4
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106820
– volume: 47
  start-page: 1206001
  year: 2018
  ident: oe-31-8-12967-R20
  publication-title: Infrared Laser Eng.
  doi: 10.3788/IRLA201847.1206001
– volume: 9
  start-page: 918
  year: 2021
  ident: oe-31-8-12967-R21
  publication-title: Processes
  doi: 10.3390/pr9060918
– volume: 39
  start-page: 225
  year: 2012
  ident: oe-31-8-12967-R5
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.10.033
– volume: 46
  start-page: 397
  year: 2007
  ident: oe-31-8-12967-R12
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.000397
– volume: 15
  start-page: 524
  year: 2013
  ident: oe-31-8-12967-R6
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2013.08.002
– volume: 36
  start-page: 513
  year: 2010
  ident: oe-31-8-12967-R24
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.03.008
– volume: 26
  start-page: 1246
  year: 2005
  ident: oe-31-8-12967-R25
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2134-3
– volume: 162
  start-page: 301
  year: 2000
  ident: oe-31-8-12967-R29
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6537
– year: 2021
  ident: oe-31-8-12967-R32
– volume: 12
  start-page: 555
  year: 1973
  ident: oe-31-8-12967-R34
  publication-title: Appl. Opt.
  doi: 10.1364/AO.12.000555
– volume: 102
  start-page: 719
  year: 2019
  ident: oe-31-8-12967-R3
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-03218-4
– volume: 79
  start-page: 12
  year: 1988
  ident: oe-31-8-12967-R30
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 61
  start-page: 1994
  year: 2022
  ident: oe-31-8-12967-R19
  publication-title: Appl. Opt.
  doi: 10.1364/AO.448462
– volume: 274
  start-page: 315
  year: 2007
  ident: oe-31-8-12967-R10
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2007.02.027
– volume: 24
  start-page: 281
  year: 2014
  ident: oe-31-8-12967-R23
  publication-title: Atomization Sprays
  doi: 10.1615/AtomizSpr.2014007885
– volume: 293
  start-page: 117067
  year: 2021
  ident: oe-31-8-12967-R26
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117067
– volume: 55
  start-page: 102097
  year: 2020
  ident: oe-31-8-12967-R7
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2019.102097
– volume: 4
  start-page: 341
  year: 1996
  ident: oe-31-8-12967-R36
  publication-title: J. Comp. Acous.
  doi: 10.1142/S0218396X96000118
– volume: 508
  start-page: 127677
  year: 2022
  ident: oe-31-8-12967-R16
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127677
SSID ssj0014797
Score 2.4750624
Snippet High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 12967
Title Laser coupling in waterjets subject to jet instabilities, laser parameters, and alignment errors
URI https://www.ncbi.nlm.nih.gov/pubmed/37157445
https://www.proquest.com/docview/2811568224
Volume 31
WOSCitedRecordID wos000975289700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZogaqXimdZCiuDOCC1oU3sJM4RoUUcaJfDIlZcQuJMqq22SZQH7InfzviR7JZSCQ5crCR2Esnfp_GM52FCXuGSyzLJAyfNM3C4CFxHpAwcEUhVLQ7UmZD6sInw7EzM59Enm13S6OMEwqIQq1VU_Veo8RmCrVJn_wHu4aP4AK8RdGwRdmz_CviPuC7Vh7LsqqXNV_mB-mR9AW1z2HSp2ndRCifeq0D01tTpXhhpsdTvqnLglypMpuljO1FZPzdhA1DXpXUAWZV2WulKz7CqhmgO7enRYQKnoNLozq9tT8-ScggFWnR6HVjT9Isd9BU29yQ8ptwrNjoVjBxFqxFNU7uWWkFrxb0hlNiQmqhzmDM5rslzFnCc7-nkDVcJsf7mGJz16lJjyELXD7mpSvlb8ey-a4vc9pB1Suyd_pwMbiYeRqEtN4V_Oh7-s0t2-jev6is3GCFaGZndI3vWiqBvDfr3yS0oHpC7OppXNg_JN80B2nOALgo6cIBaDtC2pHhPr3DgiGoG0DUDjijiTwf8qcH_Efn8fjJ798GxR2k4knknrcOiPBAi807SJGVMikwEDKIszZiX-m4CWY6SOURl2M-5LxMZQQ4BcJVA5ApAk-Ax2S7KAp4QmqANLHPu5UmEbSoiVTLNRbGfRDLMXX9EXvcTFktbZ14dd7KMtfM04PF0EptpHpGXw9DKFFf506AX_azHKPqUPyspoOya2MN-P1Bh0COyb-AYPtPD9_TGngOyu6buM7Ld1h08J3fk93bR1GOyFc7FWO_QjDVnfgEZHYC7
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+coupling+in+waterjets+subject+to+jet+instabilities%2C+laser+parameters%2C+and+alignment+errors&rft.jtitle=Optics+express&rft.au=Wei%2C+Meirong&rft.au=Zhang%2C+Tao&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Ze&rft.date=2023-04-10&rft.eissn=1094-4087&rft.volume=31&rft.issue=8&rft.spage=12967&rft_id=info:doi/10.1364%2FOE.481175&rft_id=info%3Apmid%2F37157445&rft.externalDocID=37157445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon