Can AI serve as a substitute for human subjects in software engineering research?

Research within sociotechnical domains, such as software engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel appr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automated software engineering Ročník 31; číslo 1; s. 13
Hlavní autori: Gerosa, Marco, Trinkenreich, Bianca, Steinmacher, Igor, Sarma, Anita
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2024
Springer Nature B.V
Predmet:
ISSN:0928-8910, 1573-7535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Research within sociotechnical domains, such as software engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes.
AbstractList Research within sociotechnical domains, such as software engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes.
ArticleNumber 13
Author Gerosa, Marco
Trinkenreich, Bianca
Steinmacher, Igor
Sarma, Anita
Author_xml – sequence: 1
  givenname: Marco
  surname: Gerosa
  fullname: Gerosa, Marco
  email: Marco.Gerosa@nau.edu
  organization: Northern Arizona University
– sequence: 2
  givenname: Bianca
  surname: Trinkenreich
  fullname: Trinkenreich, Bianca
  organization: Oregon State University
– sequence: 3
  givenname: Igor
  surname: Steinmacher
  fullname: Steinmacher, Igor
  organization: Northern Arizona University
– sequence: 4
  givenname: Anita
  surname: Sarma
  fullname: Sarma, Anita
  organization: Oregon State University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTzSa7OUkpfhQEEfQcsumkTWl3a5JV_PduXUHw0NMMw_vMDM-EjJq2QUIuGVwzgPImMhBMZJDzDKAAlckTMmai5FkpuBiRMai8yirF4IxMYtwAgJJKjcnL3DR0tqARwwdSE6mhsatj8qlLSF0b6Lrb9ZF-uEGbIvV937r0aQJSbFa-QQy-WdGAEU2w69tzcurMNuLFb52St_u71_lj9vT8sJjPnjLLmUqZc0q63BlboxHMMljWQqATEnJwsjLC1Dx3kpW5EW5ZAVqHFVrJal4WgAWfkqth7z607x3GpDdtF5r-pOZQVLmQXMk-lQ8pG9oYAzq9D35nwpdmoA_q9KBO9-r0jzp9gKp_kPXJJN82KRi_PY7yAY37gxYMf18dob4BmXOFlg
CitedBy_id crossref_primary_10_2139_ssrn_4595896
crossref_primary_10_17645_mac_9677
crossref_primary_10_1145_3712301
crossref_primary_10_34133_hds_0284
Cites_doi 10.1126/science.adj6791
10.18653/v1/2023.findings-emnlp.669
10.1109/ICSE43902.2021.00098
10.1016/j.tics.2023.04.008
10.1109/ICSE-NIER58687.2023.00016
10.1145/3176349.3176893
10.1093/iwc/iwv046
10.1162/99608f92.1d3cf75d
10.1017/pan.2023.2
10.1145/3510460
10.1075/rs.18007.bib
10.2139/ssrn.4595896
10.1007/s10664-020-09858-z
10.1145/3544548.3580688
10.1145/3487193
10.1145/3581754.3584136
10.1109/MSR59073.2023.00088
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10515-023-00409-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7535
ExternalDocumentID 10_1007_s10515_023_00409_6
GrantInformation_xml – fundername: NSF
  grantid: 2236198; 2235601; 2236198; 2235601
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ff96f2facbea51c10db55ef56020f68a5ab32f6172a5fd80ecfe8ec61b3740e43
IEDL.DBID K7-
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140056400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0928-8910
IngestDate Thu Nov 06 14:30:27 EST 2025
Tue Nov 18 21:51:53 EST 2025
Sat Nov 29 02:06:33 EST 2025
Fri Feb 21 02:39:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Qualitative research
Foundation models
Large language models
Software engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ff96f2facbea51c10db55ef56020f68a5ab32f6172a5fd80ecfe8ec61b3740e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3048256396
PQPubID 2043871
ParticipantIDs proquest_journals_3048256396
crossref_primary_10_1007_s10515_023_00409_6
crossref_citationtrail_10_1007_s10515_023_00409_6
springer_journals_10_1007_s10515_023_00409_6
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Automated software engineering
PublicationTitleAbbrev Autom Softw Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Smith, M., Danilova, A., Naiakshina, A.: A meta-research agenda for recruitment and study design for developer studies. In: 1st International Workshop on Recruiting Participants for Empirical Software Engineering (RoPES’22), 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) (2022)
ArgyleLPBusbyECFuldaNGublerJRRyttingCWingateDOut of one, many: using language models to simulate human samplesPolit. Anal.202331333735110.1017/pan.2023.2
Treude, C., Hata, H.: She elicits requirements and he tests: software engineering gender bias in large language models (2023). arXiv:2303.10131
TrinkenreichBWieseISarmaAGerosaMSteinmacherIWomen’s participation in open source software: a survey of the literatureACM Trans. Softw. Eng. Methodol. (TOSEM)202231413710.1145/3510460
HutsonMMastinAGuinea pigbotsScience (New York, NY)2023381665412112310.1126/science.adj6791
Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., McHardy, R.: Challenges and applications of large language models (2023). arXiv:2307.10169
Lee, S., Peng, T.-Q., Goldberg, M.H., Rosenthal, S.A., Kotcher, J.E., Maibach, E.W., Leiserowitz, A.: Can large language models capture public opinion about global warming? An empirical assessment of algorithmic fidelity and bias (2023). arXiv:2311.00217
Simmons, G., Hare, C.: Large language models as subpopulation representative models: a review (2023). arXiv:2310.17888
DemszkyDYangDYeagerDSBryanCJClapperMChandhokSEichstaedtJCHechtCJamiesonJJohnsonMUsing large language models in psychologyNat. Rev. Psychol.20232114
Hämäläinen, P., Tavast, M., Kunnari, A.: Evaluating large language models in generating synthetic HCI research data: a case study. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3580688
Eliot, L.: The bold promise Of mega-personas as a new shake-up for prompt engineering generative AI techniques (2023). Accessed 08 Nov 2023. https://www.forbes.com/sites/lanceeliot/2023/08/15/the-bold-promise-of-mega-personas-as-a-new-shake-up-for-prompt-engineering-generative-ai-techniques/?sh=2be155065552
BiberDText-linguistic approaches to register variationRegist. Stud.201911427510.1075/rs.18007.bib
StoreyM-AErnstNAWilliamsCKalliamvakouEThe who, what, how of software engineering research: a socio-technical frameworkEmpir. Softw. Eng.2020254097412910.1007/s10664-020-09858-z
Gerosa, M., Wiese, I., Trinkenreich, B., Link, G., Robles, G., Treude, C., Steinmacher, I., Sarma, A.: The shifting sands of motivation: Revisiting what drives contributors in open source. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1046–1058. IEEE (2021)
Sanders, N.E., Ulinich, A., Schneier, B.: Demonstrations of the potential of AI-based political issue polling (2023). arXiv:2307.04781
Suguri Motoki, F.Y., Monteiro, J., Malagueño, R., Rodrigues, V.: From data scarcity to data abundance: crafting synthetic survey data in management accounting using ChatGPT (2023). Available at SSRN
DillionDTandonNGuYGrayKCan AI language models replace human participants?Trends Cogn. Sci.202327759760010.1016/j.tics.2023.04.008
Chew, R., Bollenbacher, J., Wenger, M., Speer, J., Kim, A.: LLM-assisted content analysis: using large language models to support deductive coding (2023). arXiv:2306.14924
Dai, S.-C., Xiong, A., Ku, L.-W.: LLM-in-the-loop: leveraging large language model for thematic analysis (2023). arXiv:2310.15100
ChavesAPEgbertJHockingTDoerryEGerosaMAChatbots language design: the influence of language variation on user experience with tourist assistant chatbotsACM Trans. Comput. Hum. Interact.202229213810.1145/3487193
Xiao, Z., Yuan, X., Liao, Q.V., Abdelghani, R., Oudeyer, P.-Y.: Supporting qualitative analysis with large language models: combining codebook with GPT-3 for deductive coding. In: Companion Proceedings of the 28th International Conference on Intelligent User Interfaces, pp. 75–78 (2023)
Kim, J., Lee, B.: AI-augmented surveys: leveraging large language models for opinion prediction in nationally representative surveys (2023). arXiv:2305.09620
BurnettMStumpfSMacbethJMakriSBeckwithLKwanIPetersAJerniganWGendermag: a method for evaluating software’s gender inclusivenessInteract. Comput.201628676078710.1093/iwc/iwv046
De Paoli, S.: Improved prompting and process for writing user personas with LLMs, using qualitative interviews: capturing behaviour and personality traits of users (2023). arXiv:2310.06391
Aher, G.V., Arriaga, R.I., Kalai, A.T.: Using large language models to simulate multiple humans and replicate human subject studies. In: International Conference on Machine Learning, pp. 337–371. PMLR (2023)
Kokinda, E., Moster, M., Dominic, J., Rodeghero, P.: Under the bridge: trolling and the challenges of recruiting software developers for empirical research studies. In: 2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 55–59 (2023). https://doi.org/10.1109/ICSE-NIER58687.2023.00016
Jiang, H., Zhang, X., Cao, X., Kabbara, J., Roy, D.: PersonaLLM: investigating the ability of GPT-3.5 to express personality traits and gender differences (2023). arXiv:2305.02547
Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large language models are human-level prompt engineers (2022). arXiv:2211.01910
Jung, S.-g., Salminen, J., Kwak, H., An, J., Jansen, B.J.: Automatic persona generation (APG) a rationale and demonstration. In: Proceedings of the 2018 Conference on Human Information Interaction and Retrieval, pp. 321–324 (2018)
Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., Ji, H.: Unleashing cognitive synergy in large language models: a task-solving agent through multi-persona self-collaboration (2023). arXiv:2307.05300
LP Argyle (409_CR2) 2023; 31
409_CR30
M Burnett (409_CR4) 2016; 28
409_CR16
409_CR17
409_CR15
409_CR12
409_CR13
409_CR11
409_CR6
409_CR7
409_CR8
409_CR1
D Demszky (409_CR9) 2023; 2
409_CR18
409_CR19
D Biber (409_CR3) 2019; 1
M-A Storey (409_CR24) 2020; 25
409_CR20
B Trinkenreich (409_CR27) 2022; 31
M Hutson (409_CR14) 2023; 381
D Dillion (409_CR10) 2023; 27
409_CR28
409_CR25
409_CR26
409_CR23
409_CR21
409_CR22
AP Chaves (409_CR5) 2022; 29
409_CR29
References_xml – reference: DemszkyDYangDYeagerDSBryanCJClapperMChandhokSEichstaedtJCHechtCJamiesonJJohnsonMUsing large language models in psychologyNat. Rev. Psychol.20232114
– reference: StoreyM-AErnstNAWilliamsCKalliamvakouEThe who, what, how of software engineering research: a socio-technical frameworkEmpir. Softw. Eng.2020254097412910.1007/s10664-020-09858-z
– reference: BiberDText-linguistic approaches to register variationRegist. Stud.201911427510.1075/rs.18007.bib
– reference: Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., Ji, H.: Unleashing cognitive synergy in large language models: a task-solving agent through multi-persona self-collaboration (2023). arXiv:2307.05300
– reference: Simmons, G., Hare, C.: Large language models as subpopulation representative models: a review (2023). arXiv:2310.17888
– reference: ArgyleLPBusbyECFuldaNGublerJRRyttingCWingateDOut of one, many: using language models to simulate human samplesPolit. Anal.202331333735110.1017/pan.2023.2
– reference: De Paoli, S.: Improved prompting and process for writing user personas with LLMs, using qualitative interviews: capturing behaviour and personality traits of users (2023). arXiv:2310.06391
– reference: Smith, M., Danilova, A., Naiakshina, A.: A meta-research agenda for recruitment and study design for developer studies. In: 1st International Workshop on Recruiting Participants for Empirical Software Engineering (RoPES’22), 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) (2022)
– reference: BurnettMStumpfSMacbethJMakriSBeckwithLKwanIPetersAJerniganWGendermag: a method for evaluating software’s gender inclusivenessInteract. Comput.201628676078710.1093/iwc/iwv046
– reference: Chew, R., Bollenbacher, J., Wenger, M., Speer, J., Kim, A.: LLM-assisted content analysis: using large language models to support deductive coding (2023). arXiv:2306.14924
– reference: Lee, S., Peng, T.-Q., Goldberg, M.H., Rosenthal, S.A., Kotcher, J.E., Maibach, E.W., Leiserowitz, A.: Can large language models capture public opinion about global warming? An empirical assessment of algorithmic fidelity and bias (2023). arXiv:2311.00217
– reference: TrinkenreichBWieseISarmaAGerosaMSteinmacherIWomen’s participation in open source software: a survey of the literatureACM Trans. Softw. Eng. Methodol. (TOSEM)202231413710.1145/3510460
– reference: Treude, C., Hata, H.: She elicits requirements and he tests: software engineering gender bias in large language models (2023). arXiv:2303.10131
– reference: Dai, S.-C., Xiong, A., Ku, L.-W.: LLM-in-the-loop: leveraging large language model for thematic analysis (2023). arXiv:2310.15100
– reference: Sanders, N.E., Ulinich, A., Schneier, B.: Demonstrations of the potential of AI-based political issue polling (2023). arXiv:2307.04781
– reference: Aher, G.V., Arriaga, R.I., Kalai, A.T.: Using large language models to simulate multiple humans and replicate human subject studies. In: International Conference on Machine Learning, pp. 337–371. PMLR (2023)
– reference: Gerosa, M., Wiese, I., Trinkenreich, B., Link, G., Robles, G., Treude, C., Steinmacher, I., Sarma, A.: The shifting sands of motivation: Revisiting what drives contributors in open source. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1046–1058. IEEE (2021)
– reference: Kokinda, E., Moster, M., Dominic, J., Rodeghero, P.: Under the bridge: trolling and the challenges of recruiting software developers for empirical research studies. In: 2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 55–59 (2023). https://doi.org/10.1109/ICSE-NIER58687.2023.00016
– reference: DillionDTandonNGuYGrayKCan AI language models replace human participants?Trends Cogn. Sci.202327759760010.1016/j.tics.2023.04.008
– reference: Xiao, Z., Yuan, X., Liao, Q.V., Abdelghani, R., Oudeyer, P.-Y.: Supporting qualitative analysis with large language models: combining codebook with GPT-3 for deductive coding. In: Companion Proceedings of the 28th International Conference on Intelligent User Interfaces, pp. 75–78 (2023)
– reference: ChavesAPEgbertJHockingTDoerryEGerosaMAChatbots language design: the influence of language variation on user experience with tourist assistant chatbotsACM Trans. Comput. Hum. Interact.202229213810.1145/3487193
– reference: Kim, J., Lee, B.: AI-augmented surveys: leveraging large language models for opinion prediction in nationally representative surveys (2023). arXiv:2305.09620
– reference: Suguri Motoki, F.Y., Monteiro, J., Malagueño, R., Rodrigues, V.: From data scarcity to data abundance: crafting synthetic survey data in management accounting using ChatGPT (2023). Available at SSRN
– reference: Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large language models are human-level prompt engineers (2022). arXiv:2211.01910
– reference: Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., McHardy, R.: Challenges and applications of large language models (2023). arXiv:2307.10169
– reference: Eliot, L.: The bold promise Of mega-personas as a new shake-up for prompt engineering generative AI techniques (2023). Accessed 08 Nov 2023. https://www.forbes.com/sites/lanceeliot/2023/08/15/the-bold-promise-of-mega-personas-as-a-new-shake-up-for-prompt-engineering-generative-ai-techniques/?sh=2be155065552
– reference: Hämäläinen, P., Tavast, M., Kunnari, A.: Evaluating large language models in generating synthetic HCI research data: a case study. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3580688
– reference: HutsonMMastinAGuinea pigbotsScience (New York, NY)2023381665412112310.1126/science.adj6791
– reference: Jiang, H., Zhang, X., Cao, X., Kabbara, J., Roy, D.: PersonaLLM: investigating the ability of GPT-3.5 to express personality traits and gender differences (2023). arXiv:2305.02547
– reference: Jung, S.-g., Salminen, J., Kwak, H., An, J., Jansen, B.J.: Automatic persona generation (APG) a rationale and demonstration. In: Proceedings of the 2018 Conference on Human Information Interaction and Retrieval, pp. 321–324 (2018)
– ident: 409_CR8
– volume: 381
  start-page: 121
  issue: 6654
  year: 2023
  ident: 409_CR14
  publication-title: Science (New York, NY)
  doi: 10.1126/science.adj6791
– ident: 409_CR7
  doi: 10.18653/v1/2023.findings-emnlp.669
– ident: 409_CR12
  doi: 10.1109/ICSE43902.2021.00098
– ident: 409_CR20
– volume: 27
  start-page: 597
  issue: 7
  year: 2023
  ident: 409_CR10
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2023.04.008
– ident: 409_CR19
  doi: 10.1109/ICSE-NIER58687.2023.00016
– ident: 409_CR22
– ident: 409_CR16
  doi: 10.1145/3176349.3176893
– ident: 409_CR28
– volume: 28
  start-page: 760
  issue: 6
  year: 2016
  ident: 409_CR4
  publication-title: Interact. Comput.
  doi: 10.1093/iwc/iwv046
– ident: 409_CR21
  doi: 10.1162/99608f92.1d3cf75d
– volume: 31
  start-page: 337
  issue: 3
  year: 2023
  ident: 409_CR2
  publication-title: Polit. Anal.
  doi: 10.1017/pan.2023.2
– volume: 31
  start-page: 1
  issue: 4
  year: 2022
  ident: 409_CR27
  publication-title: ACM Trans. Softw. Eng. Methodol. (TOSEM)
  doi: 10.1145/3510460
– ident: 409_CR6
– volume: 2
  start-page: 1
  year: 2023
  ident: 409_CR9
  publication-title: Nat. Rev. Psychol.
– volume: 1
  start-page: 42
  issue: 1
  year: 2019
  ident: 409_CR3
  publication-title: Regist. Stud.
  doi: 10.1075/rs.18007.bib
– ident: 409_CR18
– ident: 409_CR25
  doi: 10.2139/ssrn.4595896
– volume: 25
  start-page: 4097
  year: 2020
  ident: 409_CR24
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-020-09858-z
– ident: 409_CR13
  doi: 10.1145/3544548.3580688
– ident: 409_CR23
– ident: 409_CR1
– volume: 29
  start-page: 1
  issue: 2
  year: 2022
  ident: 409_CR5
  publication-title: ACM Trans. Comput. Hum. Interact.
  doi: 10.1145/3487193
– ident: 409_CR15
– ident: 409_CR11
– ident: 409_CR29
  doi: 10.1145/3581754.3584136
– ident: 409_CR30
– ident: 409_CR26
  doi: 10.1109/MSR59073.2023.00088
– ident: 409_CR17
SSID ssj0009699
Score 2.3950908
Snippet Research within sociotechnical domains, such as software engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Artificial Intelligence
Automation
Collaboration
Computer Science
Data collection
Documentation
Engineering research
Focus groups
Human factors research
Human subjects
Interviews
Language
Large language models
Qualitative analysis
Qualitative research
Researchers
Software engineering
Software Engineering/Programming and Operating Systems
Women
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA46evDiuOLoKDl400DadElOMgwOCjK4M7eSpi8oSJXpqH_fly5WRQW9lWahvLzla5L3PUL2sxB_ZEWUMW14zALfes6kODMicGxZQoRQsuufxeOxnEzUeZ0UVjS33ZsjydJTf0h2w9jLMMYwp3mKRfNkAcOddOZ4eXXbUu1GqmLY8yWTGA3rVJnv5_gcjlqM-eVYtIw2o-7_vnOFLNfokg4qdVglc5CvkW5TuYHWhrxOLoY6p4NT6rZkgeqCalqgB6muDVDEsbSs3edeun2agt7jMzrsVz0FCi2FIa25gu6ONsjN6Ph6eMLq4gq4DJ6aMWtVZH2rTQo69IzHszQMwSIA8rmNpA51Knzr8I0ObSY5GAsSTOSlIg44BGKTdPLHHLYITWWgU4vi5lDSoWmlLADnJlVSmjjuEa-RcWJq5nFXAOMhaTmTncwSlFlSyiyJeuTgfcxTxbvxa-9-s3RJbYNFItA5IaATCpsPm6Vqm3-ebftv3XfIko9Ip7oF2Sed2fQZdsmieZndF9O9UjffAB7f2_g
  priority: 102
  providerName: Springer Nature
Title Can AI serve as a substitute for human subjects in software engineering research?
URI https://link.springer.com/article/10.1007/s10515-023-00409-6
https://www.proquest.com/docview/3048256396
Volume 31
WOSCitedRecordID wos001140056400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009699
  issn: 0928-8910
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDF9Ymr65KDNw2m7_Qkq7goyrK6KuKlpGmCC1J1u-rfd9KmFgW9eAmlj1DyTWYmk8k3AHtZgAtZL8yokCyivqsdM6UYlZ5v2LI8L1Alu_5lNBzy-_t4ZANuhU2rrHViqaizZ2li5Ie47MbFDNrT8OjllZqqUWZ31ZbQmIcFx3UdI-cXEW1Id8O44tpzOeVoF-2hGXt0Di05RYtFjRzHNPxumBpv88cGaWl3Bu3__vEKLFuPk_QrEVmFOZWvQbuu5kDs5F6HqxORk_45MWFaRURBBClQq1SpBAR9W1LW8zM3TeymIBO8RiX-IaaKqIbWkFj-oMejDbgdnN6cnFFbcAGhceIZ1ToOtauFTJUIHOmwLA0CpdEpcpkOuQhE6rna-Dwi0BlnSmrFlQyd1It8pnxvE1r5c662gKTcF6nGgWeqpEgTcayVYkymMecyijrg1KOdSMtGbopiPCUNj7JBKEGEkhKhJOzA_tc3LxUXx59vd2tYEjsvi6TBpAMHNbDN49972_67tx1YctHbqTIhu9CaTd_ULizK99mkmPZg4fh0OLruldLZM-mlY2xHwQO21-O7TxEK6oI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgEQvlEerBlrYA5zKquv1a32ooqhQNWqIQBQpN7Nez4pKyEnjtFH_FL-xs37UohK95cDN8mMte7-Zb2Yf3wC8z0NKZP0o59qImAfSes6kBDd-4NSyfD_ESl1_HE8majpNvm7An3YvjFtW2frEylHnM-PGyA8p7aZkhvg0Gswvuasa5WZX2xIaNSzO8GZFKVt5NPpE_ftBypPP58envKkqQO_3kiW3NomstNpkqEPPeCLPwhAtMb8UNlI61JkvrSN2HdpcCTQWFZrIy_w4EBj41O4jeBw4718tFfzeifxGSa3tJxVXxMPNJp1mqx5FDpwYkju7SXj0NxF20e29CdmK5062_rc_9ByeNRE1G9Ym8AI2sHgJW221CtY4r1fw7VgXbDhibhgamS6ZZiV5zXqpBKPYnVX1Ct1JNzZVsgs6JpJa6QUy7GQbWaOP9GuwDT_W8mE70CtmBe4Cy1SgM0sdLbCSgNNJYhGFMFmilInjPnht76amUVt3RT9-p51OtENESohIK0SkUR8O7p6Z11ojD96918IgbfxOmXYY6MPHFkjd5X-39vrh1t7B09PzL-N0PJqcvYFNSZFdvepzD3rLxRXuwxNzvbwoF28ri2Dwc90AuwU0UkYR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--aTBtekmeZEyHwzEmXthbSNMEB1LHWvXvm_Rip6ggvpUmDeUk55wvyTnfAeA49s1GlgQxEhKHyHO1Y1UKI0k8y5ZFiK9ydv1BOBzS8ZiN5rL482j36kqyyGmwLE1JdjaN9dlc4pvxw8j4G2RXIUPBIljybNEgu1-_fahpdwNWsO25FFHjGcu0me_H-Oyaarz55Yo09zy95v__eR2slagTdoplsgEWVLIJmlVFB1gq-Ba46YoEdvrQHtUqKFIoYGosSxFOAA2-hXlNP_vSnt-kcGKejSF_EzMFVU1tCEsOocfzbXDfu7zrXqGy6IKZHodlSGsWaFcLGSnhO9LBceT7Shtg5GIdUOGLiLja4h7h65hiJbWiSgZOREIPK4_sgEbynKhdACPqiUgb0WOV06QJxrRSGMuIUSrDsAWcSt5clozktjDGE6-5lK3MuJEZz2XGgxY4-fhmWvBx_Nq7XU0jL3Uz5cQYLQP0CDPNp9W01c0_j7b3t-5HYGV00eOD_vB6H6y6BgwVgZJt0MhmL-oALMvXbJLODvMl-w7VY-fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+AI+serve+as+a+substitute+for+human+subjects+in+software+engineering+research%3F&rft.jtitle=Automated+software+engineering&rft.au=Gerosa%2C+Marco&rft.au=Trinkenreich%2C+Bianca&rft.au=Steinmacher%2C+Igor&rft.au=Sarma%2C+Anita&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0928-8910&rft.eissn=1573-7535&rft.volume=31&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1007%2Fs10515-023-00409-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-8910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-8910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-8910&client=summon