A Fully-Mixed Finite Element Method for the n-Dimensional Boussinesq Problem with Temperature-Dependent Parameters
In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–St...
Uloženo v:
| Vydáno v: | Journal of computational methods in applied mathematics Ročník 20; číslo 2; s. 187 - 213 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Minsk
De Gruyter
01.04.2020
Walter de Gruyter GmbH |
| Témata: | |
| ISSN: | 1609-4840, 1609-9389 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of
-dimensional fluids,
, with temperature-dependent viscosity and thermal conductivity.
The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes)
and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a
Dirichlet condition on the velocity. Because of the dependence on the temperature of
the fluid properties, several additional variables are defined, thus resulting in an augmented formulation
that seeks the rate of strain, pseudostress and vorticity tensors,
velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach,
smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary
well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation,
no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice
with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and
discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples
illustrating the performance of the method and confirming the theoretical rates of convergence are reported. |
|---|---|
| AbstractList | In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of
n
-dimensional fluids,
n
∈
{
2
,
3
}
{n\in\{2,3\}}
, with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes) and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a Dirichlet condition on the velocity. Because of the dependence on the temperature of the fluid properties, several additional variables are defined, thus resulting in an augmented formulation that seeks the rate of strain, pseudostress and vorticity tensors, velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach, smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation, no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples illustrating the performance of the method and confirming the theoretical rates of convergence are reported. In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection ofn-dimensional fluids, n∈{2,3}{n\in\{2,3\}}, with temperature-dependent viscosity and thermal conductivity.The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes)and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and aDirichlet condition on the velocity. Because of the dependence on the temperature ofthe fluid properties, several additional variables are defined, thus resulting in an augmented formulationthat seeks the rate of strain, pseudostress and vorticity tensors,velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach,smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessarywell-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation,no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choicewith respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange anddiscontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examplesillustrating the performance of the method and confirming the theoretical rates of convergence are reported. In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes) and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a Dirichlet condition on the velocity. Because of the dependence on the temperature of the fluid properties, several additional variables are defined, thus resulting in an augmented formulation that seeks the rate of strain, pseudostress and vorticity tensors, velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach, smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation, no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples illustrating the performance of the method and confirming the theoretical rates of convergence are reported. |
| Author | Gatica, Gabriel N. Almonacid, Javier A. |
| Author_xml | – sequence: 1 givenname: Javier A. surname: Almonacid fullname: Almonacid, Javier A. email: jalmonacid@ci2ma.udec.cl organization: CIMA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile – sequence: 2 givenname: Gabriel N. surname: Gatica fullname: Gatica, Gabriel N. email: ggatica@ci2ma.udec.cl organization: Centro de Investigación en Ingeniería Matemática (CIMA), Universidad de Concepción, Casilla 160-C, Concepción, Chile |
| BookMark | eNp1kMtLAzEQh4NU8NWr54DnaF5td8GLr6pQ0YOel8nurI3sbtokS-1_b5YKguhhmCHM92PyHZFR5zok5FTwczERk4uyhZZJLjKWarZHDsWU5yxXWT76nnWm-QEZh2AN55kUUs_EIfFXdN43zZY92U-s6Nx2NiK9a7DFLtInjEtX0dp5GpdIO3Zr03uwroOGXrs-hXUY1vTFO5MQurFxSV-xXaGH2Htkt7jCrhqiXsBDixF9OCH7NTQBx9_9mLzN715vHtji-f7x5mrBSiV5ZBJyXcpKQ4kVaNB5nk1rNJpLwbkRpp6q0ojagEDUoEyOpZQSFOSzDM1EqGNytstdebfuMcTiw_U-XR4KqTKtZkrpYet8t1V6F4LHulh524LfFoIXg9piUFsMaotBbQL0L6C0EWJyEj3Y5n_scodtoEkWKnz3_TYNP0f9Dcr034R_ATmXlY8 |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2022_04_003 crossref_primary_10_1016_j_camwa_2021_10_004 crossref_primary_10_1137_22M1536340 crossref_primary_10_1016_j_cnsns_2022_106884 crossref_primary_10_1016_j_cam_2021_113504 crossref_primary_10_1093_imanum_drab063 crossref_primary_10_1007_s10092_022_00488_z crossref_primary_10_1007_s10915_024_02722_y crossref_primary_10_1093_imanum_drad094 crossref_primary_10_1016_j_cam_2024_115885 crossref_primary_10_1007_s10092_020_00385_3 crossref_primary_10_1016_j_camwa_2021_01_001 crossref_primary_10_1007_s10092_019_0351_2 |
| Cites_doi | 10.1515/jnum-2012-0013 10.1007/s00211-005-0589-2 10.1007/s10092-016-0182-3 10.1016/j.cam.2017.04.009 10.1007/978-3-540-85268-1 10.1016/j.cma.2011.01.010 10.1051/m2an/2018027 10.1002/num.22001 10.1007/s10915-016-0233-6 10.1016/j.jcp.2017.01.055 10.1093/imanum/drt043 10.1007/s10092-018-0278-z 10.1002/num.22166 10.1051/m2an/2015015 10.1007/s10915-018-0810-y 10.1016/j.jcp.2017.07.045 10.1002/num.1690060202 10.1090/S0025-5718-00-01186-8 10.1007/978-3-319-03695-3 10.1007/978-1-4612-3172-1 10.1137/1.9781611972597 |
| ContentType | Journal Article |
| Copyright | 2020 Walter de Gruyter GmbH, Berlin/Boston |
| Copyright_xml | – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1515/cmam-2018-0187 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1609-9389 |
| EndPage | 213 |
| ExternalDocumentID | 10_1515_cmam_2018_0187 10_1515_cmam_2018_0187202187 |
| GroupedDBID | 0R~ 2WC 4.4 8FE 8FG AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AAKDD AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJCF ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACHNZ ACIPV ACIWK ACONX ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFFHD AFKRA AFQUK AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMVHM ARAPS ASYPN BAKPI BBCWN BCIFA BENPR BGLVJ CCPQU CFGNV DASCH DSRVY EBS HCIFZ HZ~ IY9 J9A K.~ K6V K7- KDIRW L6V M7S O9- P2P P62 PHGZM PHGZT PQGLB PTHSS QD8 SA. SLJYH TR2 UK5 WTRAM AAYXX CITATION AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c320t-2a94c2d4aceda4a49986feb402100b1bf63cb1fba1ee4a3b9ec222a3a978eb513 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544499400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1609-4840 |
| IngestDate | Wed Aug 13 03:38:09 EDT 2025 Sat Nov 29 04:47:01 EST 2025 Tue Nov 18 22:33:12 EST 2025 Sat Nov 29 01:31:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This content is free. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-2a94c2d4aceda4a49986feb402100b1bf63cb1fba1ee4a3b9ec222a3a978eb513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.degruyter.com/doi/10.1515/cmam-2018-0187 |
| PQID | 2384373341 |
| PQPubID | 2038872 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2384373341 crossref_primary_10_1515_cmam_2018_0187 crossref_citationtrail_10_1515_cmam_2018_0187 walterdegruyter_journals_10_1515_cmam_2018_0187202187 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Minsk |
| PublicationPlace_xml | – name: Minsk |
| PublicationTitle | Journal of computational methods in applied mathematics |
| PublicationYear | 2020 |
| Publisher | De Gruyter Walter de Gruyter GmbH |
| Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
| References | Wu, J.; Shen, J.; Feng, X. (j_cmam-2018-0187_ref_027) 2017; 348 Almonacid, J. A.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_003) 2019; 78 Oyarzúa, R.; Zúñiga, P. (j_cmam-2018-0187_ref_023) 2017; 323 Colmenares, E.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_012) 2016; 32 Gatica, G. N.; Sequeira, F. A. (j_cmam-2018-0187_ref_018) 2016; 69 Hecht, F. (j_cmam-2018-0187_ref_019) 2012; 20 Oyarzúa, R.; Qin, T.; Schötzau, D. (j_cmam-2018-0187_ref_022) 2014; 34 Tabata, M.; Tagami, D. (j_cmam-2018-0187_ref_026) 2005; 100 Almonacid, J. A.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_002) 2018; 55 Camaño, J.; Gatica, G. N.; Oyarzúa, R.; Ruiz-Baier, R. (j_cmam-2018-0187_ref_008) 2017; 33 Alvarez, M.; Gatica, G. N.; Ruiz-Baier, R. (j_cmam-2018-0187_ref_005) 2015; 49 Colmenares, E.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_013) 2017; 54 Schroeder, P. W.; Lube, G. (j_cmam-2018-0187_ref_025) 2017; 335 Gatica, G. N. (j_cmam-2018-0187_ref_015) 2007; 26 Gatica, G. N.; Márquez, A.; Sánchez, M. A. (j_cmam-2018-0187_ref_017) 2011; 200 Boland, J.; Layton, W. (j_cmam-2018-0187_ref_006) 1990; 6 Caucao, S.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_009) 2018; 52 Farhloul, M.; Nicaise, S.; Paquet, L. (j_cmam-2018-0187_ref_014) 2000; 69 2023033110443928356_j_cmam-2018-0187_ref_023_w2aab3b7e1404b1b6b1ab2ac23Aa 2023033110443928356_j_cmam-2018-0187_ref_019_w2aab3b7e1404b1b6b1ab2ac19Aa 2023033110443928356_j_cmam-2018-0187_ref_009_w2aab3b7e1404b1b6b1ab2ab9Aa 2023033110443928356_j_cmam-2018-0187_ref_005_w2aab3b7e1404b1b6b1ab2ab5Aa 2023033110443928356_j_cmam-2018-0187_ref_014_w2aab3b7e1404b1b6b1ab2ac14Aa 2023033110443928356_j_cmam-2018-0187_ref_006_w2aab3b7e1404b1b6b1ab2ab6Aa 2023033110443928356_j_cmam-2018-0187_ref_022_w2aab3b7e1404b1b6b1ab2ac22Aa 2023033110443928356_j_cmam-2018-0187_ref_027_w2aab3b7e1404b1b6b1ab2ac27Aa 2023033110443928356_j_cmam-2018-0187_ref_002_w2aab3b7e1404b1b6b1ab2ab2Aa 2023033110443928356_j_cmam-2018-0187_ref_018_w2aab3b7e1404b1b6b1ab2ac18Aa 2023033110443928356_j_cmam-2018-0187_ref_013_w2aab3b7e1404b1b6b1ab2ac13Aa 2023033110443928356_j_cmam-2018-0187_ref_007_w2aab3b7e1404b1b6b1ab2ab7Aa 2023033110443928356_j_cmam-2018-0187_ref_011_w2aab3b7e1404b1b6b1ab2ac11Aa 2023033110443928356_j_cmam-2018-0187_ref_016_w2aab3b7e1404b1b6b1ab2ac16Aa 2023033110443928356_j_cmam-2018-0187_ref_012_w2aab3b7e1404b1b6b1ab2ac12Aa 2023033110443928356_j_cmam-2018-0187_ref_017_w2aab3b7e1404b1b6b1ab2ac17Aa 2023033110443928356_j_cmam-2018-0187_ref_026_w2aab3b7e1404b1b6b1ab2ac26Aa 2023033110443928356_j_cmam-2018-0187_ref_003_w2aab3b7e1404b1b6b1ab2ab3Aa 2023033110443928356_j_cmam-2018-0187_ref_021_w2aab3b7e1404b1b6b1ab2ac21Aa 2023033110443928356_j_cmam-2018-0187_ref_015_w2aab3b7e1404b1b6b1ab2ac15Aa 2023033110443928356_j_cmam-2018-0187_ref_010_w2aab3b7e1404b1b6b1ab2ac10Aa 2023033110443928356_j_cmam-2018-0187_ref_001_w2aab3b7e1404b1b6b1ab2ab1Aa 2023033110443928356_j_cmam-2018-0187_ref_024_w2aab3b7e1404b1b6b1ab2ac24Aa 2023033110443928356_j_cmam-2018-0187_ref_008_w2aab3b7e1404b1b6b1ab2ab8Aa 2023033110443928356_j_cmam-2018-0187_ref_025_w2aab3b7e1404b1b6b1ab2ac25Aa 2023033110443928356_j_cmam-2018-0187_ref_020_w2aab3b7e1404b1b6b1ab2ac20Aa 2023033110443928356_j_cmam-2018-0187_ref_004_w2aab3b7e1404b1b6b1ab2ab4Aa |
| References_xml | – volume: 34 start-page: 1104 issue: 3 year: 2014 end-page: 1135 ident: j_cmam-2018-0187_ref_022 article-title: An exactly divergence-free finite element method for a generalized Boussinesq problem publication-title: IMA J. Numer. Anal. – volume: 55 issue: 3 year: 2018 ident: j_cmam-2018-0187_ref_002 article-title: A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity publication-title: Calcolo – volume: 33 start-page: 1692 issue: 5 year: 2017 end-page: 1725 ident: j_cmam-2018-0187_ref_008 article-title: An augmented stress-based mixed finite element method for the steady state Navier–Stokes equations with nonlinear viscosity publication-title: Numer. Methods Partial Differential Equations – volume: 32 start-page: 445 issue: 2 year: 2016 end-page: 478 ident: j_cmam-2018-0187_ref_012 article-title: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem publication-title: Numer. Methods Partial Differential Equations – volume: 200 start-page: 1619 issue: 17–20 year: 2011 end-page: 1636 ident: j_cmam-2018-0187_ref_017 article-title: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 49 start-page: 1399 issue: 5 year: 2015 end-page: 1427 ident: j_cmam-2018-0187_ref_005 article-title: An augmented mixed-primal finite element method for a coupled flow-transport problem publication-title: ESAIM Math. Model. Numer. Anal. – volume: 6 start-page: 115 issue: 2 year: 1990 end-page: 126 ident: j_cmam-2018-0187_ref_006 article-title: An analysis of the finite element method for natural convection problems publication-title: Numer. Methods Partial Differential Equations – volume: 323 start-page: 71 year: 2017 end-page: 94 ident: j_cmam-2018-0187_ref_023 article-title: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters publication-title: J. Comput. Appl. Math. – volume: 54 start-page: 167 issue: 1 year: 2017 end-page: 205 ident: j_cmam-2018-0187_ref_013 article-title: An augmented fully-mixed finite element method for the stationary Boussinesq problem publication-title: Calcolo – volume: 69 start-page: 965 issue: 231 year: 2000 end-page: 986 ident: j_cmam-2018-0187_ref_014 article-title: A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions publication-title: Math. Comp. – volume: 20 start-page: 251 issue: 3–4 year: 2012 end-page: 265 ident: j_cmam-2018-0187_ref_019 article-title: New development in FreeFem++ publication-title: J. Numer. Math. – volume: 100 start-page: 351 issue: 2 year: 2005 end-page: 372 ident: j_cmam-2018-0187_ref_026 article-title: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients publication-title: Numer. Math. – volume: 348 start-page: 776 year: 2017 end-page: 789 ident: j_cmam-2018-0187_ref_027 article-title: Unconditionally stable gauge-Uzawa finite element schemes for incompressible natural convection problems with variable density publication-title: J. Comput. Phys. – volume: 78 start-page: 887 issue: 2 year: 2019 end-page: 917 ident: j_cmam-2018-0187_ref_003 article-title: A posteriori error analysis of a mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity publication-title: J. Sci. Comput. – volume: 26 start-page: 421 year: 2007 end-page: 438 ident: j_cmam-2018-0187_ref_015 article-title: An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions publication-title: Electron. Trans. Numer. Anal. – volume: 69 start-page: 1192 issue: 3 year: 2016 end-page: 1250 ident: j_cmam-2018-0187_ref_018 article-title: A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows publication-title: J. Sci. Comput. – volume: 335 start-page: 760 year: 2017 end-page: 779 ident: j_cmam-2018-0187_ref_025 article-title: Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes publication-title: J. Comput. Phys. – volume: 52 start-page: 1947 issue: 5 year: 2018 end-page: 1980 ident: j_cmam-2018-0187_ref_009 article-title: Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations publication-title: ESAIM Math. Model. Numer. Anal. – ident: 2023033110443928356_j_cmam-2018-0187_ref_001_w2aab3b7e1404b1b6b1ab2ab1Aa – ident: 2023033110443928356_j_cmam-2018-0187_ref_019_w2aab3b7e1404b1b6b1ab2ac19Aa doi: 10.1515/jnum-2012-0013 – ident: 2023033110443928356_j_cmam-2018-0187_ref_021_w2aab3b7e1404b1b6b1ab2ac21Aa – ident: 2023033110443928356_j_cmam-2018-0187_ref_026_w2aab3b7e1404b1b6b1ab2ac26Aa doi: 10.1007/s00211-005-0589-2 – ident: 2023033110443928356_j_cmam-2018-0187_ref_013_w2aab3b7e1404b1b6b1ab2ac13Aa doi: 10.1007/s10092-016-0182-3 – ident: 2023033110443928356_j_cmam-2018-0187_ref_023_w2aab3b7e1404b1b6b1ab2ac23Aa doi: 10.1016/j.cam.2017.04.009 – ident: 2023033110443928356_j_cmam-2018-0187_ref_024_w2aab3b7e1404b1b6b1ab2ac24Aa doi: 10.1007/978-3-540-85268-1 – ident: 2023033110443928356_j_cmam-2018-0187_ref_017_w2aab3b7e1404b1b6b1ab2ac17Aa doi: 10.1016/j.cma.2011.01.010 – ident: 2023033110443928356_j_cmam-2018-0187_ref_009_w2aab3b7e1404b1b6b1ab2ab9Aa doi: 10.1051/m2an/2018027 – ident: 2023033110443928356_j_cmam-2018-0187_ref_012_w2aab3b7e1404b1b6b1ab2ac12Aa doi: 10.1002/num.22001 – ident: 2023033110443928356_j_cmam-2018-0187_ref_015_w2aab3b7e1404b1b6b1ab2ac15Aa – ident: 2023033110443928356_j_cmam-2018-0187_ref_018_w2aab3b7e1404b1b6b1ab2ac18Aa doi: 10.1007/s10915-016-0233-6 – ident: 2023033110443928356_j_cmam-2018-0187_ref_025_w2aab3b7e1404b1b6b1ab2ac25Aa doi: 10.1016/j.jcp.2017.01.055 – ident: 2023033110443928356_j_cmam-2018-0187_ref_022_w2aab3b7e1404b1b6b1ab2ac22Aa doi: 10.1093/imanum/drt043 – ident: 2023033110443928356_j_cmam-2018-0187_ref_004_w2aab3b7e1404b1b6b1ab2ab4Aa doi: 10.1007/s10092-018-0278-z – ident: 2023033110443928356_j_cmam-2018-0187_ref_020_w2aab3b7e1404b1b6b1ab2ac20Aa – ident: 2023033110443928356_j_cmam-2018-0187_ref_002_w2aab3b7e1404b1b6b1ab2ab2Aa doi: 10.1007/s10092-018-0278-z – ident: 2023033110443928356_j_cmam-2018-0187_ref_008_w2aab3b7e1404b1b6b1ab2ab8Aa doi: 10.1002/num.22166 – ident: 2023033110443928356_j_cmam-2018-0187_ref_005_w2aab3b7e1404b1b6b1ab2ab5Aa doi: 10.1051/m2an/2015015 – ident: 2023033110443928356_j_cmam-2018-0187_ref_011_w2aab3b7e1404b1b6b1ab2ac11Aa – ident: 2023033110443928356_j_cmam-2018-0187_ref_003_w2aab3b7e1404b1b6b1ab2ab3Aa doi: 10.1007/s10915-018-0810-y – ident: 2023033110443928356_j_cmam-2018-0187_ref_027_w2aab3b7e1404b1b6b1ab2ac27Aa doi: 10.1016/j.jcp.2017.07.045 – ident: 2023033110443928356_j_cmam-2018-0187_ref_006_w2aab3b7e1404b1b6b1ab2ab6Aa doi: 10.1002/num.1690060202 – ident: 2023033110443928356_j_cmam-2018-0187_ref_014_w2aab3b7e1404b1b6b1ab2ac14Aa doi: 10.1090/S0025-5718-00-01186-8 – ident: 2023033110443928356_j_cmam-2018-0187_ref_016_w2aab3b7e1404b1b6b1ab2ac16Aa doi: 10.1007/978-3-319-03695-3 – ident: 2023033110443928356_j_cmam-2018-0187_ref_007_w2aab3b7e1404b1b6b1ab2ab7Aa doi: 10.1007/978-1-4612-3172-1 – ident: 2023033110443928356_j_cmam-2018-0187_ref_010_w2aab3b7e1404b1b6b1ab2ac10Aa doi: 10.1137/1.9781611972597 |
| SSID | ssib008212471 ssj0033936 ssib006285865 |
| Score | 2.2327814 |
| Snippet | In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of
-dimensional fluids,
, with... In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of n -dimensional fluids, n ∈ { 2 , 3 }... In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection ofn-dimensional fluids, n∈{2,3}{n\in\{2,3\}},... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 187 |
| SubjectTerms | 35Q79 65N12 65N15 65N30 76D07 76R05 80A20 A Priori Error Analysis Augmented Fully-Mixed Formulation Boundary conditions Boussinesq approximation Boussinesq Equations Computational fluid dynamics Exact solutions Finite element analysis Finite element method Finite Element Methods Fixed points (mathematics) Fixed-point Theory Free convection Galerkin method Temperature dependence Temperature gradients Tensors Thermal conductivity Vectors (mathematics) Vorticity Well posed problems |
| Title | A Fully-Mixed Finite Element Method for the n-Dimensional Boussinesq Problem with Temperature-Dependent Parameters |
| URI | https://www.degruyter.com/doi/10.1515/cmam-2018-0187 https://www.proquest.com/docview/2384373341 |
| Volume | 20 |
| WOSCitedRecordID | wos000544499400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: K7- dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: M7S dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1609-9389 dateEnd: 20200731 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RlgM9lG8RKNEekDit6o_12j6hliZCgkQWFFRxsfbLKBJN2tgp9N8zs94kFQIuXHxaW7JmPfNm5_k9gFcIsSNpteLaSclFpgQvFSZDHQlbKiWz3P9f8eVDPp0W5-dlFQ7c2kCrXOdEn6jtwtAZ-RGWFlLhwaT75vKKk2sUTVeDhcYO7JFKQuype5-2-ykpsuLWFK_APC3yDQUkTUtvIRhLclrDTieIOmKJPzIX6gJ3UExML6Lb3S5aWyR68MPPtK37tlzddOsZqi9N4_v_-1IP4CCAUnbc76KHcMfNH8H-ZKPo2j6G5TGjbvWGT2Y_nWXjGWFVNurJ52zifagZAmCG97A5PyXTgF7wg50sVq1n11-xqrevYXT6y84cQvZe0pmfBi_ejlWK6GKk-fkEPo9HZ2_f8eDXwE2aRB1PVClMYoUyziqhsJcqZOO0oLYy0rFuZGp03GgVOydUqktnEJ2oVGEn63QWp09hd76Yu2fAlBZxU8iCdNCFc0nZ2MjKRmipihTT0gD4OiC1CWLm5KnxvaamBgNYUwBrCmBNARzA6836y17G468rD9ehqsPn3NbbOA0g-y3m21V_fmBCKCp__u_HvoB7CTXynhJ0CLvdcuVewl1z3c3a5RD2TkbT6uMQdt7nfOj3OF6r7OsvyPIBxA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcyrdYaMEHECerie04yQFVpdtVq_3QHhbUW7ATB61Ed9tNlrJ_it_YmXzsVgi49cDdsZTkeeaNPX4P4B1SbE9n1nDrtOYqMIrHBoOh9VQWG6ODsLpf8WUQjkbR2Vk83oJf7V0YaqtsY2IVqLN5Snvk-5haSIUHg-7BxSUn1yg6XW0tNGpY9N3qCku24uNpF__veyF6x5OjE964CvBUCq_kwsQqFZkyqcuMMsj4I507q6j48axvcy1T6-fW-M4pI23sUsyhRhqst5wNfInz3oG7SkYhrat-yDf4FVEQ3Tg1jDAvqHDdciJlXFkW-pqc3bCyakQkkVLsp-fmHBHrU2cZtffdTJIb5rtzVZ2hZ-7bYrkq2zPbKhX2Hv1vH_Ex7DSkmx3Wq-QJbLnZU3g4XCvWFs9gccioGl_x4fSny1hvSlycHdfN9WxY-WwzJPgMn2Ez3iVThFrQhH2aL4vq9sAlG9f2PIx2t9nEYUlSS1bzbuM1XLKxoXY40jR9Dp9v5aVfwPZsPnMvgRmr_DzSEem8K-dEnGdepnNltYkkht0O8BYASdqItZNnyPeEijYETEKASQgwCQGmAx_W4y9qmZK_jtxtoZE04apINrjoQPAbxjaj_jyhIJYYvvr3tG_h_slkOEgGp6P-a3ggaNOian_ahe1ysXR7cC_9UU6LxZtqRTH4etvouwYH5V2R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully-Mixed+Finite+Element+Method+for+the+n+-Dimensional+Boussinesq+Problem+with+Temperature-Dependent+Parameters&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Almonacid%2C+Javier+A.&rft.au=Gatica%2C+Gabriel+N.&rft.date=2020-04-01&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=20&rft.issue=2&rft.spage=187&rft.epage=213&rft_id=info:doi/10.1515%2Fcmam-2018-0187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2018_0187 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon |