Constrained LMMSE-based object-specific reconstruction in compressive sensing
In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full imag...
Gespeichert in:
| Veröffentlicht in: | IET signal processing Jg. 11; H. 9; S. 1122 - 1127 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
01.12.2017
|
| Schlagworte: | |
| ISSN: | 1751-9675, 1751-9683, 1751-9683 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full image. Hence, those are computationally expensive. If some prior knowledge of the object is available, then a closed-form reconstruction algorithm can be formulated. The goal is to reconstruct the object of interest efficiently without being bothered about the quality of reconstruction of the scene. To address this situation, a constraint is formulated and incorporated into linear minimum mean square error (LMMSE) estimator to form a closed-form solution. This compact solution is capable of meaningfully reconstructing the object relative to the scene. In the proposed method, an ill-conditioned matrix inversion problem has been faced and overcome by regularization method. To boost the speed of the algorithm, a modified Euler method is proposed for finding the regularization parameter. To further speedup the reconstruction process, larger images are divided into several pieces and each piece is reconstructed separately using constrained LMMSE. For a given number of measurements, the simulation-based results demonstrate acceptable quality of reconstruction with minimal computational effort. |
|---|---|
| AbstractList | In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full image. Hence, those are computationally expensive. If some prior knowledge of the object is available, then a closed‐form reconstruction algorithm can be formulated. The goal is to reconstruct the object of interest efficiently without being bothered about the quality of reconstruction of the scene. To address this situation, a constraint is formulated and incorporated into linear minimum mean square error (LMMSE) estimator to form a closed‐form solution. This compact solution is capable of meaningfully reconstructing the object relative to the scene. In the proposed method, an ill‐conditioned matrix inversion problem has been faced and overcome by regularization method. To boost the speed of the algorithm, a modified Euler method is proposed for finding the regularization parameter. To further speedup the reconstruction process, larger images are divided into several pieces and each piece is reconstructed separately using constrained LMMSE. For a given number of measurements, the simulation‐based results demonstrate acceptable quality of reconstruction with minimal computational effort. |
| Author | Panda, Ganapati Majhi, Babita Tripathy, Soumya Ranjan |
| Author_xml | – sequence: 1 givenname: Soumya Ranjan surname: Tripathy fullname: Tripathy, Soumya Ranjan email: st11@iitbbs.ac.in organization: 1School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India – sequence: 2 givenname: Ganapati surname: Panda fullname: Panda, Ganapati organization: 1School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India – sequence: 3 givenname: Babita surname: Majhi fullname: Majhi, Babita organization: 2Department of CSIT, Guru Ghasidas Vishwavidyalay, Central University, Bilaspur, India |
| BookMark | eNqFkE1PAjEQhhuDiYD-AG979VDsx3bLelMCSrJEI3huut1ZUwLdTQsa_r1dMcaDxtPM4X3ezDwD1HONA4QuKRlRkubXFnY4tH7ECM1GhDF5gvpUCorzbMx737sUZ2gQwpoQkQnK-mgxaVzYeW0dVEmxWCynuNQh7k25BtN1grG1NYkH85ncm51tXGJdYppt6yEE-wZJABesez1Hp7XeBLj4mkP0MpuuJg-4eLyfT24LbDgjHEtCKsPKSpQ657pMIc_KNGOSal6LHAzVBCSRkgmhc5KNS0J0nae8zjhIUQEfInrsNb4JwUOtWm-32h8UJarzoaIPFX2ozofqfETm5si82w0c_gfUcl6wu1k0JXiEr45wF1s3e-_ie2o-Xanl0_MPpq3qmMW_ZP8-7AOIf4Zo |
| Cites_doi | 10.1109/JSTARS.2013.2263309 10.1137/S1064827596304010 10.1016/j.acha.2008.07.002 10.1137/1034115 10.1109/ICASSP.2007.366874 10.1109/TIT.2007.909108 10.7848/ksgpc.2013.31.6-2.577 10.1109/TIT.2005.862083 10.1109/MSP.2007.914729 10.1109/TAES.2009.5259191 10.1109/TIT.2006.871582 10.1109/IGARSS.2013.6723499 10.1109/MSP.2007.4286571 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-spr.2016.0227 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9683 |
| EndPage | 1127 |
| ExternalDocumentID | 10_1049_iet_spr_2016_0227 SIL2BF00553 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 DU5 EBS EJD HCIFZ HZ IFIPE IPLJI J9A JAVBF K6V K7- L6V LAI LOTEE LXI LXU M43 M7S NADUK NXXTH O9- OCL P2P P62 PTHSS RIE RNS RUI S0W UNMZH UNR ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO IGS ITC MCNEO OK1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3203-700dc2bd5ba93ab4e96b46271a3f59ec1a0e7077255a9068b00af943f63e75de3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419020100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9675 1751-9683 |
| IngestDate | Wed Oct 29 21:25:21 EDT 2025 Wed Jan 22 16:31:05 EST 2025 Tue Jan 05 21:45:57 EST 2021 Thu May 09 18:04:54 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | regularization method modified Euler method compressed sensing matrix inversion image reconstruction constrained LMMSE-based object-specific reconstruction linear minimum mean square error estimator mean square error methods closed-form reconstruction algorithm compressive sensing ill-conditioned matrix inversion problem |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3203-700dc2bd5ba93ab4e96b46271a3f59ec1a0e7077255a9068b00af943f63e75de3 |
| PageCount | 6 |
| ParticipantIDs | wiley_primary_10_1049_iet_spr_2016_0227_SIL2BF00553 crossref_primary_10_1049_iet_spr_2016_0227 iet_journals_10_1049_iet_spr_2016_0227 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20171200 December 2017 2017-12-00 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 20171200 |
| PublicationDecade | 2010 |
| PublicationTitle | IET signal processing |
| PublicationYear | 2017 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Candes, E.; Romberg, J.; Tao, T. (C1) 2006; 52 Youn, J.; Hong, C.; Kim, T. (C19) 2013; 31 Fang, J.; Xu, Z.; Zhang, B. (C8) 2014; 7 Baraniuk, R.G. (C12) 2007; 24 Chen, S.S.; Donoho, D.L.; Saunders, M.A. (C4) 1999; 20 Mahalanobis, A.; Muse, R. (C7) 2009; 45 Donoho, D.L. (C2) 2006; 52 Tropp, J.; Gilbert, A. (C5) 2007; 53 Hansen, P.C. (C17) 1992; 34 Needell, D.; Tropp, J.A. (C6) 2009; 26 Romberg, J. (C3) 2008; 25 2009; 45 2006; 52 2001 2011 2013; 31 2008; 25 2007 1999; 20 1993 2013 2007; 53 2014; 7 1992; 34 2007; 24 2009; 26 1978 1977 Hansen P.C. (e_1_2_6_17_2) 2001 Bibby J. (e_1_2_6_15_2) 1977 e_1_2_6_20_2 Hou B. (e_1_2_6_12_2) 2011 Atkinson K.A. (e_1_2_6_19_2) 1978 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_18_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_13_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_11_2 Kay S.M. (e_1_2_6_14_2) 1993 e_1_2_6_21_2 e_1_2_6_16_2 |
| References_xml | – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 ident: C1 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inform. Theory – volume: 24 start-page: 118 issue: 4 year: 2007 end-page: 120 ident: C12 article-title: Compressive sensing publication-title: IEEE Signal Processing Mag. – volume: 25 start-page: 14 issue: 2 year: 2008 end-page: 20 ident: C3 article-title: Imaging via compressive sampling publication-title: IEEE Signal Process. Mag. – volume: 34 start-page: 561 issue: 4 year: 1992 end-page: 580 ident: C17 article-title: Analysis of discrete ill-posed problems by means of the L-curve publication-title: SIAM Rev. – volume: 20 start-page: 33 issue: 1 year: 1999 end-page: 61 ident: C4 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. – volume: 53 start-page: 4655 issue: 12 year: 2007 end-page: 4666 ident: C5 article-title: Signal recovery from partial information via orthogonal matching pursuit publication-title: IEEE Trans. Inform. Theory – volume: 7 start-page: 352 issue: 1 year: 2014 end-page: 363 ident: C8 article-title: Fast compressed sensing SAR imaging based on approximated observation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: C2 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory – volume: 45 start-page: 1167 issue: 3 year: 2009 end-page: 1180 ident: C7 article-title: Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems publication-title: IEEE Trans. Aerosp. – volume: 31 start-page: 577 issue: 6–2 year: 2013 end-page: 583 ident: C19 article-title: Effective determination of optimal regularization parameter in rational polynomial coefficients derivation publication-title: J. Korean Soc. Surv. Geodesy Photogrammetry Cartography – volume: 26 start-page: 301 issue: 3 year: 2009 end-page: 321 ident: C6 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. – volume: 7 start-page: 352 issue: 1 year: 2014 end-page: 363 article-title: Fast compressed sensing SAR imaging based on approximated observation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – start-page: 3167 year: 2013 end-page: 3170 article-title: High resolution SAR target reconstruction from compressive measurements with prior knowledge – volume: 26 start-page: 301 issue: 3 year: 2009 end-page: 321 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. – volume: 20 start-page: 33 issue: 1 year: 1999 end-page: 61 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inform. Theory – volume: 31 start-page: 577 issue: 6–2 year: 2013 end-page: 583 article-title: Effective determination of optimal regularization parameter in rational polynomial coefficients derivation publication-title: J. Korean Soc. Surv. Geodesy Photogrammetry Cartography – volume: 45 start-page: 1167 issue: 3 year: 2009 end-page: 1180 article-title: Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems publication-title: IEEE Trans. Aerosp. – start-page: 74 year: 2011 end-page: 80 – start-page: 119 year: 2001 end-page: 142 – volume: 25 start-page: 14 issue: 2 year: 2008 end-page: 20 article-title: Imaging via compressive sampling publication-title: IEEE Signal Process. Mag. – year: 1978 – year: 1977 – year: 1993 – volume: 53 start-page: 4655 issue: 12 year: 2007 end-page: 4666 article-title: Signal recovery from partial information via orthogonal matching pursuit publication-title: IEEE Trans. Inform. Theory – start-page: 1 year: 2011 end-page: 4 article-title: Recognition‐oriented Bayesian SAR imaging – start-page: III‐1093 year: 2007 end-page: III‐1096 article-title: Minimum MSE estimation with convex constraints – volume: 24 start-page: 118 issue: 4 year: 2007 end-page: 120 article-title: Compressive sensing publication-title: IEEE Signal Processing Mag. – volume: 34 start-page: 561 issue: 4 year: 1992 end-page: 580 article-title: Analysis of discrete ill‐posed problems by means of the L‐curve publication-title: SIAM Rev. – ident: e_1_2_6_9_2 doi: 10.1109/JSTARS.2013.2263309 – ident: e_1_2_6_5_2 doi: 10.1137/S1064827596304010 – volume-title: An introduction to numerical analysis year: 1978 ident: e_1_2_6_19_2 – ident: e_1_2_6_10_2 – ident: e_1_2_6_7_2 doi: 10.1016/j.acha.2008.07.002 – ident: e_1_2_6_18_2 doi: 10.1137/1034115 – ident: e_1_2_6_21_2 – volume-title: Fundamentals of statistical signal processing: estimation theory year: 1993 ident: e_1_2_6_14_2 – volume-title: Prediction and improved estimation in linear models year: 1977 ident: e_1_2_6_15_2 – ident: e_1_2_6_16_2 doi: 10.1109/ICASSP.2007.366874 – ident: e_1_2_6_6_2 doi: 10.1109/TIT.2007.909108 – ident: e_1_2_6_20_2 doi: 10.7848/ksgpc.2013.31.6-2.577 – ident: e_1_2_6_2_2 doi: 10.1109/TIT.2005.862083 – start-page: 119 volume-title: Computational inverse problems in electrocardiology year: 2001 ident: e_1_2_6_17_2 – ident: e_1_2_6_4_2 doi: 10.1109/MSP.2007.914729 – ident: e_1_2_6_8_2 doi: 10.1109/TAES.2009.5259191 – ident: e_1_2_6_3_2 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_6_11_2 doi: 10.1109/IGARSS.2013.6723499 – start-page: 74 volume-title: Intelligent science and intelligent data engineering year: 2011 ident: e_1_2_6_12_2 – ident: e_1_2_6_13_2 doi: 10.1109/MSP.2007.4286571 |
| SSID | ssj0056512 |
| Score | 2.0798044 |
| Snippet | In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about... |
| SourceID | crossref wiley iet |
| SourceType | Index Database Publisher Enrichment Source |
| StartPage | 1122 |
| SubjectTerms | closed‐form reconstruction algorithm compressed sensing compressive sensing constrained LMMSE‐based object‐specific reconstruction ill‐conditioned matrix inversion problem image reconstruction linear minimum mean square error estimator matrix inversion mean square error methods modified Euler method regularization method Research Article |
| Title | Constrained LMMSE-based object-specific reconstruction in compressive sensing |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0227 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0227 |
| Volume | 11 |
| WOSCitedRecordID | wos000419020100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056512 issn: 1751-9675 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58HfTgW6wvFhEPwupukn3kqNJioZZqFb2FvFZ6WYsVz_4Ef6O_xEy2rRZBQbws7O7sg0km8yUz-QbgIOUyVlwVIY80D52_jkNeaBI6d8MZhvKSwpO4trJ2O7-_550pOB_than4IcYLbmgZfrxGA5eqqkLiQK1rxJ59Dgd9pPSM02MkwpuG2TimOdZvIKwzGo4dYKlCnhnWk09zOg5t8pNvr5hwTtPu9iRk9T6nsfQvf7sMi0PIGZxWfWQFpmy5CgtfiAjX4ArrdvpqEdYErcvLbv399Q0dnAkeFa7UuFPck4l5RYGfQ495Z4NeGWBeus-nfbHBADPiy4d1uG3Ub84vwmGxhVBTEtEwiyKjiTKJkpxKxSxPFUtJFktaJNzqWEY2ixwWTxLJozR35ioLzmiRUpslxtINmCkfS7sJATUkz3WhWSIZ4yxTzFhmiHbg0IENE9fgaKRl0a84NYSPhTMunJ6E05NAPQnUUw0O8drQsgY_Ce5PCDbrN6Lbuf4UEH1T1ID6Vvr9u6LbbJGzBnKU0a0_PbUN8wQxgM992YEZ1y52F-b0y3Nv8LTnO6k73jXbH892624 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB21gAQc2BFljRDigBRIYmfxkaUVFWlVaBG9WYntoF7SiiLOfALfyJfgcdpChQQS4phkklhjj-fZM34DcBSwxE1ZmtnMEczW_tq1WSY8W7sbRjGU52eGxDUOm82o22WtElyNz8IU_BCTDTe0DDNfo4HjhnSx4KRIktlTz_ZwgJyebnCKTHhlmKUacGABh4d6czwfa8RSxDxDLCgfRGQS22Rn3z4x5Z3K-vE0ZjVOp7b8P81dgaUR6LTOi1GyCiWVr8HiFyrCdbjFyp2mXoSSVtxotKvvr2_o4qTVT3GvRl_iqUzMLLLMKnrCPGv1cgsz001G7YuyhpgTnz9uwH2t2rm8tkflFmxBPIfYoeNI4aXSTxNGkpQqFqQ08EI3IZnPlHATR4WORuO-nzAniLTBJhmjJAuICn2pyCbM5P1cbYFFpBdFIhPUTyhlNEypVFR6QsNDDTekW4GTsZr5oGDV4CYaThnXeuJaTxz1xFFPFTjGeyPbGv4keDglWK92eLt19ynABzKrADHd9Pt_ebseexc1ZCkj23966wDmrzuNmMf15s0OLHiICEwmzC7M6D5SezAnXp57w6d9M2I_AOFd7rc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED82FdEHv8X5WUR8EKptkn7kUd2Gwzmmm-BbaJNU9tINJz77J_g3-peYS7fpEBTEx7ZpG-5yuV9yl98BHIU88VOeZi73JHeNv_ZdnkniGnfDGYbygsySuDajVit-eODtElTHZ2EKfojJhhtahp2v0cD1QGXFgpMhSWZPP7vDAXJ6-uEpMuGVYZYFkY9jm7D2eD42iKWIeUZYUD6M6SS2yc--fWLKO5XN42nMap1Offl_ursCSyPQ6ZwXo2QVSjpfg8UvVITrcIuVO229CK2c5s1Np_b--oYuTjn9FPdqzCWeysTMIseuoifMs04vdzAz3WbUvmhniDnx-eMG3Ndr3csrd1RuwZWUeNSNPE9JkqogTThNUqZ5mLKQRH5Cs4Br6SeejjyDxoMg4V4YG4NNMs5oFlIdBUrTTZjJ-7neAocqEscykyxIGOMsSpnSTBFp4KGBG8qvwMlYzGJQsGoIGw1nXBg5CSMngXISKKcKHOO9kW0Nf2p4ONWwUeuKTvvus4EwGqkAtWr6_b-i02iSizqylNHtP711APPtal00G63rHVggCAhsIswuzBgV6T2Yky_PveHTvh2wHw6R7c4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+LMMSE%E2%80%90based+object%E2%80%90specific+reconstruction+in+compressive+sensing&rft.jtitle=IET+signal+processing&rft.au=Tripathy%2C+Soumya+Ranjan&rft.au=Panda%2C+Ganapati&rft.au=Majhi%2C+Babita&rft.date=2017-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9683&rft.eissn=1751-9683&rft.volume=11&rft.issue=9&rft.spage=1122&rft.epage=1127&rft_id=info:doi/10.1049%2Fiet-spr.2016.0227&rft.externalDBID=10.1049%252Fiet-spr.2016.0227&rft.externalDocID=SIL2BF00553 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |