A Fully-Mixed Finite Element Method for the n-Dimensional Boussinesq Problem with Temperature-Dependent Parameters

In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–St...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational methods in applied mathematics Ročník 20; číslo 2; s. 187 - 213
Hlavní autoři: Almonacid, Javier A., Gatica, Gabriel N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Minsk De Gruyter 01.04.2020
Walter de Gruyter GmbH
Témata:
ISSN:1609-4840, 1609-9389
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes) and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a Dirichlet condition on the velocity. Because of the dependence on the temperature of the fluid properties, several additional variables are defined, thus resulting in an augmented formulation that seeks the rate of strain, pseudostress and vorticity tensors, velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach, smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation, no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples illustrating the performance of the method and confirming the theoretical rates of convergence are reported.
AbstractList In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of n -dimensional fluids, n ∈ { 2 , 3 } {n\in\{2,3\}} , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes) and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a Dirichlet condition on the velocity. Because of the dependence on the temperature of the fluid properties, several additional variables are defined, thus resulting in an augmented formulation that seeks the rate of strain, pseudostress and vorticity tensors, velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach, smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation, no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples illustrating the performance of the method and confirming the theoretical rates of convergence are reported.
In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection ofn-dimensional fluids, n∈{2,3}{n\in\{2,3\}}, with temperature-dependent viscosity and thermal conductivity.The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes)and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and aDirichlet condition on the velocity. Because of the dependence on the temperature ofthe fluid properties, several additional variables are defined, thus resulting in an augmented formulationthat seeks the rate of strain, pseudostress and vorticity tensors,velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach,smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessarywell-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation,no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choicewith respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange anddiscontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examplesillustrating the performance of the method and confirming the theoretical rates of convergence are reported.
In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with temperature-dependent viscosity and thermal conductivity. The mathematical model is given by the coupling of the equations of continuity, momentum (Navier–Stokes) and energy by means of the Boussinesq approximation, as well as mixed thermal boundary conditions and a Dirichlet condition on the velocity. Because of the dependence on the temperature of the fluid properties, several additional variables are defined, thus resulting in an augmented formulation that seeks the rate of strain, pseudostress and vorticity tensors, velocity, temperature gradient and pseudoheat vectors, and temperature of the fluid. Using a fixed-point approach, smallness-of-data assumptions and a slight higher-regularity assumption for the exact solution provide the necessary well-posedness results at both continuous and discrete levels. In addition, and as a result of the augmentation, no discrete inf-sup conditions are needed for the well-posedness of the Galerkin scheme, which provides freedom of choice with respect to the finite element spaces. In particular, we suggest a combination based on Raviart–Thomas, Lagrange and discontinuous elements for which we derive optimal a priori error estimates. Finally, several numerical examples illustrating the performance of the method and confirming the theoretical rates of convergence are reported.
Author Gatica, Gabriel N.
Almonacid, Javier A.
Author_xml – sequence: 1
  givenname: Javier A.
  surname: Almonacid
  fullname: Almonacid, Javier A.
  email: jalmonacid@ci2ma.udec.cl
  organization: CIMA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
– sequence: 2
  givenname: Gabriel N.
  surname: Gatica
  fullname: Gatica, Gabriel N.
  email: ggatica@ci2ma.udec.cl
  organization: Centro de Investigación en Ingeniería Matemática (CIMA), Universidad de Concepción, Casilla 160-C, Concepción, Chile
BookMark eNp1kMtLAzEQh4NU8NWr54DnaF5td8GLr6pQ0YOel8nurI3sbtokS-1_b5YKguhhmCHM92PyHZFR5zok5FTwczERk4uyhZZJLjKWarZHDsWU5yxXWT76nnWm-QEZh2AN55kUUs_EIfFXdN43zZY92U-s6Nx2NiK9a7DFLtInjEtX0dp5GpdIO3Zr03uwroOGXrs-hXUY1vTFO5MQurFxSV-xXaGH2Htkt7jCrhqiXsBDixF9OCH7NTQBx9_9mLzN715vHtji-f7x5mrBSiV5ZBJyXcpKQ4kVaNB5nk1rNJpLwbkRpp6q0ojagEDUoEyOpZQSFOSzDM1EqGNytstdebfuMcTiw_U-XR4KqTKtZkrpYet8t1V6F4LHulh524LfFoIXg9piUFsMaotBbQL0L6C0EWJyEj3Y5n_scodtoEkWKnz3_TYNP0f9Dcr034R_ATmXlY8
CitedBy_id crossref_primary_10_1016_j_camwa_2022_04_003
crossref_primary_10_1016_j_camwa_2021_10_004
crossref_primary_10_1137_22M1536340
crossref_primary_10_1016_j_cnsns_2022_106884
crossref_primary_10_1016_j_cam_2021_113504
crossref_primary_10_1093_imanum_drab063
crossref_primary_10_1007_s10092_022_00488_z
crossref_primary_10_1007_s10915_024_02722_y
crossref_primary_10_1093_imanum_drad094
crossref_primary_10_1016_j_cam_2024_115885
crossref_primary_10_1007_s10092_020_00385_3
crossref_primary_10_1016_j_camwa_2021_01_001
crossref_primary_10_1007_s10092_019_0351_2
Cites_doi 10.1515/jnum-2012-0013
10.1007/s00211-005-0589-2
10.1007/s10092-016-0182-3
10.1016/j.cam.2017.04.009
10.1007/978-3-540-85268-1
10.1016/j.cma.2011.01.010
10.1051/m2an/2018027
10.1002/num.22001
10.1007/s10915-016-0233-6
10.1016/j.jcp.2017.01.055
10.1093/imanum/drt043
10.1007/s10092-018-0278-z
10.1002/num.22166
10.1051/m2an/2015015
10.1007/s10915-018-0810-y
10.1016/j.jcp.2017.07.045
10.1002/num.1690060202
10.1090/S0025-5718-00-01186-8
10.1007/978-3-319-03695-3
10.1007/978-1-4612-3172-1
10.1137/1.9781611972597
ContentType Journal Article
Copyright 2020 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1515/cmam-2018-0187
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1609-9389
EndPage 213
ExternalDocumentID 10_1515_cmam_2018_0187
10_1515_cmam_2018_0187202187
GroupedDBID 0R~
2WC
4.4
8FE
8FG
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AAKDD
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJCF
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACHNZ
ACIPV
ACIWK
ACONX
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFFHD
AFKRA
AFQUK
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMVHM
ARAPS
ASYPN
BAKPI
BBCWN
BCIFA
BENPR
BGLVJ
CCPQU
CFGNV
DASCH
DSRVY
EBS
HCIFZ
HZ~
IY9
J9A
K.~
K6V
K7-
KDIRW
L6V
M7S
O9-
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
QD8
SA.
SLJYH
TR2
UK5
WTRAM
AAYXX
CITATION
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c320t-2a94c2d4aceda4a49986feb402100b1bf63cb1fba1ee4a3b9ec222a3a978eb513
IEDL.DBID M7S
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544499400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1609-4840
IngestDate Wed Aug 13 03:38:09 EDT 2025
Sat Nov 29 04:47:01 EST 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 01:31:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This content is free.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-2a94c2d4aceda4a49986feb402100b1bf63cb1fba1ee4a3b9ec222a3a978eb513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.degruyter.com/doi/10.1515/cmam-2018-0187
PQID 2384373341
PQPubID 2038872
PageCount 27
ParticipantIDs proquest_journals_2384373341
crossref_primary_10_1515_cmam_2018_0187
crossref_citationtrail_10_1515_cmam_2018_0187
walterdegruyter_journals_10_1515_cmam_2018_0187202187
PublicationCentury 2000
PublicationDate 2020-04-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Minsk
PublicationPlace_xml – name: Minsk
PublicationTitle Journal of computational methods in applied mathematics
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Wu, J.; Shen, J.; Feng, X. (j_cmam-2018-0187_ref_027) 2017; 348
Almonacid, J. A.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_003) 2019; 78
Oyarzúa, R.; Zúñiga, P. (j_cmam-2018-0187_ref_023) 2017; 323
Colmenares, E.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_012) 2016; 32
Gatica, G. N.; Sequeira, F. A. (j_cmam-2018-0187_ref_018) 2016; 69
Hecht, F. (j_cmam-2018-0187_ref_019) 2012; 20
Oyarzúa, R.; Qin, T.; Schötzau, D. (j_cmam-2018-0187_ref_022) 2014; 34
Tabata, M.; Tagami, D. (j_cmam-2018-0187_ref_026) 2005; 100
Almonacid, J. A.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_002) 2018; 55
Camaño, J.; Gatica, G. N.; Oyarzúa, R.; Ruiz-Baier, R. (j_cmam-2018-0187_ref_008) 2017; 33
Alvarez, M.; Gatica, G. N.; Ruiz-Baier, R. (j_cmam-2018-0187_ref_005) 2015; 49
Colmenares, E.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_013) 2017; 54
Schroeder, P. W.; Lube, G. (j_cmam-2018-0187_ref_025) 2017; 335
Gatica, G. N. (j_cmam-2018-0187_ref_015) 2007; 26
Gatica, G. N.; Márquez, A.; Sánchez, M. A. (j_cmam-2018-0187_ref_017) 2011; 200
Boland, J.; Layton, W. (j_cmam-2018-0187_ref_006) 1990; 6
Caucao, S.; Gatica, G. N.; Oyarzúa, R. (j_cmam-2018-0187_ref_009) 2018; 52
Farhloul, M.; Nicaise, S.; Paquet, L. (j_cmam-2018-0187_ref_014) 2000; 69
2023033110443928356_j_cmam-2018-0187_ref_023_w2aab3b7e1404b1b6b1ab2ac23Aa
2023033110443928356_j_cmam-2018-0187_ref_019_w2aab3b7e1404b1b6b1ab2ac19Aa
2023033110443928356_j_cmam-2018-0187_ref_009_w2aab3b7e1404b1b6b1ab2ab9Aa
2023033110443928356_j_cmam-2018-0187_ref_005_w2aab3b7e1404b1b6b1ab2ab5Aa
2023033110443928356_j_cmam-2018-0187_ref_014_w2aab3b7e1404b1b6b1ab2ac14Aa
2023033110443928356_j_cmam-2018-0187_ref_006_w2aab3b7e1404b1b6b1ab2ab6Aa
2023033110443928356_j_cmam-2018-0187_ref_022_w2aab3b7e1404b1b6b1ab2ac22Aa
2023033110443928356_j_cmam-2018-0187_ref_027_w2aab3b7e1404b1b6b1ab2ac27Aa
2023033110443928356_j_cmam-2018-0187_ref_002_w2aab3b7e1404b1b6b1ab2ab2Aa
2023033110443928356_j_cmam-2018-0187_ref_018_w2aab3b7e1404b1b6b1ab2ac18Aa
2023033110443928356_j_cmam-2018-0187_ref_013_w2aab3b7e1404b1b6b1ab2ac13Aa
2023033110443928356_j_cmam-2018-0187_ref_007_w2aab3b7e1404b1b6b1ab2ab7Aa
2023033110443928356_j_cmam-2018-0187_ref_011_w2aab3b7e1404b1b6b1ab2ac11Aa
2023033110443928356_j_cmam-2018-0187_ref_016_w2aab3b7e1404b1b6b1ab2ac16Aa
2023033110443928356_j_cmam-2018-0187_ref_012_w2aab3b7e1404b1b6b1ab2ac12Aa
2023033110443928356_j_cmam-2018-0187_ref_017_w2aab3b7e1404b1b6b1ab2ac17Aa
2023033110443928356_j_cmam-2018-0187_ref_026_w2aab3b7e1404b1b6b1ab2ac26Aa
2023033110443928356_j_cmam-2018-0187_ref_003_w2aab3b7e1404b1b6b1ab2ab3Aa
2023033110443928356_j_cmam-2018-0187_ref_021_w2aab3b7e1404b1b6b1ab2ac21Aa
2023033110443928356_j_cmam-2018-0187_ref_015_w2aab3b7e1404b1b6b1ab2ac15Aa
2023033110443928356_j_cmam-2018-0187_ref_010_w2aab3b7e1404b1b6b1ab2ac10Aa
2023033110443928356_j_cmam-2018-0187_ref_001_w2aab3b7e1404b1b6b1ab2ab1Aa
2023033110443928356_j_cmam-2018-0187_ref_024_w2aab3b7e1404b1b6b1ab2ac24Aa
2023033110443928356_j_cmam-2018-0187_ref_008_w2aab3b7e1404b1b6b1ab2ab8Aa
2023033110443928356_j_cmam-2018-0187_ref_025_w2aab3b7e1404b1b6b1ab2ac25Aa
2023033110443928356_j_cmam-2018-0187_ref_020_w2aab3b7e1404b1b6b1ab2ac20Aa
2023033110443928356_j_cmam-2018-0187_ref_004_w2aab3b7e1404b1b6b1ab2ab4Aa
References_xml – volume: 34
  start-page: 1104
  issue: 3
  year: 2014
  end-page: 1135
  ident: j_cmam-2018-0187_ref_022
  article-title: An exactly divergence-free finite element method for a generalized Boussinesq problem
  publication-title: IMA J. Numer. Anal.
– volume: 55
  issue: 3
  year: 2018
  ident: j_cmam-2018-0187_ref_002
  article-title: A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity
  publication-title: Calcolo
– volume: 33
  start-page: 1692
  issue: 5
  year: 2017
  end-page: 1725
  ident: j_cmam-2018-0187_ref_008
  article-title: An augmented stress-based mixed finite element method for the steady state Navier–Stokes equations with nonlinear viscosity
  publication-title: Numer. Methods Partial Differential Equations
– volume: 32
  start-page: 445
  issue: 2
  year: 2016
  end-page: 478
  ident: j_cmam-2018-0187_ref_012
  article-title: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem
  publication-title: Numer. Methods Partial Differential Equations
– volume: 200
  start-page: 1619
  issue: 17–20
  year: 2011
  end-page: 1636
  ident: j_cmam-2018-0187_ref_017
  article-title: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 49
  start-page: 1399
  issue: 5
  year: 2015
  end-page: 1427
  ident: j_cmam-2018-0187_ref_005
  article-title: An augmented mixed-primal finite element method for a coupled flow-transport problem
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 6
  start-page: 115
  issue: 2
  year: 1990
  end-page: 126
  ident: j_cmam-2018-0187_ref_006
  article-title: An analysis of the finite element method for natural convection problems
  publication-title: Numer. Methods Partial Differential Equations
– volume: 323
  start-page: 71
  year: 2017
  end-page: 94
  ident: j_cmam-2018-0187_ref_023
  article-title: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters
  publication-title: J. Comput. Appl. Math.
– volume: 54
  start-page: 167
  issue: 1
  year: 2017
  end-page: 205
  ident: j_cmam-2018-0187_ref_013
  article-title: An augmented fully-mixed finite element method for the stationary Boussinesq problem
  publication-title: Calcolo
– volume: 69
  start-page: 965
  issue: 231
  year: 2000
  end-page: 986
  ident: j_cmam-2018-0187_ref_014
  article-title: A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions
  publication-title: Math. Comp.
– volume: 20
  start-page: 251
  issue: 3–4
  year: 2012
  end-page: 265
  ident: j_cmam-2018-0187_ref_019
  article-title: New development in FreeFem++
  publication-title: J. Numer. Math.
– volume: 100
  start-page: 351
  issue: 2
  year: 2005
  end-page: 372
  ident: j_cmam-2018-0187_ref_026
  article-title: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients
  publication-title: Numer. Math.
– volume: 348
  start-page: 776
  year: 2017
  end-page: 789
  ident: j_cmam-2018-0187_ref_027
  article-title: Unconditionally stable gauge-Uzawa finite element schemes for incompressible natural convection problems with variable density
  publication-title: J. Comput. Phys.
– volume: 78
  start-page: 887
  issue: 2
  year: 2019
  end-page: 917
  ident: j_cmam-2018-0187_ref_003
  article-title: A posteriori error analysis of a mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity
  publication-title: J. Sci. Comput.
– volume: 26
  start-page: 421
  year: 2007
  end-page: 438
  ident: j_cmam-2018-0187_ref_015
  article-title: An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions
  publication-title: Electron. Trans. Numer. Anal.
– volume: 69
  start-page: 1192
  issue: 3
  year: 2016
  end-page: 1250
  ident: j_cmam-2018-0187_ref_018
  article-title: A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows
  publication-title: J. Sci. Comput.
– volume: 335
  start-page: 760
  year: 2017
  end-page: 779
  ident: j_cmam-2018-0187_ref_025
  article-title: Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 1947
  issue: 5
  year: 2018
  end-page: 1980
  ident: j_cmam-2018-0187_ref_009
  article-title: Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations
  publication-title: ESAIM Math. Model. Numer. Anal.
– ident: 2023033110443928356_j_cmam-2018-0187_ref_001_w2aab3b7e1404b1b6b1ab2ab1Aa
– ident: 2023033110443928356_j_cmam-2018-0187_ref_019_w2aab3b7e1404b1b6b1ab2ac19Aa
  doi: 10.1515/jnum-2012-0013
– ident: 2023033110443928356_j_cmam-2018-0187_ref_021_w2aab3b7e1404b1b6b1ab2ac21Aa
– ident: 2023033110443928356_j_cmam-2018-0187_ref_026_w2aab3b7e1404b1b6b1ab2ac26Aa
  doi: 10.1007/s00211-005-0589-2
– ident: 2023033110443928356_j_cmam-2018-0187_ref_013_w2aab3b7e1404b1b6b1ab2ac13Aa
  doi: 10.1007/s10092-016-0182-3
– ident: 2023033110443928356_j_cmam-2018-0187_ref_023_w2aab3b7e1404b1b6b1ab2ac23Aa
  doi: 10.1016/j.cam.2017.04.009
– ident: 2023033110443928356_j_cmam-2018-0187_ref_024_w2aab3b7e1404b1b6b1ab2ac24Aa
  doi: 10.1007/978-3-540-85268-1
– ident: 2023033110443928356_j_cmam-2018-0187_ref_017_w2aab3b7e1404b1b6b1ab2ac17Aa
  doi: 10.1016/j.cma.2011.01.010
– ident: 2023033110443928356_j_cmam-2018-0187_ref_009_w2aab3b7e1404b1b6b1ab2ab9Aa
  doi: 10.1051/m2an/2018027
– ident: 2023033110443928356_j_cmam-2018-0187_ref_012_w2aab3b7e1404b1b6b1ab2ac12Aa
  doi: 10.1002/num.22001
– ident: 2023033110443928356_j_cmam-2018-0187_ref_015_w2aab3b7e1404b1b6b1ab2ac15Aa
– ident: 2023033110443928356_j_cmam-2018-0187_ref_018_w2aab3b7e1404b1b6b1ab2ac18Aa
  doi: 10.1007/s10915-016-0233-6
– ident: 2023033110443928356_j_cmam-2018-0187_ref_025_w2aab3b7e1404b1b6b1ab2ac25Aa
  doi: 10.1016/j.jcp.2017.01.055
– ident: 2023033110443928356_j_cmam-2018-0187_ref_022_w2aab3b7e1404b1b6b1ab2ac22Aa
  doi: 10.1093/imanum/drt043
– ident: 2023033110443928356_j_cmam-2018-0187_ref_004_w2aab3b7e1404b1b6b1ab2ab4Aa
  doi: 10.1007/s10092-018-0278-z
– ident: 2023033110443928356_j_cmam-2018-0187_ref_020_w2aab3b7e1404b1b6b1ab2ac20Aa
– ident: 2023033110443928356_j_cmam-2018-0187_ref_002_w2aab3b7e1404b1b6b1ab2ab2Aa
  doi: 10.1007/s10092-018-0278-z
– ident: 2023033110443928356_j_cmam-2018-0187_ref_008_w2aab3b7e1404b1b6b1ab2ab8Aa
  doi: 10.1002/num.22166
– ident: 2023033110443928356_j_cmam-2018-0187_ref_005_w2aab3b7e1404b1b6b1ab2ab5Aa
  doi: 10.1051/m2an/2015015
– ident: 2023033110443928356_j_cmam-2018-0187_ref_011_w2aab3b7e1404b1b6b1ab2ac11Aa
– ident: 2023033110443928356_j_cmam-2018-0187_ref_003_w2aab3b7e1404b1b6b1ab2ab3Aa
  doi: 10.1007/s10915-018-0810-y
– ident: 2023033110443928356_j_cmam-2018-0187_ref_027_w2aab3b7e1404b1b6b1ab2ac27Aa
  doi: 10.1016/j.jcp.2017.07.045
– ident: 2023033110443928356_j_cmam-2018-0187_ref_006_w2aab3b7e1404b1b6b1ab2ab6Aa
  doi: 10.1002/num.1690060202
– ident: 2023033110443928356_j_cmam-2018-0187_ref_014_w2aab3b7e1404b1b6b1ab2ac14Aa
  doi: 10.1090/S0025-5718-00-01186-8
– ident: 2023033110443928356_j_cmam-2018-0187_ref_016_w2aab3b7e1404b1b6b1ab2ac16Aa
  doi: 10.1007/978-3-319-03695-3
– ident: 2023033110443928356_j_cmam-2018-0187_ref_007_w2aab3b7e1404b1b6b1ab2ab7Aa
  doi: 10.1007/978-1-4612-3172-1
– ident: 2023033110443928356_j_cmam-2018-0187_ref_010_w2aab3b7e1404b1b6b1ab2ac10Aa
  doi: 10.1137/1.9781611972597
SSID ssib008212471
ssj0033936
ssib006285865
Score 2.2327814
Snippet In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of -dimensional fluids, , with...
In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection of n -dimensional fluids, n ∈ { 2 , 3 }...
In this paper, we introduce and analyze a high-order, fully-mixed finite element method for the free convection ofn-dimensional fluids, n∈{2,3}{n\in\{2,3\}},...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms 35Q79
65N12
65N15
65N30
76D07
76R05
80A20
A Priori Error Analysis
Augmented Fully-Mixed Formulation
Boundary conditions
Boussinesq approximation
Boussinesq Equations
Computational fluid dynamics
Exact solutions
Finite element analysis
Finite element method
Finite Element Methods
Fixed points (mathematics)
Fixed-point Theory
Free convection
Galerkin method
Temperature dependence
Temperature gradients
Tensors
Thermal conductivity
Vectors (mathematics)
Vorticity
Well posed problems
Title A Fully-Mixed Finite Element Method for the n-Dimensional Boussinesq Problem with Temperature-Dependent Parameters
URI https://www.degruyter.com/doi/10.1515/cmam-2018-0187
https://www.proquest.com/docview/2384373341
Volume 20
WOSCitedRecordID wos000544499400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: K7-
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iGwc4jN-iMCofkDhZqxM7Tk5oY62QoFUEQ5q4RLbjTpVYuzXpxv573nPcdkLAhUtOjqXoc94Pv0_fB_BWW0yyqjDcSKO4FNLzAutiTl7b2E1olXWuJZ_1ZJKfnRVlvHBrIq1yHRNDoK4Xju7IDzG1kAoPBt33l1ecXKNouhotNHZgj1QSRKDufd2epyRX-Z0pXo5xWuoNBSRNi2AhKDJyWsNOJ4o6Yoo_dBfmAk-QIKYX0e3uJq1tJbp_E2batT9frm7b9Qw1pKbRo__9qMewH4tSdtSdoidwz8-fwsPxRtG1eQbLI0bd6i0fz376mo1mVKuyYUc-Z-PgQ82wAGb4DpvzEzIN6AQ_2PFi1QR2_RUrO_saRre_7NRjyd5JOvOT6MXbstIQXYw0P5_Dt9Hw9MNHHv0auEuTQcsTU0iX1NI4XyP02Evl2dRbSW3lwAo7zVJnxdQa4b00qS28w-rEpAY7WW-VSF_A7nwx9y-BkVGDSJVLMqWlUjnunOXTga51XWhbqx7wNSCVi2Lm5Knxo6KmBgGsCMCKAKwIwB6826y_7GQ8_rryYA1VFX_nptri1AP1G-bbVX_eMKEqSr_697av4UFCjXygBB3Abrtc-Tdw3123s2bZh73j4aT80oedT5r3wxnHZ6m-_wLawABA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQcyquI0Bb2AOK0arwPr31AVSGNWuWhHILUm1mvNygSTdrYoeRP8RuZ8SOpKuDWA_f1yI9v57Ez_j6AdybFIKtjy62ymqtAeR5jXsxJaxurCaPDSrWkb4bD6Pw8Hm3Br-ZfGBqrbHxi6aizuaMz8kMMLcTCg0736PKKk2oUdVcbCY0KFj2_usaSLf941sHv-16I7sn48ymvVQW4k6JdcGFj5USmrPMZ3iBm_FE48ami4qedBukklC4NJqkNvFdWprF3GEOttFhv-VQHEu3eg_tKRob2Vc_wDX5FpKMbXcMI44Iy65ETKeNSsjAISdkNK6uaRBJTikN3YS8QsQFNltF4380gucl8d67LHnrmvy2Wq6Lp2ZahsPvkf3uJT2GnTrrZcbVLnsGWnz2Hx4M1Y23-AhbHjKrxFR9Mf_qMdaeUi7OTarieDUqdbYYJPsNr2Ix3SBShIjRhn-bLvPx74IqNKnkeRqfbbOyxJKkoq3mn1hou2MjSOBxxmu7Clzt56JewPZvP_CtgJEQRSO1EqI3SOkLLYTRpm8xksUkz3QLeACBxNVk7aYZ8T6hoQ8AkBJiEAJMQYFrwYb3-sqIp-evK_QYaSe2u8mSDixboWxjbrPqzQUFZonn9b7Nv4eHpeNBP-mfD3h48EnRoUY4_7cN2sVj6A3jgfhTTfPGm3FEMvt41-n4DrelcDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully-Mixed+Finite+Element+Method+for+the+n+-Dimensional+Boussinesq+Problem+with+Temperature-Dependent+Parameters&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Almonacid%2C+Javier+A.&rft.au=Gatica%2C+Gabriel+N.&rft.date=2020-04-01&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=20&rft.issue=2&rft.spage=187&rft.epage=213&rft_id=info:doi/10.1515%2Fcmam-2018-0187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2018_0187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon