FR-MIL: Distribution Re-Calibration-Based Multiple Instance Learning With Transformer for Whole Slide Image Classification

In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 44; H. 1; S. 409 - 421
Hauptverfasser: Chikontwe, Philip, Kim, Meejeong, Jeong, Jaehoon, Jung Sung, Hyun, Go, Heounjeong, Jeong Nam, Soo, Park, Sang Hyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2025
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL
AbstractList In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL
In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL.In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL.
In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL.
Author Go, Heounjeong
Jeong, Jaehoon
Kim, Meejeong
Park, Sang Hyun
Chikontwe, Philip
Jung Sung, Hyun
Jeong Nam, Soo
Author_xml – sequence: 1
  givenname: Philip
  orcidid: 0000-0002-6995-2312
  surname: Chikontwe
  fullname: Chikontwe, Philip
  email: Philip_Chikontwe@hms.harvard.edu
  organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
– sequence: 2
  givenname: Meejeong
  surname: Kim
  fullname: Kim, Meejeong
  email: altec0372@gmail.com
  organization: St. Mary's Hospital and the College of Medicine, The Catholic University of Korea, Seoul, South Korea
– sequence: 3
  givenname: Jaehoon
  surname: Jeong
  fullname: Jeong, Jaehoon
  email: j.hoon@dgist.ac.kr
  organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
– sequence: 4
  givenname: Hyun
  surname: Jung Sung
  fullname: Jung Sung, Hyun
  email: shj78730@naver.com
  organization: Asan Medical Center, Seoul, South Korea
– sequence: 5
  givenname: Heounjeong
  surname: Go
  fullname: Go, Heounjeong
  email: damul37@amc.seoul.kr
  organization: Asan Medical Center, Seoul, South Korea
– sequence: 6
  givenname: Soo
  surname: Jeong Nam
  fullname: Jeong Nam, Soo
  email: soojeong_nam@amc.seoul.kr
  organization: Asan Medical Center, Seoul, South Korea
– sequence: 7
  givenname: Sang Hyun
  orcidid: 0000-0001-7476-1046
  surname: Park
  fullname: Park, Sang Hyun
  email: shpark13135@dgist.ac.kr
  organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39163176$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9v0zAYhq1paOsGdw7T5OMuKf6ROAk3VhhUaoU0isYtsp3PmyfH6WznAH897lrQxIHTp096ns_y-56hYz96QOgtJXNKSftus17OGWHlnJelqKk4QjNaVU3BqvLHMZoRVjcFIYKdorMYHwmhZUXaE3TKWyo4rcUM_bq5LdbL1Xv80cYUrJqSHT2-hWIhnVVB7tbiWkbo8XpyyW4d4KWPSXoNeAUyeOvv8Z1ND3gTpI9mDAMEnAe-exgz_M3ZPiuDvAe8cDJGa6x-PvsavTLSRXhzmOfo-82nzeJLsfr6ebn4sCo0ZyQVTAklWt2YsqVcGWVI3_SMaSor2gtFlOSCKCNMDkJUnNGmEb3itZGaK1lTfo6u9ne3YXyaIKZusFGDc9LDOMWOk7aiNeNVmdHLAzqpAfpuG-wgw8_uT14ZIHtAhzHGAOYvQkm3q6TLlXS7SrpDJVkR_yjapucAUpDW_U-82IsWAF68I0pC80d_A2PKmM8
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126831
crossref_primary_10_1016_j_prp_2025_156006
crossref_primary_10_1038_s41597_025_05586_5
crossref_primary_10_3389_fphar_2025_1592950
Cites_doi 10.1016/S0004-3702(96)00034-3
10.1016/j.media.2021.102105
10.1109/TPAMI.2016.2535231
10.1016/j.patcog.2017.08.026
10.1038/s41551-020-00682-w
10.1007/978-3-030-87237-3_19
10.1016/j.cmpb.2011.12.007
10.1109/TAI.2024.3365779
10.1109/TMI.2022.3176598
10.1609/aaai.v35i3.16280
10.1016/j.artint.2013.06.003
10.1109/CVPR52688.2022.01567
10.1016/j.cviu.2021.103299
10.1609/aaai.v34i04.6030
10.5555/3524938.3525087
10.1109/CVPR.2018.00813
10.1098/rsos.220638
10.61603/ceas.v2i1.33
10.1109/CVPR52729.2023.01503
10.1109/CVPR46437.2021.01379
10.1109/CVPR.2016.90
10.5555/3495724.3497510
10.3389/fmed.2019.00264
10.1007/978-3-030-87237-3_57
10.1001/jama.2017.14585
10.1002/widm.1439
10.1016/j.media.2020.101813
10.1038/s41591-019-0508-1
10.1609/aaai.v36i2.20051
10.1053/j.gastro.2009.12.064
10.1007/978-3-030-87237-3_20
10.1109/WACV48630.2021.00176
10.1109/TMI.2022.3171418
10.1007/978-3-031-16434-7_41
10.1109/JPROC.2021.3058954
10.1007/978-3-031-16434-7_25
10.1007/978-3-031-16434-7_4
10.1007/978-3-030-59722-1_50
10.1016/j.media.2022.102482
10.1109/CVPR46437.2021.01409
10.48550/ARXIV.1706.03762
10.1016/j.patcog.2017.10.009
10.1109/CVPR52688.2022.01824
10.1007/s10462-021-10121-0
10.1109/CVPR52729.2023.01899
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2024.3446716
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 421
ExternalDocumentID 39163176
10_1109_TMI_2024_3446716
10640165
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Smart HealthCare Program
  funderid: 10.13039/501100003600
– fundername: Korean National Police Agency
  grantid: 220222M01
  funderid: 10.13039/501100003600
– fundername: Korean Government [Ministry of Science and ICT (MSIT)] through the Artificial Intelligence Innovation Hub
  grantid: 2021-0-02068
– fundername: Institute for Information and Communication Technology Planning and Evaluation (IITP)
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c320t-2b6b69c8f4913bfbf0d8d22c1a51d6b0ba360bf6f20265321886db37fac3ba713
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001389746700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Mon Sep 29 04:47:16 EDT 2025
Wed Jul 30 01:47:44 EDT 2025
Sat Nov 29 05:14:12 EST 2025
Tue Nov 18 21:43:03 EST 2025
Wed Aug 27 02:02:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-2b6b69c8f4913bfbf0d8d22c1a51d6b0ba360bf6f20265321886db37fac3ba713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6995-2312
0000-0001-7476-1046
PMID 39163176
PQID 3095172354
PQPubID 23479
PageCount 13
ParticipantIDs ieee_primary_10640165
crossref_primary_10_1109_TMI_2024_3446716
crossref_citationtrail_10_1109_TMI_2024_3446716
pubmed_primary_39163176
proquest_miscellaneous_3095172354
PublicationCentury 2000
PublicationDate 2025-Jan.
2025-1-00
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Zhang (ref29) 2021
ref15
ref59
ref14
ref53
ref52
Chang (ref60) 2015
ref11
ref55
ref10
ref54
Shao (ref19); 34
ref16
ref18
ref51
ref50
Agustsson (ref58) 2017
Tu (ref62) 2019
ref45
ref47
ref42
Sharma (ref12) 2021
ref41
Yan (ref64)
Chalapathy (ref24) 2019
Ilse (ref17)
Zaheer (ref48); 30
ref49
ref8
ref7
Theis (ref57)
ref9
ref4
ref3
ref6
ref5
ref40
Yang (ref26)
ref35
ref34
ref37
ref36
ref30
ref33
ref2
ref1
Dosovitskiy (ref22)
ref39
ref38
Van Den Oord (ref31); 30
Brehmer (ref46); 35
ref23
Zhang (ref27); 35
ref25
ref20
ref63
ref66
ref21
ref65
Lei Ba (ref56) 2016
Andrews (ref44); 15
Maron (ref43); 10
Lee (ref32)
Ghaffarzadegan (ref28)
ref61
References_xml – ident: ref59
  doi: 10.1016/S0004-3702(96)00034-3
– year: 2021
  ident: ref29
  article-title: Non-IID multi-instance learning for predicting instance and bag labels using variational auto-encoder
  publication-title: arXiv:2105.01276
– ident: ref40
  doi: 10.1016/j.media.2021.102105
– ident: ref41
  doi: 10.1109/TPAMI.2016.2535231
– ident: ref5
  doi: 10.1016/j.patcog.2017.08.026
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref57
  article-title: Lossy image compression with compressive autoencoders
– ident: ref15
  doi: 10.1038/s41551-020-00682-w
– ident: ref10
  doi: 10.1007/978-3-030-87237-3_19
– ident: ref2
  doi: 10.1016/j.cmpb.2011.12.007
– ident: ref53
  doi: 10.1109/TAI.2024.3365779
– ident: ref55
  doi: 10.1109/TMI.2022.3176598
– ident: ref23
  doi: 10.1609/aaai.v35i3.16280
– ident: ref6
  doi: 10.1016/j.artint.2013.06.003
– ident: ref51
  doi: 10.1109/CVPR52688.2022.01567
– ident: ref42
  doi: 10.1016/j.cviu.2021.103299
– ident: ref16
  doi: 10.1609/aaai.v34i04.6030
– year: 2015
  ident: ref60
  article-title: Shapenet: An information-rich 3D model repository
  publication-title: arXiv:1512.03012
– volume: 15
  start-page: 1
  volume-title: Proc. NeurIPS
  ident: ref44
  article-title: Support vector machines for multiple-instance learning
– ident: ref49
  doi: 10.5555/3524938.3525087
– ident: ref63
  doi: 10.1109/CVPR.2018.00813
– ident: ref45
  doi: 10.1098/rsos.220638
– volume: 35
  start-page: 38319
  volume-title: Proc. NeurIPS
  ident: ref46
  article-title: Weakly supervised causal representation learning
– ident: ref30
  doi: 10.61603/ceas.v2i1.33
– ident: ref54
  doi: 10.1109/CVPR52729.2023.01503
– ident: ref25
  doi: 10.1109/CVPR46437.2021.01379
– start-page: 1
  volume-title: Proc. 32nd AAAI Conf. Artif. Intell.
  ident: ref28
  article-title: Deep multiple instance feature learning via variational autoencoder
– ident: ref9
  doi: 10.1109/CVPR.2016.90
– ident: ref50
  doi: 10.5555/3495724.3497510
– volume: 30
  start-page: 1
  volume-title: Proc. NeurIPS
  ident: ref31
  article-title: Neural discrete representation learning
– ident: ref1
  doi: 10.3389/fmed.2019.00264
– ident: ref11
  doi: 10.1007/978-3-030-87237-3_57
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref22
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref26
  article-title: Free lunch for few-shot learning: Distribution calibration
– ident: ref36
  doi: 10.1001/jama.2017.14585
– ident: ref3
  doi: 10.1002/widm.1439
– ident: ref7
  doi: 10.1016/j.media.2020.101813
– ident: ref21
  doi: 10.1038/s41591-019-0508-1
– ident: ref65
  doi: 10.1609/aaai.v36i2.20051
– start-page: 3744
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref32
  article-title: Set Transformer: A framework for attention-based permutation-invariant neural networks
– ident: ref61
  doi: 10.1053/j.gastro.2009.12.064
– year: 2017
  ident: ref58
  article-title: Soft-to-hard vector quantization for end-to-end learned compression of images and neural networks
  publication-title: arXiv:1704.00648
– ident: ref20
  doi: 10.1007/978-3-030-87237-3_20
– ident: ref13
  doi: 10.1109/WACV48630.2021.00176
– ident: ref38
  doi: 10.1109/TMI.2022.3171418
– ident: ref33
  doi: 10.1007/978-3-031-16434-7_41
– volume: 34
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Transmil: Transformer based correlated multiple instance learning for whole slide image classification
– ident: ref47
  doi: 10.1109/JPROC.2021.3058954
– volume: 35
  start-page: 34940
  volume-title: Proc. NeurIPS
  ident: ref27
  article-title: Multi-instance causal representation learning for instance label prediction and out-of-distribution generalization
– ident: ref52
  doi: 10.1007/978-3-031-16434-7_25
– start-page: 682
  volume-title: Medical Imaging With Deep Learning
  year: 2021
  ident: ref12
  article-title: Cluster-to-conquer: A framework for end-to-end multi-instance learning for whole slide image classification
– start-page: 2127
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Attention-based deep multiple instance learning
– year: 2016
  ident: ref56
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– ident: ref37
  doi: 10.1007/978-3-031-16434-7_4
– volume: 30
  start-page: 1
  volume-title: Proc. NeurIPS
  ident: ref48
  article-title: Deep sets
– volume: 10
  start-page: 1
  volume-title: Proc. NeurIPS
  ident: ref43
  article-title: A framework for multiple-instance learning
– year: 2019
  ident: ref62
  article-title: Multiple instance learning with graph neural networks
  publication-title: arXiv:1906.04881
– ident: ref14
  doi: 10.1007/978-3-030-59722-1_50
– start-page: 662
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref64
  article-title: Deep multi-instance learning with dynamic pooling
– ident: ref35
  doi: 10.1016/j.media.2022.102482
– ident: ref18
  doi: 10.1109/CVPR46437.2021.01409
– year: 2019
  ident: ref24
  article-title: Deep learning for anomaly detection: A survey
  publication-title: arXiv:1901.03407
– ident: ref8
  doi: 10.48550/ARXIV.1706.03762
– ident: ref34
  doi: 10.1016/j.patcog.2017.10.009
– ident: ref39
  doi: 10.1109/CVPR52688.2022.01824
– ident: ref4
  doi: 10.1007/s10462-021-10121-0
– ident: ref66
  doi: 10.1109/CVPR52729.2023.01899
SSID ssj0014509
Score 2.4956114
Snippet In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 409
SubjectTerms Algorithms
Benchmark testing
Feature extraction
Histopathology
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
Medical diagnostic imaging
multiple instance learning
Multiple-Instance Learning Algorithms
Neoplasms - diagnostic imaging
Neoplasms - pathology
Task analysis
Transformers
Uncertainty
Vectors
weakly supervised learning
whole slide images
Title FR-MIL: Distribution Re-Calibration-Based Multiple Instance Learning With Transformer for Whole Slide Image Classification
URI https://ieeexplore.ieee.org/document/10640165
https://www.ncbi.nlm.nih.gov/pubmed/39163176
https://www.proquest.com/docview/3095172354
Volume 44
WOSCitedRecordID wos001389746700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB3RClXlUKAUCIXKSFw4uPV6vV6bW_mIiNRUqAQ1t9V6bEOkkqA06YFfj-31RuVQJE67B9ta7Rt7ZjzzZgDeOI61LiyjKISnQgYHRXnmKCqhPXLLlE1E4bP6_FxNp_pLJqsnLoxzLiWfueP4mmL5doHreFUWdrgUkX6zBVt1LTuy1iZkIKoun4PHkrFM8j4myfTJZDwKniAXx2VwfoKDsAs7kW8aVKf8Sx2l_ip3m5pJ5Qwf_ufHPoK9bFuS004YHsM9N9-HB7cqDu7DzjjH0p_A7-EFHY_O3pGPsXZubntFLhyNdC3TCQZ9H5ScJeOcdUhGyZhER3JZ1u_kcrb6QSa99euWJDzIZWy6S75ezWyY8jOcWCT13oxZSWnZA_g2_DT58JnmTgwUS85WlBtppEblhS5K441nVlnOsWirwkrDTFtKZrz04S_Lqgxmg5LWlLVvsTRt8IOfwvZ8MXfPgaDhCqVELataKORaeoZodGG0sYWuB3DSA9JgLlMeu2VcNcldYboJaDYRzSajOYC3mxm_uhId_xh7EJG6Na4DaQCve9CbsL9i0KSdu8X6uimjDVrzshIDeNZJw2Z2L0Qv7lj1EHZ5bBecbmxewvZquXav4D7erGbXy6MgxFN1lIT4D5nN6yo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQaUcePQB4WkkLhzcem2v1-bGK2pENkIlqL2t1i8aqSQoTTjw67G93qgcisRp92Bbq52xZ8Yz33wArx01lSoswYZzj7kIAYr0xGEjufKGWiJtAgqPq8lEnp2pLxmsnrAwzrlUfOYO42vK5duFWcersrDDBY_wm5twK1JnlR1ca5M04GVX0UFj01giaJ-VJOpoWo9CLEj5IQvhTwgRdmA7Ik6D8RR_GaTEsHK9s5mMzvD-f37uA7iXvUv0rlOHh3DDzXfh7pWeg7uwXeds-h78Hp7gejR-iz7G7rmZ-AqdOBwBW7pTDfw-mDmL6lx3iEbJnTQO5cas39HpbHWOpr3_65YoPNBppN1FXy9mNkz5Ec4slNg3Y11SWnYfvg0_TT8c48zFgA2jZIWpFlooIz1XBdNee2KlpdQUbVlYoYlumSDaCx_-sihZcByksJpVvjVMtyESPoCt-WLuHgMymkojhFGirLg0VAlPjNGq0ErbQlUDOOoF0pjcqDzyZVw0KWAhqgnSbKI0myzNAbzZzPjZNen4x9j9KKkr4zohDeBVL_Qm7LCYNmnnbrG-bFj0QivKSj6AR502bGb3SvTkmlVfwp3jaT1uxqPJ56ewQyN5cLq_eQZbq-XaPYfb5tdqdrl8kVT5D3vJ7Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FR-MIL%3A+Distribution+Re-Calibration-Based+Multiple+Instance+Learning+With+Transformer+for+Whole+Slide+Image+Classification&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chikontwe%2C+Philip&rft.au=Kim%2C+Meejeong&rft.au=Jeong%2C+Jaehoon&rft.au=Jung+Sung%2C+Hyun&rft.date=2025-01-01&rft.eissn=1558-254X&rft.volume=44&rft.issue=1&rft.spage=409&rft_id=info:doi/10.1109%2FTMI.2024.3446716&rft_id=info%3Apmid%2F39163176&rft.externalDocID=39163176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon