Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm
The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants t k s and weig...
Saved in:
| Published in: | Signal, image and video processing Vol. 14; no. 8; pp. 1707 - 1715 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.11.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1863-1703, 1863-1711 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants
t
k
s and weights
c
k
s of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for
t
k
, so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost. |
|---|---|
| AbstractList | The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants
t
k
s and weights
c
k
s of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for
t
k
, so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost. The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants tks and weights cks of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for tk, so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost. |
| Author | Najjarzadeh, Meisam Sadjedi, Hamed |
| Author_xml | – sequence: 1 givenname: Meisam surname: Najjarzadeh fullname: Najjarzadeh, Meisam organization: Department of Electrical Engineering, Shahed University, Acoustic Research Laboratory, Shahed University – sequence: 2 givenname: Hamed surname: Sadjedi fullname: Sadjedi, Hamed email: sadjedi@shahed.ac.ir organization: Department of Electrical Engineering, Shahed University, Acoustic Research Laboratory, Shahed University |
| BookMark | eNp9kF1LwzAUhoNMcOr-gFcFb63mJG2TeifDLxgIotchTdOZsSUzSYX9e7NWFLxYIB_n5Dwnb95TNLHOaoQuAF8DxuwmALAK55ikCQxIXh6hKfCK5imCye8Z0xM0C2GF06CE8YpP0fZVK2dD9L2KxtnMdVlnrIk68zItKTTWui85XAaztHIdUiqTmXUm7LKgtJXeuNuU8a7pQ7zKpFL9QOsQzWZE5XrpvIkfm3N03KUeevazn6H3h_u3-VO-eHl8nt8tckWhjnmnOQdWME0o0UXbsLbooCWlxLIuS9W20EkoComhqqGueSNJA21TlpwxXTcVPUOXY9-td599UiJWrvd7-YIUjHKMSYVTFRmrlHcheN2JrU-S_U4AFntzxWiuSOaKwVxRJoj_g5SJwzejl2Z9GKUjGtI7dqn9n6oD1DfjdpFf |
| CitedBy_id | crossref_primary_10_1007_s00034_021_01759_w crossref_primary_10_1007_s11760_023_02566_3 crossref_primary_10_1007_s00034_024_02749_4 |
| Cites_doi | 10.1109/ISSPIT.2008.4775685 10.1109/5.843002 10.1007/s11721-016-0128-z 10.1109/TSP.2013.2276411 10.1007/s11760-015-0815-z 10.1016/j.sigpro.2009.05.022 10.1007/s40747-018-0071-2 10.1109/ICASSP.2012.6287951 10.1016/j.crma.2011.12.014 10.1007/s11760-019-01453-0 10.1088/1741-2560/10/4/046017 10.1109/TSP.2006.890907 10.1007/s00041-016-9502-x 10.1080/00207160.2017.1387252 10.1109/ICOSP.2008.4697568 10.1007/s00422-014-0639-x 10.1007/s10208-014-9228-6 10.1007/BF03549586 10.1109/MSP.2007.914998 10.1016/j.sigpro.2019.04.016 10.1016/j.asoc.2017.08.051 10.1109/TSP.2008.928510 10.1109/TSP.2002.1003065 10.1016/j.enconman.2007.12.023 10.1007/s00500-016-2474-6 10.1007/s00041-013-9292-3 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11760-020-01712-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 1715 |
| ExternalDocumentID | 10_1007_s11760_020_01712_5 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c319t-fe881747e232e4db7d4f1d25a0a955cdd1fa144a01691998ba2b1db55877e9b63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549700500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Thu Sep 25 00:44:04 EDT 2025 Tue Nov 18 21:59:56 EST 2025 Sat Nov 29 05:30:57 EST 2025 Fri Feb 21 02:27:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Maximum likelihood estimation Modified particle swarm optimization Sampling and reconstruction Finite rate of innovation signals Spike sequence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-fe881747e232e4db7d4f1d25a0a955cdd1fa144a01691998ba2b1db55877e9b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2473800260 |
| PQPubID | 2044169 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2473800260 crossref_primary_10_1007_s11760_020_01712_5 crossref_citationtrail_10_1007_s11760_020_01712_5 springer_journals_10_1007_s11760_020_01712_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | BluTDragottiPLVetterliMMarzilianoPCoulotLSparse sampling of signal innovations: theory, algorithms and performance boundsIEEE Signal Process. Mag.200825314010.1109/MSP.2007.914998 El MouatasimAWakrimMControl subgradient algorithm for image L1-regularizationSIViP2015927528310.1007/s11760-015-0815-z KhanSKamranMRehmanOULiuLYangSA modified PSO algorithm with dynamic parameters for solving complex engineering design problemInt. J. Comput. Math.201895112308232910.1080/00207160.2017.1387252 Akhondi Asl, H., Dragotti, P.L.: Simultaneous estimation of sparse signals and systems at sub-Nyquist rates. In: 19th European Signal Processing Conference (2011) VetterliMMarzilianoPBluTSampling signals with finite rate of innovationIEEE Trans. Signal Process.20025014171428193078610.1109/TSP.2002.1003065 DragottiPLVetterliMBluTSampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-fixIEEE Trans. Signal Process.20075517411757247233410.1109/TSP.2006.890907 El MouatasimAControl proximal gradient algorithm for image L1-regularizationSIViP2019131113112110.1007/s11760-019-01453-0 MeignenSLegrosQAltmannYMcLaughlinSA novel algorithm for the identification of Dirac impulses from filtered noisy measurementsSig. Process.201916226828110.1016/j.sigpro.2019.04.016 WeinASrinivasanLIterML: a fast, robust algorithm for estimating signals with finite rate of innovationIEEE Trans. Signal Process.2013615324533610.1109/TSP.2013.2276411 Najjarzadeh, M., Ayatollahi, A.: A comparison between genetic algorithm and PSO for linear phase FIR digital filter design. In: 9th International Conference on Signal Processing (2008) ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell. Syst.2018422723910.1007/s40747-018-0071-2 TanVYFGoyalVKEstimating signals with finite rate of innovation from noisy samples: a stochastic algorithmIEEE Trans. Signal Process.20085651355146251724210.1109/TSP.2008.928510 WangDTanDLiuLParticle swarm optimization algorithm: an overviewSoft. Comput.20182238740810.1007/s00500-016-2474-6 Unser, M.: Sampling—50 years after Shannon. In: Proceedings of the IEEE (2000) DenoyelleQDuvalVPeyréGSupport recovery for sparse superresolution of positive measuresJ. Fourier Anal. Appl.20172311531194370476010.1007/s00041-016-9502-x CondatLHirabayashiACadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurementsSampl. Theory Signal Image Process.2015141174733172001346.94023 ÕnativiaJSchultzSRDragottiPLA finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imagingJ. Neural Eng.20131004601710.1088/1741-2560/10/4/046017 Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (2008) ErdozainACrespoPMA new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samplesSig. Process.20109013414410.1016/j.sigpro.2009.05.022 PanigrahiBKRavikumar PandiVDasSAdaptive particle swarm optimization approach for static and dynamic economic load dispatchEnergy Convers. Manag.2008491407141510.1016/j.enconman.2007.12.023 DossalCA necessary and sufficient condition for exact sparse recovery by L1-minimizationC.R. Math.2012350117120288784810.1016/j.crma.2011.12.014 OñativiaJDragottiPLSparse sampling: theory, methods and an application in neuroscienceBiol. Cybern.2015109125139330538410.1007/s00422-014-0639-x YeWFengWFanSA novel multi-swarm particle swarm optimization with dynamic learning strategyAppl. Soft Comput.20176183284310.1016/j.asoc.2017.08.051 Degraux, K., Peyré, G., Fadili, J., Jacques, L.: Sparse support recovery with non-smooth loss functions. In: Advances in Neural Information Processing Systems (2016) CandèsEJFernandez-GrandaCSuper-resolution from noisy dataJ. Fourier Anal. Appl.20131912291254313291210.1007/s00041-013-9292-3 HarrisonKREngelbrechtAPOmbuki-BermanBMInertia weight control strategies for particle swarm optimizationSwarm Intell.20161026730510.1007/s11721-016-0128-z KhanSUYangSWangLLiuLA modified particle swarm optimization algorithm for global optimizations of inverse problemsIEEE Trans. Magn.20155214 Caballero, J., Urigiien, J.A., Schultz, S.R., Dragotti, P.L.: Spike sorting at sub-Nyquist rates. In: International Conference on Acoustic, Speech, and Signal Processing (2012) DuvalVPeyréGExact support recovery for sparse spikes deconvolutionFound. Comput. Math.20151513151355339471210.1007/s10208-014-9228-6 A Wein (1712_CR18) 2013; 61 1712_CR21 L Condat (1712_CR14) 2015; 14 C Dossal (1712_CR12) 2012; 350 A El Mouatasim (1712_CR11) 2019; 13 S Khan (1712_CR19) 2018; 95 D Wang (1712_CR28) 2018; 22 J Õnativia (1712_CR22) 2013; 10 1712_CR24 1712_CR23 W Ye (1712_CR27) 2017; 61 Q Denoyelle (1712_CR7) 2017; 23 A El Mouatasim (1712_CR10) 2015; 9 1712_CR9 BK Panigrahi (1712_CR26) 2008; 49 S Meignen (1712_CR13) 2019; 162 PL Dragotti (1712_CR15) 2007; 55 1712_CR1 EJ Candès (1712_CR8) 2013; 19 A Erdozain (1712_CR17) 2010; 90 SU Khan (1712_CR20) 2015; 52 J Oñativia (1712_CR4) 2015; 109 1712_CR5 KR Harrison (1712_CR25) 2016; 10 T Blu (1712_CR2) 2008; 25 M Vetterli (1712_CR3) 2002; 50 S Cheng (1712_CR29) 2018; 4 V Duval (1712_CR6) 2015; 15 VYF Tan (1712_CR16) 2008; 56 |
| References_xml | – reference: OñativiaJDragottiPLSparse sampling: theory, methods and an application in neuroscienceBiol. Cybern.2015109125139330538410.1007/s00422-014-0639-x – reference: DuvalVPeyréGExact support recovery for sparse spikes deconvolutionFound. Comput. Math.20151513151355339471210.1007/s10208-014-9228-6 – reference: DenoyelleQDuvalVPeyréGSupport recovery for sparse superresolution of positive measuresJ. Fourier Anal. Appl.20172311531194370476010.1007/s00041-016-9502-x – reference: Degraux, K., Peyré, G., Fadili, J., Jacques, L.: Sparse support recovery with non-smooth loss functions. In: Advances in Neural Information Processing Systems (2016) – reference: CondatLHirabayashiACadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurementsSampl. Theory Signal Image Process.2015141174733172001346.94023 – reference: WangDTanDLiuLParticle swarm optimization algorithm: an overviewSoft. Comput.20182238740810.1007/s00500-016-2474-6 – reference: El MouatasimAWakrimMControl subgradient algorithm for image L1-regularizationSIViP2015927528310.1007/s11760-015-0815-z – reference: ErdozainACrespoPMA new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samplesSig. Process.20109013414410.1016/j.sigpro.2009.05.022 – reference: TanVYFGoyalVKEstimating signals with finite rate of innovation from noisy samples: a stochastic algorithmIEEE Trans. Signal Process.20085651355146251724210.1109/TSP.2008.928510 – reference: DragottiPLVetterliMBluTSampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-fixIEEE Trans. Signal Process.20075517411757247233410.1109/TSP.2006.890907 – reference: ÕnativiaJSchultzSRDragottiPLA finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imagingJ. Neural Eng.20131004601710.1088/1741-2560/10/4/046017 – reference: KhanSKamranMRehmanOULiuLYangSA modified PSO algorithm with dynamic parameters for solving complex engineering design problemInt. J. Comput. Math.201895112308232910.1080/00207160.2017.1387252 – reference: El MouatasimAControl proximal gradient algorithm for image L1-regularizationSIViP2019131113112110.1007/s11760-019-01453-0 – reference: Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (2008) – reference: ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell. Syst.2018422723910.1007/s40747-018-0071-2 – reference: Caballero, J., Urigiien, J.A., Schultz, S.R., Dragotti, P.L.: Spike sorting at sub-Nyquist rates. In: International Conference on Acoustic, Speech, and Signal Processing (2012) – reference: BluTDragottiPLVetterliMMarzilianoPCoulotLSparse sampling of signal innovations: theory, algorithms and performance boundsIEEE Signal Process. Mag.200825314010.1109/MSP.2007.914998 – reference: CandèsEJFernandez-GrandaCSuper-resolution from noisy dataJ. Fourier Anal. Appl.20131912291254313291210.1007/s00041-013-9292-3 – reference: DossalCA necessary and sufficient condition for exact sparse recovery by L1-minimizationC.R. Math.2012350117120288784810.1016/j.crma.2011.12.014 – reference: MeignenSLegrosQAltmannYMcLaughlinSA novel algorithm for the identification of Dirac impulses from filtered noisy measurementsSig. Process.201916226828110.1016/j.sigpro.2019.04.016 – reference: VetterliMMarzilianoPBluTSampling signals with finite rate of innovationIEEE Trans. Signal Process.20025014171428193078610.1109/TSP.2002.1003065 – reference: Akhondi Asl, H., Dragotti, P.L.: Simultaneous estimation of sparse signals and systems at sub-Nyquist rates. In: 19th European Signal Processing Conference (2011) – reference: YeWFengWFanSA novel multi-swarm particle swarm optimization with dynamic learning strategyAppl. Soft Comput.20176183284310.1016/j.asoc.2017.08.051 – reference: HarrisonKREngelbrechtAPOmbuki-BermanBMInertia weight control strategies for particle swarm optimizationSwarm Intell.20161026730510.1007/s11721-016-0128-z – reference: PanigrahiBKRavikumar PandiVDasSAdaptive particle swarm optimization approach for static and dynamic economic load dispatchEnergy Convers. Manag.2008491407141510.1016/j.enconman.2007.12.023 – reference: Najjarzadeh, M., Ayatollahi, A.: A comparison between genetic algorithm and PSO for linear phase FIR digital filter design. In: 9th International Conference on Signal Processing (2008) – reference: WeinASrinivasanLIterML: a fast, robust algorithm for estimating signals with finite rate of innovationIEEE Trans. Signal Process.2013615324533610.1109/TSP.2013.2276411 – reference: Unser, M.: Sampling—50 years after Shannon. In: Proceedings of the IEEE (2000) – reference: KhanSUYangSWangLLiuLA modified particle swarm optimization algorithm for global optimizations of inverse problemsIEEE Trans. Magn.20155214 – ident: 1712_CR23 doi: 10.1109/ISSPIT.2008.4775685 – ident: 1712_CR1 doi: 10.1109/5.843002 – volume: 10 start-page: 267 year: 2016 ident: 1712_CR25 publication-title: Swarm Intell. doi: 10.1007/s11721-016-0128-z – volume: 61 start-page: 5324 year: 2013 ident: 1712_CR18 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2276411 – volume: 9 start-page: 275 year: 2015 ident: 1712_CR10 publication-title: SIViP doi: 10.1007/s11760-015-0815-z – volume: 90 start-page: 134 year: 2010 ident: 1712_CR17 publication-title: Sig. Process. doi: 10.1016/j.sigpro.2009.05.022 – volume: 4 start-page: 227 year: 2018 ident: 1712_CR29 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-018-0071-2 – ident: 1712_CR21 doi: 10.1109/ICASSP.2012.6287951 – volume: 350 start-page: 117 year: 2012 ident: 1712_CR12 publication-title: C.R. Math. doi: 10.1016/j.crma.2011.12.014 – volume: 13 start-page: 1113 year: 2019 ident: 1712_CR11 publication-title: SIViP doi: 10.1007/s11760-019-01453-0 – volume: 10 start-page: 046017 year: 2013 ident: 1712_CR22 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/4/046017 – volume: 55 start-page: 1741 year: 2007 ident: 1712_CR15 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.890907 – volume: 23 start-page: 1153 year: 2017 ident: 1712_CR7 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-016-9502-x – volume: 95 start-page: 2308 issue: 11 year: 2018 ident: 1712_CR19 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2017.1387252 – ident: 1712_CR24 doi: 10.1109/ICOSP.2008.4697568 – volume: 109 start-page: 125 year: 2015 ident: 1712_CR4 publication-title: Biol. Cybern. doi: 10.1007/s00422-014-0639-x – volume: 15 start-page: 1315 year: 2015 ident: 1712_CR6 publication-title: Found. Comput. Math. doi: 10.1007/s10208-014-9228-6 – volume: 14 start-page: 17 issue: 1 year: 2015 ident: 1712_CR14 publication-title: Sampl. Theory Signal Image Process. doi: 10.1007/BF03549586 – volume: 25 start-page: 31 year: 2008 ident: 1712_CR2 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.914998 – volume: 162 start-page: 268 year: 2019 ident: 1712_CR13 publication-title: Sig. Process. doi: 10.1016/j.sigpro.2019.04.016 – volume: 61 start-page: 832 year: 2017 ident: 1712_CR27 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.051 – ident: 1712_CR5 – volume: 56 start-page: 5135 year: 2008 ident: 1712_CR16 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.928510 – volume: 50 start-page: 1417 year: 2002 ident: 1712_CR3 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.1003065 – ident: 1712_CR9 – volume: 49 start-page: 1407 year: 2008 ident: 1712_CR26 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.12.023 – volume: 52 start-page: 1 year: 2015 ident: 1712_CR20 publication-title: IEEE Trans. Magn. – volume: 22 start-page: 387 year: 2018 ident: 1712_CR28 publication-title: Soft. Comput. doi: 10.1007/s00500-016-2474-6 – volume: 19 start-page: 1229 year: 2013 ident: 1712_CR8 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-013-9292-3 |
| SSID | ssj0000327868 |
| Score | 2.1925557 |
| Snippet | The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1707 |
| SubjectTerms | Algorithms Computer Imaging Computer Science Image Processing and Computer Vision Innovations Maximum likelihood estimation Multimedia Information Systems Noise Original Paper Parameter estimation Particle swarm optimization Pattern Recognition and Graphics Reconstruction Robustness (mathematics) Signal,Image and Speech Processing Spikes Vision |
| Title | Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm |
| URI | https://link.springer.com/article/10.1007/s11760-020-01712-5 https://www.proquest.com/docview/2473800260 |
| Volume | 14 |
| WOSCitedRecordID | wos000549700500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEfnE7F6ZQ8-OYKvSRN6puIw6ch3thbSdJUC7Mdayf47016WVVU0MfmRjmX5pwm33cATpnLiScUsyhnxMISB5ZwMbEUdoTvxyryg6rYBB2P2WQS3NSgsLy57d4cSZZf6hbs5lDftky6YzhedAq1Cmt6u2PGHW_vHpd_VmzPpazCwDHf8G_aXo2W-X6ZzztSG2Z-ORktN5xR93-vug1bdYCJLiqL2IEVlfag2xRvQLUv92DzAxPhLsxMGtqSyaIsRnFiwlFkqCTMY7Isn4rMnQ9ttboJcZRmSf6GDCeUzrqzc90yz8QiL4aIS7koZxsijwohifj0KZsnxfPLHjyMru4vr626GIMltZcWVqwY09kLVToEUzgSNMKxE7mE2zwgREaRE3OdnHHD7mJwe4K7wokEIYxSFQjf24dOmqXqAJDLpHJ0P4t0MMYDHAgtqYBqm5Zc4Bj3wWkUEsqaqdwUzJiGLceyEXCop4WlgEPSh7PlnFnF0_Hr6EGj57D22Tx0MfVYybHWh2Gj17b759UO_zb8CDZcYxoloHEAHa1adQzr8rVI8vlJacvvudrtXw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXpwfeLqqjl400IfSZN6E3FZcV3EF3srSZpqQVvZroL_3qSPrYoKemySCSUz08w0-b4B2GcuJ55QzKKcEQtLHFjCxcRS2BG-H6vID8piE3QwYMNhcFmBwvL6tnt9JFl8qRuwm0N92zLpjuF40SnUNMxivWOZi3xX13eTPyu251JWYuCYb_g3ba9Cy3w_zecdqQkzv5yMFhtOt_W_V12GpSrARMelRazAlEpXoVUXb0CVL6_C4gcmwjV4NmloQyaLshjFiQlHkaGSMI_JpHwqMnc-tNXqJsRRmiX5GzKcUDrrzo50yygTL_n4EHEpXwppQ-RRIiQRf7zPRsn44WkdbrunNyc9qyrGYEntpWMrVozp7IUqHYIpHAka4diJXMJtHhAio8iJuU7OuGF3Mbg9wV3hRIIQRqkKhO9twEyapWoTkMukcnQ_i3QwxgMcCL1SAdU2LbnAMW6DUysklBVTuSmY8Rg2HMtmgUMtFhYLHJI2HExknkuejl9Hd2o9h5XP5qGLqccKjrU2HNZ6bbp_nm3rb8P3YL53c9EP-2eD821YcI2ZFODGDsxoNasdmJOv4yQf7RZ2_Q7iTPBD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aG0LjgY0CWqHb_MAbjdokduzwhmDVpk1VpTHUt8i3jEglqdoUiX-PTy7NQGzSxGN8U-RzLJ_P9vcdgPcikCxUVnhcCuZRTWNPBZR5lvoqilJrorhONsGnUzGfx7M7LP7qtXt7JVlzGlClKS9HS5OOOuKbz6Oxh9AH9V4cnHoCexSTBiFev_62PWUZhwEXNR9ORKjFOQ4b5sy_h_lzd-pCzr9uSavNZ3Lw_799CC-awJN8qj3lJezYvAcHbVIH0qzxHjy_o1D4CpYITzuRWVKkJM0wTCUoMYGf2TatKsG3IM6bXRGRJC-y9S-CWlEOjRcfXcmqUJt1OSRS603VGwU-auYkkYvbYpWV33-8hpvJ2dfP516TpMHTbvWWXmqFcKiGWxeaWWoUNzT1TcDkWMaMaWP8VDrQJlH1Bfl8SgbKN4oxwbmNVRS-gd28yO0RkEBo67t6YVyQJmMaKzdTMXe-rqWiKe2D3xon0Y2COSbSWCSd9jJOcOK6JdUEJ6wPH7Z9lrV-x4OtB63Nk2Ytr5OA8lBU2mt9GLY27qrvH-3t45qfwrPZl0lydTG9fAf7AXpJxXkcwK6zsj2Gp_pnma1XJ5WL_wb2-Pkn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+finite+rate+of+innovation+signals+in+a+noisy+scenario%3A+a+robust%2C+accurate+estimation+algorithm&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Najjarzadeh%2C+Meisam&rft.au=Sadjedi%2C+Hamed&rft.date=2020-11-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=8&rft.spage=1707&rft.epage=1715&rft_id=info:doi/10.1007%2Fs11760-020-01712-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_020_01712_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |