Constrained LMMSE-based object-specific reconstruction in compressive sensing

In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET signal processing Jg. 11; H. 9; S. 1122 - 1127
Hauptverfasser: Tripathy, Soumya Ranjan, Panda, Ganapati, Majhi, Babita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 01.12.2017
Schlagworte:
ISSN:1751-9675, 1751-9683, 1751-9683
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full image. Hence, those are computationally expensive. If some prior knowledge of the object is available, then a closed-form reconstruction algorithm can be formulated. The goal is to reconstruct the object of interest efficiently without being bothered about the quality of reconstruction of the scene. To address this situation, a constraint is formulated and incorporated into linear minimum mean square error (LMMSE) estimator to form a closed-form solution. This compact solution is capable of meaningfully reconstructing the object relative to the scene. In the proposed method, an ill-conditioned matrix inversion problem has been faced and overcome by regularization method. To boost the speed of the algorithm, a modified Euler method is proposed for finding the regularization parameter. To further speedup the reconstruction process, larger images are divided into several pieces and each piece is reconstructed separately using constrained LMMSE. For a given number of measurements, the simulation-based results demonstrate acceptable quality of reconstruction with minimal computational effort.
AbstractList In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about details of the scene. The reconstruction algorithms proposed in the compressive sensing literature try to iteratively reconstruct the full image. Hence, those are computationally expensive. If some prior knowledge of the object is available, then a closed‐form reconstruction algorithm can be formulated. The goal is to reconstruct the object of interest efficiently without being bothered about the quality of reconstruction of the scene. To address this situation, a constraint is formulated and incorporated into linear minimum mean square error (LMMSE) estimator to form a closed‐form solution. This compact solution is capable of meaningfully reconstructing the object relative to the scene. In the proposed method, an ill‐conditioned matrix inversion problem has been faced and overcome by regularization method. To boost the speed of the algorithm, a modified Euler method is proposed for finding the regularization parameter. To further speedup the reconstruction process, larger images are divided into several pieces and each piece is reconstructed separately using constrained LMMSE. For a given number of measurements, the simulation‐based results demonstrate acceptable quality of reconstruction with minimal computational effort.
Author Panda, Ganapati
Majhi, Babita
Tripathy, Soumya Ranjan
Author_xml – sequence: 1
  givenname: Soumya Ranjan
  surname: Tripathy
  fullname: Tripathy, Soumya Ranjan
  email: st11@iitbbs.ac.in
  organization: 1School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
– sequence: 2
  givenname: Ganapati
  surname: Panda
  fullname: Panda, Ganapati
  organization: 1School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
– sequence: 3
  givenname: Babita
  surname: Majhi
  fullname: Majhi, Babita
  organization: 2Department of CSIT, Guru Ghasidas Vishwavidyalay, Central University, Bilaspur, India
BookMark eNqFkE1PAjEQhhuDiYD-AG979VDsx3bLelMCSrJEI3huut1ZUwLdTQsa_r1dMcaDxtPM4X3ezDwD1HONA4QuKRlRkubXFnY4tH7ECM1GhDF5gvpUCorzbMx737sUZ2gQwpoQkQnK-mgxaVzYeW0dVEmxWCynuNQh7k25BtN1grG1NYkH85ncm51tXGJdYppt6yEE-wZJABesez1Hp7XeBLj4mkP0MpuuJg-4eLyfT24LbDgjHEtCKsPKSpQ657pMIc_KNGOSal6LHAzVBCSRkgmhc5KNS0J0nae8zjhIUQEfInrsNb4JwUOtWm-32h8UJarzoaIPFX2ozofqfETm5si82w0c_gfUcl6wu1k0JXiEr45wF1s3e-_ie2o-Xanl0_MPpq3qmMW_ZP8-7AOIf4Zo
Cites_doi 10.1109/JSTARS.2013.2263309
10.1137/S1064827596304010
10.1016/j.acha.2008.07.002
10.1137/1034115
10.1109/ICASSP.2007.366874
10.1109/TIT.2007.909108
10.7848/ksgpc.2013.31.6-2.577
10.1109/TIT.2005.862083
10.1109/MSP.2007.914729
10.1109/TAES.2009.5259191
10.1109/TIT.2006.871582
10.1109/IGARSS.2013.6723499
10.1109/MSP.2007.4286571
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-spr.2016.0227
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 1127
ExternalDocumentID 10_1049_iet_spr_2016_0227
SIL2BF00553
Genre article
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3203-700dc2bd5ba93ab4e96b46271a3f59ec1a0e7077255a9068b00af943f63e75de3
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419020100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9675
1751-9683
IngestDate Wed Oct 29 21:25:21 EDT 2025
Wed Jan 22 16:31:05 EST 2025
Tue Jan 05 21:45:57 EST 2021
Thu May 09 18:04:54 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords regularization method
modified Euler method
compressed sensing
matrix inversion
image reconstruction
constrained LMMSE-based object-specific reconstruction
linear minimum mean square error estimator
mean square error methods
closed-form reconstruction algorithm
compressive sensing
ill-conditioned matrix inversion problem
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3203-700dc2bd5ba93ab4e96b46271a3f59ec1a0e7077255a9068b00af943f63e75de3
PageCount 6
ParticipantIDs wiley_primary_10_1049_iet_spr_2016_0227_SIL2BF00553
crossref_primary_10_1049_iet_spr_2016_0227
iet_journals_10_1049_iet_spr_2016_0227
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20171200
December 2017
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 20171200
PublicationDecade 2010
PublicationTitle IET signal processing
PublicationYear 2017
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Candes, E.; Romberg, J.; Tao, T. (C1) 2006; 52
Youn, J.; Hong, C.; Kim, T. (C19) 2013; 31
Fang, J.; Xu, Z.; Zhang, B. (C8) 2014; 7
Baraniuk, R.G. (C12) 2007; 24
Chen, S.S.; Donoho, D.L.; Saunders, M.A. (C4) 1999; 20
Mahalanobis, A.; Muse, R. (C7) 2009; 45
Donoho, D.L. (C2) 2006; 52
Tropp, J.; Gilbert, A. (C5) 2007; 53
Hansen, P.C. (C17) 1992; 34
Needell, D.; Tropp, J.A. (C6) 2009; 26
Romberg, J. (C3) 2008; 25
2009; 45
2006; 52
2001
2011
2013; 31
2008; 25
2007
1999; 20
1993
2013
2007; 53
2014; 7
1992; 34
2007; 24
2009; 26
1978
1977
Hansen P.C. (e_1_2_6_17_2) 2001
Bibby J. (e_1_2_6_15_2) 1977
e_1_2_6_20_2
Hou B. (e_1_2_6_12_2) 2011
Atkinson K.A. (e_1_2_6_19_2) 1978
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
Kay S.M. (e_1_2_6_14_2) 1993
e_1_2_6_21_2
e_1_2_6_16_2
References_xml – volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  ident: C1
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  end-page: 120
  ident: C12
  article-title: Compressive sensing
  publication-title: IEEE Signal Processing Mag.
– volume: 25
  start-page: 14
  issue: 2
  year: 2008
  end-page: 20
  ident: C3
  article-title: Imaging via compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  end-page: 580
  ident: C17
  article-title: Analysis of discrete ill-posed problems by means of the L-curve
  publication-title: SIAM Rev.
– volume: 20
  start-page: 33
  issue: 1
  year: 1999
  end-page: 61
  ident: C4
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  end-page: 4666
  ident: C5
  article-title: Signal recovery from partial information via orthogonal matching pursuit
  publication-title: IEEE Trans. Inform. Theory
– volume: 7
  start-page: 352
  issue: 1
  year: 2014
  end-page: 363
  ident: C8
  article-title: Fast compressed sensing SAR imaging based on approximated observation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: C2
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
– volume: 45
  start-page: 1167
  issue: 3
  year: 2009
  end-page: 1180
  ident: C7
  article-title: Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems
  publication-title: IEEE Trans. Aerosp.
– volume: 31
  start-page: 577
  issue: 6–2
  year: 2013
  end-page: 583
  ident: C19
  article-title: Effective determination of optimal regularization parameter in rational polynomial coefficients derivation
  publication-title: J. Korean Soc. Surv. Geodesy Photogrammetry Cartography
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  end-page: 321
  ident: C6
  article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 7
  start-page: 352
  issue: 1
  year: 2014
  end-page: 363
  article-title: Fast compressed sensing SAR imaging based on approximated observation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– start-page: 3167
  year: 2013
  end-page: 3170
  article-title: High resolution SAR target reconstruction from compressive measurements with prior knowledge
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  end-page: 321
  article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 20
  start-page: 33
  issue: 1
  year: 1999
  end-page: 61
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
– volume: 31
  start-page: 577
  issue: 6–2
  year: 2013
  end-page: 583
  article-title: Effective determination of optimal regularization parameter in rational polynomial coefficients derivation
  publication-title: J. Korean Soc. Surv. Geodesy Photogrammetry Cartography
– volume: 45
  start-page: 1167
  issue: 3
  year: 2009
  end-page: 1180
  article-title: Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems
  publication-title: IEEE Trans. Aerosp.
– start-page: 74
  year: 2011
  end-page: 80
– start-page: 119
  year: 2001
  end-page: 142
– volume: 25
  start-page: 14
  issue: 2
  year: 2008
  end-page: 20
  article-title: Imaging via compressive sampling
  publication-title: IEEE Signal Process. Mag.
– year: 1978
– year: 1977
– year: 1993
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  end-page: 4666
  article-title: Signal recovery from partial information via orthogonal matching pursuit
  publication-title: IEEE Trans. Inform. Theory
– start-page: 1
  year: 2011
  end-page: 4
  article-title: Recognition‐oriented Bayesian SAR imaging
– start-page: III‐1093
  year: 2007
  end-page: III‐1096
  article-title: Minimum MSE estimation with convex constraints
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  end-page: 120
  article-title: Compressive sensing
  publication-title: IEEE Signal Processing Mag.
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  end-page: 580
  article-title: Analysis of discrete ill‐posed problems by means of the L‐curve
  publication-title: SIAM Rev.
– ident: e_1_2_6_9_2
  doi: 10.1109/JSTARS.2013.2263309
– ident: e_1_2_6_5_2
  doi: 10.1137/S1064827596304010
– volume-title: An introduction to numerical analysis
  year: 1978
  ident: e_1_2_6_19_2
– ident: e_1_2_6_10_2
– ident: e_1_2_6_7_2
  doi: 10.1016/j.acha.2008.07.002
– ident: e_1_2_6_18_2
  doi: 10.1137/1034115
– ident: e_1_2_6_21_2
– volume-title: Fundamentals of statistical signal processing: estimation theory
  year: 1993
  ident: e_1_2_6_14_2
– volume-title: Prediction and improved estimation in linear models
  year: 1977
  ident: e_1_2_6_15_2
– ident: e_1_2_6_16_2
  doi: 10.1109/ICASSP.2007.366874
– ident: e_1_2_6_6_2
  doi: 10.1109/TIT.2007.909108
– ident: e_1_2_6_20_2
  doi: 10.7848/ksgpc.2013.31.6-2.577
– ident: e_1_2_6_2_2
  doi: 10.1109/TIT.2005.862083
– start-page: 119
  volume-title: Computational inverse problems in electrocardiology
  year: 2001
  ident: e_1_2_6_17_2
– ident: e_1_2_6_4_2
  doi: 10.1109/MSP.2007.914729
– ident: e_1_2_6_8_2
  doi: 10.1109/TAES.2009.5259191
– ident: e_1_2_6_3_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_6_11_2
  doi: 10.1109/IGARSS.2013.6723499
– start-page: 74
  volume-title: Intelligent science and intelligent data engineering
  year: 2011
  ident: e_1_2_6_12_2
– ident: e_1_2_6_13_2
  doi: 10.1109/MSP.2007.4286571
SSID ssj0056512
Score 2.0798044
Snippet In many applications like surveillance, it is essential to detect the presence of specific objects by seeing an image or video without being concerned about...
SourceID crossref
wiley
iet
SourceType Index Database
Publisher
Enrichment Source
StartPage 1122
SubjectTerms closed‐form reconstruction algorithm
compressed sensing
compressive sensing
constrained LMMSE‐based object‐specific reconstruction
ill‐conditioned matrix inversion problem
image reconstruction
linear minimum mean square error estimator
matrix inversion
mean square error methods
modified Euler method
regularization method
Research Article
Title Constrained LMMSE-based object-specific reconstruction in compressive sensing
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0227
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2016.0227
Volume 11
WOSCitedRecordID wos000419020100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58HfTgW6wvFhEPwupukn3kqNJioZZqFb2FvFZ6WYsVz_4Ef6O_xEy2rRZBQbws7O7sg0km8yUz-QbgIOUyVlwVIY80D52_jkNeaBI6d8MZhvKSwpO4trJ2O7-_550pOB_than4IcYLbmgZfrxGA5eqqkLiQK1rxJ59Dgd9pPSM02MkwpuG2TimOdZvIKwzGo4dYKlCnhnWk09zOg5t8pNvr5hwTtPu9iRk9T6nsfQvf7sMi0PIGZxWfWQFpmy5CgtfiAjX4ArrdvpqEdYErcvLbv399Q0dnAkeFa7UuFPck4l5RYGfQ495Z4NeGWBeus-nfbHBADPiy4d1uG3Ub84vwmGxhVBTEtEwiyKjiTKJkpxKxSxPFUtJFktaJNzqWEY2ixwWTxLJozR35ioLzmiRUpslxtINmCkfS7sJATUkz3WhWSIZ4yxTzFhmiHbg0IENE9fgaKRl0a84NYSPhTMunJ6E05NAPQnUUw0O8drQsgY_Ce5PCDbrN6Lbuf4UEH1T1ID6Vvr9u6LbbJGzBnKU0a0_PbUN8wQxgM992YEZ1y52F-b0y3Nv8LTnO6k73jXbH892624
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB21gAQc2BFljRDigBRIYmfxkaUVFWlVaBG9WYntoF7SiiLOfALfyJfgcdpChQQS4phkklhjj-fZM34DcBSwxE1ZmtnMEczW_tq1WSY8W7sbRjGU52eGxDUOm82o22WtElyNz8IU_BCTDTe0DDNfo4HjhnSx4KRIktlTz_ZwgJyebnCKTHhlmKUacGABh4d6czwfa8RSxDxDLCgfRGQS22Rn3z4x5Z3K-vE0ZjVOp7b8P81dgaUR6LTOi1GyCiWVr8HiFyrCdbjFyp2mXoSSVtxotKvvr2_o4qTVT3GvRl_iqUzMLLLMKnrCPGv1cgsz001G7YuyhpgTnz9uwH2t2rm8tkflFmxBPIfYoeNI4aXSTxNGkpQqFqQ08EI3IZnPlHATR4WORuO-nzAniLTBJhmjJAuICn2pyCbM5P1cbYFFpBdFIhPUTyhlNEypVFR6QsNDDTekW4GTsZr5oGDV4CYaThnXeuJaTxz1xFFPFTjGeyPbGv4keDglWK92eLt19ynABzKrADHd9Pt_ebseexc1ZCkj23966wDmrzuNmMf15s0OLHiICEwmzC7M6D5SezAnXp57w6d9M2I_AOFd7rc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED82FdEHv8X5WUR8EKptkn7kUd2Gwzmmm-BbaJNU9tINJz77J_g3-peYS7fpEBTEx7ZpG-5yuV9yl98BHIU88VOeZi73JHeNv_ZdnkniGnfDGYbygsySuDajVit-eODtElTHZ2EKfojJhhtahp2v0cD1QGXFgpMhSWZPP7vDAXJ6-uEpMuGVYZYFkY9jm7D2eD42iKWIeUZYUD6M6SS2yc--fWLKO5XN42nMap1Offl_ursCSyPQ6ZwXo2QVSjpfg8UvVITrcIuVO229CK2c5s1Np_b--oYuTjn9FPdqzCWeysTMIseuoifMs04vdzAz3WbUvmhniDnx-eMG3Ndr3csrd1RuwZWUeNSNPE9JkqogTThNUqZ5mLKQRH5Cs4Br6SeejjyDxoMg4V4YG4NNMs5oFlIdBUrTTZjJ-7neAocqEscykyxIGOMsSpnSTBFp4KGBG8qvwMlYzGJQsGoIGw1nXBg5CSMngXISKKcKHOO9kW0Nf2p4ONWwUeuKTvvus4EwGqkAtWr6_b-i02iSizqylNHtP711APPtal00G63rHVggCAhsIswuzBgV6T2Yky_PveHTvh2wHw6R7c4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+LMMSE%E2%80%90based+object%E2%80%90specific+reconstruction+in+compressive+sensing&rft.jtitle=IET+signal+processing&rft.au=Tripathy%2C+Soumya+Ranjan&rft.au=Panda%2C+Ganapati&rft.au=Majhi%2C+Babita&rft.date=2017-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9683&rft.eissn=1751-9683&rft.volume=11&rft.issue=9&rft.spage=1122&rft.epage=1127&rft_id=info:doi/10.1049%2Fiet-spr.2016.0227&rft.externalDBID=10.1049%252Fiet-spr.2016.0227&rft.externalDocID=SIL2BF00553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon