Accuracy improvement of multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization
Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve t...
Saved in:
| Published in: | Optics express Vol. 31; no. 26; p. 42926 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
18.12.2023
|
| ISSN: | 1094-4087, 1094-4087 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization. |
|---|---|
| AbstractList | Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization.Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization. Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the gathering of more 3D data. However, it also increases the difficulty of system algorithms in obtaining high measurement accuracy. To improve the measurement accuracy, there is an urgent need to address global calibration and error correction issues caused by the employment of multi-view systems. An accuracy improvement method for multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization is then proposed. First, a planar asymmetric circular grid target is designed to calibrate the cameras, laser planes, and initial global transformation matrices of the multi-view 3D laser scanning probe simultaneously. The influence of the position of the laser plane on the measurement error is analyzed and what we believe to be novel mathematical error influencing factors are then modelled for point accuracy. Furthermore, a believed to be novel error model based on the backpropagation (BP) neural network is established for the regression analysis of the mathematical error influencing factors and measurement deviations for each point based on the standard sphere plate measurement. The final measurement is optimized by the correction of point cloud for each camera of the multi-view system and the global calibration optimization based on the error model. The proposed method is reliable and easy to implement, since it only requires a standard sphere plate and a planar target. Several experiments show that the method can effectively improve the measurement accuracy of multi-view 3D laser scanning probe through point cloud error correction and calibration optimization. |
| Author | Wan, Maosen Zhao, Huining Yu, Liandong Zheng, Renhao |
| Author_xml | – sequence: 1 givenname: Maosen surname: Wan fullname: Wan, Maosen – sequence: 2 givenname: Renhao surname: Zheng fullname: Zheng, Renhao – sequence: 3 givenname: Huining surname: Zhao fullname: Zhao, Huining – sequence: 4 givenname: Liandong surname: Yu fullname: Yu, Liandong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38178399$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkclOHDEQhi1EFJbkwAsgH5NDg912Lz4imCwS0lySs2VXVyMjtz3Y3UTDK_DSODMgoeRU2_f_UlWdkMMQAxJyxtkFF628XK8uGqa6uj0gx5wpWUnWd4fv8iNykvM9Y1x2qvtIjkTPu14odUyerwCWZGBL3bRJ8REnDDONI50WP7vq0eEfKm6oNxkTzWBCcOGOTmjyknZsprbMBhoD3URXtODjMlBMKSYKMSWE2ZWhCQO989EaT8F4Z5PZteNmdpN72hWfyIfR-IyfX-Mp-f1t9ev6R3W7_v7z-uq2AlGzueKi4S0ztVJsBAuAKOoGjJJ8FPVgSiKhl63EtoWhcFb1tmOms-PQoZWjOCVf9r5l4YcF86wnlwG9NwHjknWt6l41bdOygp6_ooudcNCb5CaTtvrtgAW43AOQYs4JRw1u3m0zJ-O85kz_fZFer_T-RUXx9R_Fm-n_7Av-VpPq |
| CitedBy_id | crossref_primary_10_1088_1361_6501_adfcf1 crossref_primary_10_3390_s24041133 crossref_primary_10_1007_s00170_024_13850_y |
| Cites_doi | 10.1088/1361-6501/abc578 10.1109/34.888718 10.1016/j.ijleo.2019.163882 10.1049/iet-ipr.2009.0153 10.1016/j.optlaseng.2010.09.006 10.1016/j.measurement.2017.07.028 10.1016/j.cad.2006.12.005 10.1016/j.neucom.2015.07.158 10.1016/j.measurement.2020.107798 10.1016/S0263-2241(02)00008-8 10.1364/OE.21.013442 10.1364/OE.22.022043 10.1016/j.optlaseng.2016.05.005 10.1016/j.optlaseng.2010.11.002 10.1080/07421222.1993.11517988 10.1364/AO.26.003705 10.1016/j.optlaseng.2008.06.001 10.1109/TIM.2019.2921440 10.1364/OE.25.019408 10.1016/j.rinp.2020.103637 10.1364/OE.457894 10.1155/2013/456927 10.1364/AO.57.005130 10.1016/j.measurement.2022.110837 10.1088/1361-6501/aaf5bd 10.1364/AO.428054 10.1117/1.OE.54.10.105108 10.1016/j.optlaseng.2007.12.008 10.1364/OE.27.034681 10.1109/34.982886 10.1364/AO.481406 10.3390/s16010077 10.1016/j.optlaseng.2018.11.005 10.1364/OE.449300 10.1016/j.measurement.2015.05.022 10.1016/j.optlaseng.2022.107217 10.1016/j.scienta.2020.109873 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.509726 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 38178399 10_1364_OE_509726 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
| ID | FETCH-LOGICAL-c320t-135160a2990fcbccee325ca941f32daa944c8464e66cd0a2b98b70a7bfd7eb4f3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155865700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Fri Jul 11 08:08:20 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Tue Nov 18 22:42:31 EST 2025 Sat Nov 29 06:07:09 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c320t-135160a2990fcbccee325ca941f32daa944c8464e66cd0a2b98b70a7bfd7eb4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1364/oe.509726 |
| PMID | 38178399 |
| PQID | 2928956560 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2928956560 pubmed_primary_38178399 crossref_citationtrail_10_1364_OE_509726 crossref_primary_10_1364_OE_509726 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-18 2023-Dec-18 20231218 |
| PublicationDateYYYYMMDD | 2023-12-18 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2023 |
| References | Gai (oe-31-26-42926-R17) 2019; 30 Chen (oe-31-26-42926-R5) 2022; 30 Li (oe-31-26-42926-R29) 2020; 207 Qi (oe-31-26-42926-R35) 2013; 21 Zhou (oe-31-26-42926-R3) 2021; 60 Chao (oe-31-26-42926-R22) 2015; 73 Huang (oe-31-26-42926-R37) 2021; 278 Wang (oe-31-26-42926-R6) 2017; 25 Bansal (oe-31-26-42926-R38) 1993; 10 Shimizu (oe-31-26-42926-R2) 2020; 32 Wan (oe-31-26-42926-R27) 2023; 62 Sharp (oe-31-26-42926-R33) 2002; 24 Chen (oe-31-26-42926-R18) 2013; 5 Demarsin (oe-31-26-42926-R36) 2007; 39 He (oe-31-26-42926-R1) 2022; 30 Yang (oe-31-26-42926-R15) 2008; 46 Xu (oe-31-26-42926-R30) 2020; 19 Zou (oe-31-26-42926-R23) 2019; 27 Huang (oe-31-26-42926-R11) 2019; 115 Isheil (oe-31-26-42926-R25) 2011; 49 Hui-yuan (oe-31-26-42926-R21) 2011; 5 Xu (oe-31-26-42926-R12) 2014; 22 Liu (oe-31-26-42926-R16) 2018; 57 Ruifeng (oe-31-26-42926-R28) 2019; 56 Yang (oe-31-26-42926-R20) 2022; 191 Isa (oe-31-26-42926-R8) 2017; 111 Zhang (oe-31-26-42926-R19) 2015; 54 Liu (oe-31-26-42926-R9) 2011; 49 Wang (oe-31-26-42926-R4) 2020; 69 Wang (oe-31-26-42926-R10) 2016; 215 Sun (oe-31-26-42926-R13) 2016; 16 Powell (oe-31-26-42926-R32) 1987; 26 Lartigue (oe-31-26-42926-R34) 2002; 32 Zhang (oe-31-26-42926-R14) 2000; 22 Genta (oe-31-26-42926-R7) 2016; 86 Liu (oe-31-26-42926-R26) 2022; 159 He (oe-31-26-42926-R31) 2020; 159 Van Gestel (oe-31-26-42926-R24) 2009; 47 |
| References_xml | – volume: 32 start-page: 042003 year: 2020 ident: oe-31-26-42926-R2 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abc578 – volume: 22 start-page: 1330 year: 2000 ident: oe-31-26-42926-R14 publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.888718 – volume: 207 start-page: 163882 year: 2020 ident: oe-31-26-42926-R29 publication-title: Optik doi: 10.1016/j.ijleo.2019.163882 – volume: 5 start-page: 369 year: 2011 ident: oe-31-26-42926-R21 publication-title: IET Image Process. doi: 10.1049/iet-ipr.2009.0153 – volume: 49 start-page: 16 year: 2011 ident: oe-31-26-42926-R25 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2010.09.006 – volume: 111 start-page: 122 year: 2017 ident: oe-31-26-42926-R8 publication-title: Measurement doi: 10.1016/j.measurement.2017.07.028 – volume: 39 start-page: 276 year: 2007 ident: oe-31-26-42926-R36 publication-title: Computer-Aided Design doi: 10.1016/j.cad.2006.12.005 – volume: 215 start-page: 82 year: 2016 ident: oe-31-26-42926-R10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.158 – volume: 159 start-page: 107798 year: 2020 ident: oe-31-26-42926-R31 publication-title: Measurement doi: 10.1016/j.measurement.2020.107798 – volume: 32 start-page: 193 year: 2002 ident: oe-31-26-42926-R34 publication-title: Measurement doi: 10.1016/S0263-2241(02)00008-8 – volume: 21 start-page: 13442 year: 2013 ident: oe-31-26-42926-R35 publication-title: Opt. Express doi: 10.1364/OE.21.013442 – volume: 22 start-page: 22043 year: 2014 ident: oe-31-26-42926-R12 publication-title: Opt. Express doi: 10.1364/OE.22.022043 – volume: 86 start-page: 11 year: 2016 ident: oe-31-26-42926-R7 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.05.005 – volume: 49 start-page: 570 year: 2011 ident: oe-31-26-42926-R9 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2010.11.002 – volume: 10 start-page: 11 year: 1993 ident: oe-31-26-42926-R38 publication-title: Journal of Management Information Systems doi: 10.1080/07421222.1993.11517988 – volume: 26 start-page: 3705 year: 1987 ident: oe-31-26-42926-R32 publication-title: Appl. Opt. doi: 10.1364/AO.26.003705 – volume: 47 start-page: 336 year: 2009 ident: oe-31-26-42926-R24 publication-title: Optics and lasers in engineering doi: 10.1016/j.optlaseng.2008.06.001 – volume: 69 start-page: 2182 year: 2020 ident: oe-31-26-42926-R4 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2921440 – volume: 25 start-page: 19408 year: 2017 ident: oe-31-26-42926-R6 publication-title: Opt. Express doi: 10.1364/OE.25.019408 – volume: 19 start-page: 103637 year: 2020 ident: oe-31-26-42926-R30 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103637 – volume: 30 start-page: 25290 year: 2022 ident: oe-31-26-42926-R5 publication-title: Opt. Express doi: 10.1364/OE.457894 – volume: 5 start-page: 456927 year: 2013 ident: oe-31-26-42926-R18 publication-title: Adv. Mech. Eng. doi: 10.1155/2013/456927 – volume: 57 start-page: 5130 year: 2018 ident: oe-31-26-42926-R16 publication-title: Appl. Opt. doi: 10.1364/AO.57.005130 – volume: 191 start-page: 110837 year: 2022 ident: oe-31-26-42926-R20 publication-title: Measurement doi: 10.1016/j.measurement.2022.110837 – volume: 30 start-page: 025203 year: 2019 ident: oe-31-26-42926-R17 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aaf5bd – volume: 60 start-page: 7214 year: 2021 ident: oe-31-26-42926-R3 publication-title: Appl. Opt. doi: 10.1364/AO.428054 – volume: 54 start-page: 105108 year: 2015 ident: oe-31-26-42926-R19 publication-title: Opt. Eng. doi: 10.1117/1.OE.54.10.105108 – volume: 46 start-page: 373 year: 2008 ident: oe-31-26-42926-R15 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2007.12.008 – volume: 27 start-page: 34681 year: 2019 ident: oe-31-26-42926-R23 publication-title: Opt. Express doi: 10.1364/OE.27.034681 – volume: 56 start-page: 8 year: 2019 ident: oe-31-26-42926-R28 publication-title: Laser & Optoelectronics Progress – volume: 24 start-page: 90 year: 2002 ident: oe-31-26-42926-R33 publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.982886 – volume: 62 start-page: 2145 year: 2023 ident: oe-31-26-42926-R27 publication-title: Appl. Opt. doi: 10.1364/AO.481406 – volume: 16 start-page: 77 year: 2016 ident: oe-31-26-42926-R13 publication-title: Sensors doi: 10.3390/s16010077 – volume: 115 start-page: 32 year: 2019 ident: oe-31-26-42926-R11 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.11.005 – volume: 30 start-page: 8571 year: 2022 ident: oe-31-26-42926-R1 publication-title: Opt. Express doi: 10.1364/OE.449300 – volume: 73 start-page: 191 year: 2015 ident: oe-31-26-42926-R22 publication-title: Measurement doi: 10.1016/j.measurement.2015.05.022 – volume: 159 start-page: 107217 year: 2022 ident: oe-31-26-42926-R26 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2022.107217 – volume: 278 start-page: 109873 year: 2021 ident: oe-31-26-42926-R37 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109873 |
| SSID | ssj0014797 |
| Score | 2.4601438 |
| Snippet | Multi-camera laser scanning measurement is emerging as a pivotal element in three-dimensional (3D) optical measurements. It reduces occlusion and enables the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 42926 |
| Title | Accuracy improvement of multi-view 3D laser scanning measurements based on point cloud error correction and global calibration optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38178399 https://www.proquest.com/docview/2928956560 |
| Volume | 31 |
| WOSCitedRecordID | wos001155865700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB66q4Iv4t16KaOICCHaZia3x8XNsg9rK9KF4ktIJhO30E1i0ix98g_4G_yvnjOT20KF9cGXEMLkQr-vZ845c-Z8hLy1eQy8cBPTTpPE5BHErJE9Yyb8kxIxQ4GkNFZiE-587q1W_pfR6He7F-Zq42aZt9v5xX-FGq4B2Lh19h_g7h4KF-AcQIcjwA7HGwF_JERdooj7WuULZLvar0oHTbVRhR0b4DRjH2ehJYuMyz5VWBk4syW4ilDka7hXbPI6MWRZ5qUhUMyjURfPkradCOCMUbd2PsEGXTabO4ee76JQDaHlruiKPlQeX9cSR3nV70n7diG1Bfoqs4soH-S2VV73tFaiFp29qnVuIUJdku_DLIbFsCLkmuGFMBNi2WbylXuuNda6mTM0K62h7UXhLWfvrMAcDqgtgg82Niva03l7vghPzs_OwmWwWr4rfpgoSoaL941CywG5Zbm2jxWDn38G3SIVd7V2T_uZTeMqeNvH7l3X3Z2_xDDKl1neJ_eaIIQeafI8ICOZPSR3VDGwqB6RXy2F6IBCNE9pTyHKjqmiEG0pRIcUoopCNM-oohBVFKKKQrSnEAXIqKYQHVCIDin0mJyfBMtPp2Yj2mEKZk23Jio-OtMIvZxUxAJ8MGbZIvL5LGVWEsEJF-Dzcuk4IoFxse_F7jRy4zRxZcxT9oQcZnkmnxHKBPMd6acCogIeCxZbXKa2HVspc1yYV8bkffvbhqLpaI_CKptQLdM6PFwEoYZhTN50QwvdxmXfoNctQCEYWVw5izKZ11UIzPJ8DH2mY_JUI9c9BltcQpThP7_B3S_I3Z78L8nhtqzlK3JbXG3XVTkhB-7Km6is0EQx7Q_F3LEl |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+improvement+of+multi-view+3D+laser+scanning+measurements+based+on+point+cloud+error+correction+and+global+calibration+optimization&rft.jtitle=Optics+express&rft.au=Wan%2C+Maosen&rft.au=Zheng%2C+Renhao&rft.au=Zhao%2C+Huining&rft.au=Yu%2C+Liandong&rft.date=2023-12-18&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=26&rft.spage=42926&rft_id=info:doi/10.1364%2FOE.509726&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |