Accuracy improvement of multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization

Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve t...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 31; no. 26; p. 42926
Main Authors: Wan, Maosen, Zheng, Renhao, Zhao, Huining, Yu, Liandong
Format: Journal Article
Language:English
Published: United States 18.12.2023
ISSN:1094-4087, 1094-4087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization.
AbstractList Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization.Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization.
Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization.
Author Wan, Maosen
Zhao, Huining
Yu, Liandong
Zheng, Renhao
Author_xml – sequence: 1
  givenname: Maosen
  surname: Wan
  fullname: Wan, Maosen
– sequence: 2
  givenname: Renhao
  surname: Zheng
  fullname: Zheng, Renhao
– sequence: 3
  givenname: Huining
  surname: Zhao
  fullname: Zhao, Huining
– sequence: 4
  givenname: Liandong
  surname: Yu
  fullname: Yu, Liandong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38178399$$D View this record in MEDLINE/PubMed
BookMark eNplkclOHDEQhi1EFJbkwAsgH5NDg912Lz4imCwS0lySs2VXVyMjtz3Y3UTDK_DSODMgoeRU2_f_UlWdkMMQAxJyxtkFF628XK8uGqa6uj0gx5wpWUnWd4fv8iNykvM9Y1x2qvtIjkTPu14odUyerwCWZGBL3bRJ8REnDDONI50WP7vq0eEfKm6oNxkTzWBCcOGOTmjyknZsprbMBhoD3URXtODjMlBMKSYKMSWE2ZWhCQO989EaT8F4Z5PZteNmdpN72hWfyIfR-IyfX-Mp-f1t9ev6R3W7_v7z-uq2AlGzueKi4S0ztVJsBAuAKOoGjJJ8FPVgSiKhl63EtoWhcFb1tmOms-PQoZWjOCVf9r5l4YcF86wnlwG9NwHjknWt6l41bdOygp6_ooudcNCb5CaTtvrtgAW43AOQYs4JRw1u3m0zJ-O85kz_fZFer_T-RUXx9R_Fm-n_7Av-VpPq
CitedBy_id crossref_primary_10_1088_1361_6501_adfcf1
crossref_primary_10_3390_s24041133
crossref_primary_10_1007_s00170_024_13850_y
Cites_doi 10.1088/1361-6501/abc578
10.1109/34.888718
10.1016/j.ijleo.2019.163882
10.1049/iet-ipr.2009.0153
10.1016/j.optlaseng.2010.09.006
10.1016/j.measurement.2017.07.028
10.1016/j.cad.2006.12.005
10.1016/j.neucom.2015.07.158
10.1016/j.measurement.2020.107798
10.1016/S0263-2241(02)00008-8
10.1364/OE.21.013442
10.1364/OE.22.022043
10.1016/j.optlaseng.2016.05.005
10.1016/j.optlaseng.2010.11.002
10.1080/07421222.1993.11517988
10.1364/AO.26.003705
10.1016/j.optlaseng.2008.06.001
10.1109/TIM.2019.2921440
10.1364/OE.25.019408
10.1016/j.rinp.2020.103637
10.1364/OE.457894
10.1155/2013/456927
10.1364/AO.57.005130
10.1016/j.measurement.2022.110837
10.1088/1361-6501/aaf5bd
10.1364/AO.428054
10.1117/1.OE.54.10.105108
10.1016/j.optlaseng.2007.12.008
10.1364/OE.27.034681
10.1109/34.982886
10.1364/AO.481406
10.3390/s16010077
10.1016/j.optlaseng.2018.11.005
10.1364/OE.449300
10.1016/j.measurement.2015.05.022
10.1016/j.optlaseng.2022.107217
10.1016/j.scienta.2020.109873
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.509726
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 38178399
10_1364_OE_509726
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c320t-135160a2990fcbccee325ca941f32daa944c8464e66cd0a2b98b70a7bfd7eb4f3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155865700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Fri Jul 11 08:08:20 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Tue Nov 18 22:42:31 EST 2025
Sat Nov 29 06:07:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-135160a2990fcbccee325ca941f32daa944c8464e66cd0a2b98b70a7bfd7eb4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.509726
PMID 38178399
PQID 2928956560
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2928956560
pubmed_primary_38178399
crossref_citationtrail_10_1364_OE_509726
crossref_primary_10_1364_OE_509726
PublicationCentury 2000
PublicationDate 2023-12-18
2023-Dec-18
20231218
PublicationDateYYYYMMDD 2023-12-18
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2023
References Gai (oe-31-26-42926-R17) 2019; 30
Chen (oe-31-26-42926-R5) 2022; 30
Li (oe-31-26-42926-R29) 2020; 207
Qi (oe-31-26-42926-R35) 2013; 21
Zhou (oe-31-26-42926-R3) 2021; 60
Chao (oe-31-26-42926-R22) 2015; 73
Huang (oe-31-26-42926-R37) 2021; 278
Wang (oe-31-26-42926-R6) 2017; 25
Bansal (oe-31-26-42926-R38) 1993; 10
Shimizu (oe-31-26-42926-R2) 2020; 32
Wan (oe-31-26-42926-R27) 2023; 62
Sharp (oe-31-26-42926-R33) 2002; 24
Chen (oe-31-26-42926-R18) 2013; 5
Demarsin (oe-31-26-42926-R36) 2007; 39
He (oe-31-26-42926-R1) 2022; 30
Yang (oe-31-26-42926-R15) 2008; 46
Xu (oe-31-26-42926-R30) 2020; 19
Zou (oe-31-26-42926-R23) 2019; 27
Huang (oe-31-26-42926-R11) 2019; 115
Isheil (oe-31-26-42926-R25) 2011; 49
Hui-yuan (oe-31-26-42926-R21) 2011; 5
Xu (oe-31-26-42926-R12) 2014; 22
Liu (oe-31-26-42926-R16) 2018; 57
Ruifeng (oe-31-26-42926-R28) 2019; 56
Yang (oe-31-26-42926-R20) 2022; 191
Isa (oe-31-26-42926-R8) 2017; 111
Zhang (oe-31-26-42926-R19) 2015; 54
Liu (oe-31-26-42926-R9) 2011; 49
Wang (oe-31-26-42926-R4) 2020; 69
Wang (oe-31-26-42926-R10) 2016; 215
Sun (oe-31-26-42926-R13) 2016; 16
Powell (oe-31-26-42926-R32) 1987; 26
Lartigue (oe-31-26-42926-R34) 2002; 32
Zhang (oe-31-26-42926-R14) 2000; 22
Genta (oe-31-26-42926-R7) 2016; 86
Liu (oe-31-26-42926-R26) 2022; 159
He (oe-31-26-42926-R31) 2020; 159
Van Gestel (oe-31-26-42926-R24) 2009; 47
References_xml – volume: 32
  start-page: 042003
  year: 2020
  ident: oe-31-26-42926-R2
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abc578
– volume: 22
  start-page: 1330
  year: 2000
  ident: oe-31-26-42926-R14
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.888718
– volume: 207
  start-page: 163882
  year: 2020
  ident: oe-31-26-42926-R29
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163882
– volume: 5
  start-page: 369
  year: 2011
  ident: oe-31-26-42926-R21
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2009.0153
– volume: 49
  start-page: 16
  year: 2011
  ident: oe-31-26-42926-R25
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2010.09.006
– volume: 111
  start-page: 122
  year: 2017
  ident: oe-31-26-42926-R8
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.07.028
– volume: 39
  start-page: 276
  year: 2007
  ident: oe-31-26-42926-R36
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2006.12.005
– volume: 215
  start-page: 82
  year: 2016
  ident: oe-31-26-42926-R10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.158
– volume: 159
  start-page: 107798
  year: 2020
  ident: oe-31-26-42926-R31
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107798
– volume: 32
  start-page: 193
  year: 2002
  ident: oe-31-26-42926-R34
  publication-title: Measurement
  doi: 10.1016/S0263-2241(02)00008-8
– volume: 21
  start-page: 13442
  year: 2013
  ident: oe-31-26-42926-R35
  publication-title: Opt. Express
  doi: 10.1364/OE.21.013442
– volume: 22
  start-page: 22043
  year: 2014
  ident: oe-31-26-42926-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.22.022043
– volume: 86
  start-page: 11
  year: 2016
  ident: oe-31-26-42926-R7
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.05.005
– volume: 49
  start-page: 570
  year: 2011
  ident: oe-31-26-42926-R9
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2010.11.002
– volume: 10
  start-page: 11
  year: 1993
  ident: oe-31-26-42926-R38
  publication-title: Journal of Management Information Systems
  doi: 10.1080/07421222.1993.11517988
– volume: 26
  start-page: 3705
  year: 1987
  ident: oe-31-26-42926-R32
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.003705
– volume: 47
  start-page: 336
  year: 2009
  ident: oe-31-26-42926-R24
  publication-title: Optics and lasers in engineering
  doi: 10.1016/j.optlaseng.2008.06.001
– volume: 69
  start-page: 2182
  year: 2020
  ident: oe-31-26-42926-R4
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2921440
– volume: 25
  start-page: 19408
  year: 2017
  ident: oe-31-26-42926-R6
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019408
– volume: 19
  start-page: 103637
  year: 2020
  ident: oe-31-26-42926-R30
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103637
– volume: 30
  start-page: 25290
  year: 2022
  ident: oe-31-26-42926-R5
  publication-title: Opt. Express
  doi: 10.1364/OE.457894
– volume: 5
  start-page: 456927
  year: 2013
  ident: oe-31-26-42926-R18
  publication-title: Adv. Mech. Eng.
  doi: 10.1155/2013/456927
– volume: 57
  start-page: 5130
  year: 2018
  ident: oe-31-26-42926-R16
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.005130
– volume: 191
  start-page: 110837
  year: 2022
  ident: oe-31-26-42926-R20
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110837
– volume: 30
  start-page: 025203
  year: 2019
  ident: oe-31-26-42926-R17
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaf5bd
– volume: 60
  start-page: 7214
  year: 2021
  ident: oe-31-26-42926-R3
  publication-title: Appl. Opt.
  doi: 10.1364/AO.428054
– volume: 54
  start-page: 105108
  year: 2015
  ident: oe-31-26-42926-R19
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.10.105108
– volume: 46
  start-page: 373
  year: 2008
  ident: oe-31-26-42926-R15
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2007.12.008
– volume: 27
  start-page: 34681
  year: 2019
  ident: oe-31-26-42926-R23
  publication-title: Opt. Express
  doi: 10.1364/OE.27.034681
– volume: 56
  start-page: 8
  year: 2019
  ident: oe-31-26-42926-R28
  publication-title: Laser & Optoelectronics Progress
– volume: 24
  start-page: 90
  year: 2002
  ident: oe-31-26-42926-R33
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.982886
– volume: 62
  start-page: 2145
  year: 2023
  ident: oe-31-26-42926-R27
  publication-title: Appl. Opt.
  doi: 10.1364/AO.481406
– volume: 16
  start-page: 77
  year: 2016
  ident: oe-31-26-42926-R13
  publication-title: Sensors
  doi: 10.3390/s16010077
– volume: 115
  start-page: 32
  year: 2019
  ident: oe-31-26-42926-R11
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.11.005
– volume: 30
  start-page: 8571
  year: 2022
  ident: oe-31-26-42926-R1
  publication-title: Opt. Express
  doi: 10.1364/OE.449300
– volume: 73
  start-page: 191
  year: 2015
  ident: oe-31-26-42926-R22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.05.022
– volume: 159
  start-page: 107217
  year: 2022
  ident: oe-31-26-42926-R26
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2022.107217
– volume: 278
  start-page: 109873
  year: 2021
  ident: oe-31-26-42926-R37
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109873
SSID ssj0014797
Score 2.4601438
Snippet Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 42926
Title Accuracy improvement of multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/38178399
https://www.proquest.com/docview/2928956560
Volume 31
WOSCitedRecordID wos001155865700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB66q4Iv4t16KaOICCHaZia3x8XNsg9rK9KF4ktIJhO30E1i0ix98g_4G_yvnjOT20KF9cGXEMLkQr-vZ845c-Z8hLy1eQy8cBPTTpPE5BHErJE9Yyb8kxIxQ4GkNFZiE-587q1W_pfR6He7F-Zq42aZt9v5xX-FGq4B2Lh19h_g7h4KF-AcQIcjwA7HGwF_JERdooj7WuULZLvar0oHTbVRhR0b4DRjH2ehJYuMyz5VWBk4syW4ilDka7hXbPI6MWRZ5qUhUMyjURfPkradCOCMUbd2PsEGXTabO4ee76JQDaHlruiKPlQeX9cSR3nV70n7diG1Bfoqs4soH-S2VV73tFaiFp29qnVuIUJdku_DLIbFsCLkmuGFMBNi2WbylXuuNda6mTM0K62h7UXhLWfvrMAcDqgtgg82Niva03l7vghPzs_OwmWwWr4rfpgoSoaL941CywG5Zbm2jxWDn38G3SIVd7V2T_uZTeMqeNvH7l3X3Z2_xDDKl1neJ_eaIIQeafI8ICOZPSR3VDGwqB6RXy2F6IBCNE9pTyHKjqmiEG0pRIcUoopCNM-oohBVFKKKQrSnEAXIqKYQHVCIDin0mJyfBMtPp2Yj2mEKZk23Jio-OtMIvZxUxAJ8MGbZIvL5LGVWEsEJF-Dzcuk4IoFxse_F7jRy4zRxZcxT9oQcZnkmnxHKBPMd6acCogIeCxZbXKa2HVspc1yYV8bkffvbhqLpaI_CKptQLdM6PFwEoYZhTN50QwvdxmXfoNctQCEYWVw5izKZ11UIzPJ8DH2mY_JUI9c9BltcQpThP7_B3S_I3Z78L8nhtqzlK3JbXG3XVTkhB-7Km6is0EQx7Q_F3LEl
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+improvement+of+multi-view+3D+laser+scanning+measurements+based+on+point+cloud+error+correction+and+global+calibration+optimization&rft.jtitle=Optics+express&rft.au=Wan%2C+Maosen&rft.au=Zheng%2C+Renhao&rft.au=Zhao%2C+Huining&rft.au=Yu%2C+Liandong&rft.date=2023-12-18&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=26&rft.spage=42926&rft_id=info:doi/10.1364%2FOE.509726&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon