VAE-CoGAN: Unpaired image-to-image translation for low-level vision
Low-level vision problems, such as single image haze removal and single image rain removal, usually restore a clear image from an input image using a paired dataset. However, for many problems, the paired training dataset will not be available. In this paper, we propose an unpaired image-to-image tr...
Uložené v:
| Vydané v: | Signal, image and video processing Ročník 17; číslo 4; s. 1019 - 1026 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.06.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1863-1703, 1863-1711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Low-level vision problems, such as single image haze removal and single image rain removal, usually restore a clear image from an input image using a paired dataset. However, for many problems, the paired training dataset will not be available. In this paper, we propose an unpaired image-to-image translation method based on coupled generative adversarial networks (CoGAN) called VAE-CoGAN to solve this problem. Different from the basic CoGAN, we propose a shared-latent space and variational autoencoder (VAE) in framework. We use synthetic datasets and the real-world images to evaluate our method. The extensive evaluation and comparison results show that the proposed method can be effectively applied to numerous low-level vision tasks with favorable performance against the state-of-the-art methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1863-1703 1863-1711 |
| DOI: | 10.1007/s11760-022-02307-y |