Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm
The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants t k s and weig...
Gespeichert in:
| Veröffentlicht in: | Signal, image and video processing Jg. 14; H. 8; S. 1707 - 1715 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.11.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1863-1703, 1863-1711 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants
t
k
s and weights
c
k
s of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for
t
k
, so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1863-1703 1863-1711 |
| DOI: | 10.1007/s11760-020-01712-5 |