Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm

The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants t k s and weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing Jg. 14; H. 8; S. 1707 - 1715
Hauptverfasser: Najjarzadeh, Meisam, Sadjedi, Hamed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.11.2020
Springer Nature B.V
Schlagworte:
ISSN:1863-1703, 1863-1711
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants t k s and weights c k s of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for t k , so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost.
AbstractList The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants t k s and weights c k s of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for t k , so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost.
The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike sequence. Many researchers have investigated the problem of estimating the innovative part of a spike sequence, i.e., time instants tks and weights cks of Diracs and proposed various deterministic or stochastic algorithms, particularly while the samples were corrupted by digital noise. In the presence of noise, maximum likelihood estimation method proved to be a powerful tool for reconstructing FRI signals, which is inherently an optimization problem. Wein and Srinivasan presented an algorithm, namely IterML, for reconstruction of streams of Diracs in noisy situations, which achieved promising reconstruction error and runtime. However, IterML is prone to limited resolution of search grid for tk, so as to avoid a phenomenon known as the curse of dimensionality, that makes it an inappropriate algorithm for applications that require highly accurate reconstruction of time instants. In order to overcome this shortcoming, we introduce a novel modified local best particle swarm optimization (MLBPSO) algorithm aimed at maximizing likelihood estimation of innovative parameters of a sparse spike sequence given noisy low-pass filtered samples. We demonstrate via extensive simulations that MLBPSO algorithm outperforms the IterML in terms of robustness to noise and accuracy of estimated parameters while maintaining comparable computational cost.
Author Najjarzadeh, Meisam
Sadjedi, Hamed
Author_xml – sequence: 1
  givenname: Meisam
  surname: Najjarzadeh
  fullname: Najjarzadeh, Meisam
  organization: Department of Electrical Engineering, Shahed University, Acoustic Research Laboratory, Shahed University
– sequence: 2
  givenname: Hamed
  surname: Sadjedi
  fullname: Sadjedi, Hamed
  email: sadjedi@shahed.ac.ir
  organization: Department of Electrical Engineering, Shahed University, Acoustic Research Laboratory, Shahed University
BookMark eNp9kF1LwzAUhoNMcOr-gFcFb63mJG2TeifDLxgIotchTdOZsSUzSYX9e7NWFLxYIB_n5Dwnb95TNLHOaoQuAF8DxuwmALAK55ikCQxIXh6hKfCK5imCye8Z0xM0C2GF06CE8YpP0fZVK2dD9L2KxtnMdVlnrIk68zItKTTWui85XAaztHIdUiqTmXUm7LKgtJXeuNuU8a7pQ7zKpFL9QOsQzWZE5XrpvIkfm3N03KUeevazn6H3h_u3-VO-eHl8nt8tckWhjnmnOQdWME0o0UXbsLbooCWlxLIuS9W20EkoComhqqGueSNJA21TlpwxXTcVPUOXY9-td599UiJWrvd7-YIUjHKMSYVTFRmrlHcheN2JrU-S_U4AFntzxWiuSOaKwVxRJoj_g5SJwzejl2Z9GKUjGtI7dqn9n6oD1DfjdpFf
CitedBy_id crossref_primary_10_1007_s00034_021_01759_w
crossref_primary_10_1007_s11760_023_02566_3
crossref_primary_10_1007_s00034_024_02749_4
Cites_doi 10.1109/ISSPIT.2008.4775685
10.1109/5.843002
10.1007/s11721-016-0128-z
10.1109/TSP.2013.2276411
10.1007/s11760-015-0815-z
10.1016/j.sigpro.2009.05.022
10.1007/s40747-018-0071-2
10.1109/ICASSP.2012.6287951
10.1016/j.crma.2011.12.014
10.1007/s11760-019-01453-0
10.1088/1741-2560/10/4/046017
10.1109/TSP.2006.890907
10.1007/s00041-016-9502-x
10.1080/00207160.2017.1387252
10.1109/ICOSP.2008.4697568
10.1007/s00422-014-0639-x
10.1007/s10208-014-9228-6
10.1007/BF03549586
10.1109/MSP.2007.914998
10.1016/j.sigpro.2019.04.016
10.1016/j.asoc.2017.08.051
10.1109/TSP.2008.928510
10.1109/TSP.2002.1003065
10.1016/j.enconman.2007.12.023
10.1007/s00500-016-2474-6
10.1007/s00041-013-9292-3
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-020-01712-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 1715
ExternalDocumentID 10_1007_s11760_020_01712_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-fe881747e232e4db7d4f1d25a0a955cdd1fa144a01691998ba2b1db55877e9b63
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549700500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Thu Sep 25 00:44:04 EDT 2025
Tue Nov 18 21:59:56 EST 2025
Sat Nov 29 05:30:57 EST 2025
Fri Feb 21 02:27:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Maximum likelihood estimation
Modified particle swarm optimization
Sampling and reconstruction
Finite rate of innovation signals
Spike sequence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fe881747e232e4db7d4f1d25a0a955cdd1fa144a01691998ba2b1db55877e9b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2473800260
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2473800260
crossref_primary_10_1007_s11760_020_01712_5
crossref_citationtrail_10_1007_s11760_020_01712_5
springer_journals_10_1007_s11760_020_01712_5
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BluTDragottiPLVetterliMMarzilianoPCoulotLSparse sampling of signal innovations: theory, algorithms and performance boundsIEEE Signal Process. Mag.200825314010.1109/MSP.2007.914998
El MouatasimAWakrimMControl subgradient algorithm for image L1-regularizationSIViP2015927528310.1007/s11760-015-0815-z
KhanSKamranMRehmanOULiuLYangSA modified PSO algorithm with dynamic parameters for solving complex engineering design problemInt. J. Comput. Math.201895112308232910.1080/00207160.2017.1387252
Akhondi Asl, H., Dragotti, P.L.: Simultaneous estimation of sparse signals and systems at sub-Nyquist rates. In: 19th European Signal Processing Conference (2011)
VetterliMMarzilianoPBluTSampling signals with finite rate of innovationIEEE Trans. Signal Process.20025014171428193078610.1109/TSP.2002.1003065
DragottiPLVetterliMBluTSampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-fixIEEE Trans. Signal Process.20075517411757247233410.1109/TSP.2006.890907
El MouatasimAControl proximal gradient algorithm for image L1-regularizationSIViP2019131113112110.1007/s11760-019-01453-0
MeignenSLegrosQAltmannYMcLaughlinSA novel algorithm for the identification of Dirac impulses from filtered noisy measurementsSig. Process.201916226828110.1016/j.sigpro.2019.04.016
WeinASrinivasanLIterML: a fast, robust algorithm for estimating signals with finite rate of innovationIEEE Trans. Signal Process.2013615324533610.1109/TSP.2013.2276411
Najjarzadeh, M., Ayatollahi, A.: A comparison between genetic algorithm and PSO for linear phase FIR digital filter design. In: 9th International Conference on Signal Processing (2008)
ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell. Syst.2018422723910.1007/s40747-018-0071-2
TanVYFGoyalVKEstimating signals with finite rate of innovation from noisy samples: a stochastic algorithmIEEE Trans. Signal Process.20085651355146251724210.1109/TSP.2008.928510
WangDTanDLiuLParticle swarm optimization algorithm: an overviewSoft. Comput.20182238740810.1007/s00500-016-2474-6
Unser, M.: Sampling—50 years after Shannon. In: Proceedings of the IEEE (2000)
DenoyelleQDuvalVPeyréGSupport recovery for sparse superresolution of positive measuresJ. Fourier Anal. Appl.20172311531194370476010.1007/s00041-016-9502-x
CondatLHirabayashiACadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurementsSampl. Theory Signal Image Process.2015141174733172001346.94023
ÕnativiaJSchultzSRDragottiPLA finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imagingJ. Neural Eng.20131004601710.1088/1741-2560/10/4/046017
Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (2008)
ErdozainACrespoPMA new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samplesSig. Process.20109013414410.1016/j.sigpro.2009.05.022
PanigrahiBKRavikumar PandiVDasSAdaptive particle swarm optimization approach for static and dynamic economic load dispatchEnergy Convers. Manag.2008491407141510.1016/j.enconman.2007.12.023
DossalCA necessary and sufficient condition for exact sparse recovery by L1-minimizationC.R. Math.2012350117120288784810.1016/j.crma.2011.12.014
OñativiaJDragottiPLSparse sampling: theory, methods and an application in neuroscienceBiol. Cybern.2015109125139330538410.1007/s00422-014-0639-x
YeWFengWFanSA novel multi-swarm particle swarm optimization with dynamic learning strategyAppl. Soft Comput.20176183284310.1016/j.asoc.2017.08.051
Degraux, K., Peyré, G., Fadili, J., Jacques, L.: Sparse support recovery with non-smooth loss functions. In: Advances in Neural Information Processing Systems (2016)
CandèsEJFernandez-GrandaCSuper-resolution from noisy dataJ. Fourier Anal. Appl.20131912291254313291210.1007/s00041-013-9292-3
HarrisonKREngelbrechtAPOmbuki-BermanBMInertia weight control strategies for particle swarm optimizationSwarm Intell.20161026730510.1007/s11721-016-0128-z
KhanSUYangSWangLLiuLA modified particle swarm optimization algorithm for global optimizations of inverse problemsIEEE Trans. Magn.20155214
Caballero, J., Urigiien, J.A., Schultz, S.R., Dragotti, P.L.: Spike sorting at sub-Nyquist rates. In: International Conference on Acoustic, Speech, and Signal Processing (2012)
DuvalVPeyréGExact support recovery for sparse spikes deconvolutionFound. Comput. Math.20151513151355339471210.1007/s10208-014-9228-6
A Wein (1712_CR18) 2013; 61
1712_CR21
L Condat (1712_CR14) 2015; 14
C Dossal (1712_CR12) 2012; 350
A El Mouatasim (1712_CR11) 2019; 13
S Khan (1712_CR19) 2018; 95
D Wang (1712_CR28) 2018; 22
J Õnativia (1712_CR22) 2013; 10
1712_CR24
1712_CR23
W Ye (1712_CR27) 2017; 61
Q Denoyelle (1712_CR7) 2017; 23
A El Mouatasim (1712_CR10) 2015; 9
1712_CR9
BK Panigrahi (1712_CR26) 2008; 49
S Meignen (1712_CR13) 2019; 162
PL Dragotti (1712_CR15) 2007; 55
1712_CR1
EJ Candès (1712_CR8) 2013; 19
A Erdozain (1712_CR17) 2010; 90
SU Khan (1712_CR20) 2015; 52
J Oñativia (1712_CR4) 2015; 109
1712_CR5
KR Harrison (1712_CR25) 2016; 10
T Blu (1712_CR2) 2008; 25
M Vetterli (1712_CR3) 2002; 50
S Cheng (1712_CR29) 2018; 4
V Duval (1712_CR6) 2015; 15
VYF Tan (1712_CR16) 2008; 56
References_xml – reference: OñativiaJDragottiPLSparse sampling: theory, methods and an application in neuroscienceBiol. Cybern.2015109125139330538410.1007/s00422-014-0639-x
– reference: DuvalVPeyréGExact support recovery for sparse spikes deconvolutionFound. Comput. Math.20151513151355339471210.1007/s10208-014-9228-6
– reference: DenoyelleQDuvalVPeyréGSupport recovery for sparse superresolution of positive measuresJ. Fourier Anal. Appl.20172311531194370476010.1007/s00041-016-9502-x
– reference: Degraux, K., Peyré, G., Fadili, J., Jacques, L.: Sparse support recovery with non-smooth loss functions. In: Advances in Neural Information Processing Systems (2016)
– reference: CondatLHirabayashiACadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurementsSampl. Theory Signal Image Process.2015141174733172001346.94023
– reference: WangDTanDLiuLParticle swarm optimization algorithm: an overviewSoft. Comput.20182238740810.1007/s00500-016-2474-6
– reference: El MouatasimAWakrimMControl subgradient algorithm for image L1-regularizationSIViP2015927528310.1007/s11760-015-0815-z
– reference: ErdozainACrespoPMA new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samplesSig. Process.20109013414410.1016/j.sigpro.2009.05.022
– reference: TanVYFGoyalVKEstimating signals with finite rate of innovation from noisy samples: a stochastic algorithmIEEE Trans. Signal Process.20085651355146251724210.1109/TSP.2008.928510
– reference: DragottiPLVetterliMBluTSampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-fixIEEE Trans. Signal Process.20075517411757247233410.1109/TSP.2006.890907
– reference: ÕnativiaJSchultzSRDragottiPLA finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imagingJ. Neural Eng.20131004601710.1088/1741-2560/10/4/046017
– reference: KhanSKamranMRehmanOULiuLYangSA modified PSO algorithm with dynamic parameters for solving complex engineering design problemInt. J. Comput. Math.201895112308232910.1080/00207160.2017.1387252
– reference: El MouatasimAControl proximal gradient algorithm for image L1-regularizationSIViP2019131113112110.1007/s11760-019-01453-0
– reference: Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (2008)
– reference: ChengSLuHLeiXShiYA quarter century of particle swarm optimizationComplex Intell. Syst.2018422723910.1007/s40747-018-0071-2
– reference: Caballero, J., Urigiien, J.A., Schultz, S.R., Dragotti, P.L.: Spike sorting at sub-Nyquist rates. In: International Conference on Acoustic, Speech, and Signal Processing (2012)
– reference: BluTDragottiPLVetterliMMarzilianoPCoulotLSparse sampling of signal innovations: theory, algorithms and performance boundsIEEE Signal Process. Mag.200825314010.1109/MSP.2007.914998
– reference: CandèsEJFernandez-GrandaCSuper-resolution from noisy dataJ. Fourier Anal. Appl.20131912291254313291210.1007/s00041-013-9292-3
– reference: DossalCA necessary and sufficient condition for exact sparse recovery by L1-minimizationC.R. Math.2012350117120288784810.1016/j.crma.2011.12.014
– reference: MeignenSLegrosQAltmannYMcLaughlinSA novel algorithm for the identification of Dirac impulses from filtered noisy measurementsSig. Process.201916226828110.1016/j.sigpro.2019.04.016
– reference: VetterliMMarzilianoPBluTSampling signals with finite rate of innovationIEEE Trans. Signal Process.20025014171428193078610.1109/TSP.2002.1003065
– reference: Akhondi Asl, H., Dragotti, P.L.: Simultaneous estimation of sparse signals and systems at sub-Nyquist rates. In: 19th European Signal Processing Conference (2011)
– reference: YeWFengWFanSA novel multi-swarm particle swarm optimization with dynamic learning strategyAppl. Soft Comput.20176183284310.1016/j.asoc.2017.08.051
– reference: HarrisonKREngelbrechtAPOmbuki-BermanBMInertia weight control strategies for particle swarm optimizationSwarm Intell.20161026730510.1007/s11721-016-0128-z
– reference: PanigrahiBKRavikumar PandiVDasSAdaptive particle swarm optimization approach for static and dynamic economic load dispatchEnergy Convers. Manag.2008491407141510.1016/j.enconman.2007.12.023
– reference: Najjarzadeh, M., Ayatollahi, A.: A comparison between genetic algorithm and PSO for linear phase FIR digital filter design. In: 9th International Conference on Signal Processing (2008)
– reference: WeinASrinivasanLIterML: a fast, robust algorithm for estimating signals with finite rate of innovationIEEE Trans. Signal Process.2013615324533610.1109/TSP.2013.2276411
– reference: Unser, M.: Sampling—50 years after Shannon. In: Proceedings of the IEEE (2000)
– reference: KhanSUYangSWangLLiuLA modified particle swarm optimization algorithm for global optimizations of inverse problemsIEEE Trans. Magn.20155214
– ident: 1712_CR23
  doi: 10.1109/ISSPIT.2008.4775685
– ident: 1712_CR1
  doi: 10.1109/5.843002
– volume: 10
  start-page: 267
  year: 2016
  ident: 1712_CR25
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-016-0128-z
– volume: 61
  start-page: 5324
  year: 2013
  ident: 1712_CR18
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2276411
– volume: 9
  start-page: 275
  year: 2015
  ident: 1712_CR10
  publication-title: SIViP
  doi: 10.1007/s11760-015-0815-z
– volume: 90
  start-page: 134
  year: 2010
  ident: 1712_CR17
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2009.05.022
– volume: 4
  start-page: 227
  year: 2018
  ident: 1712_CR29
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-018-0071-2
– ident: 1712_CR21
  doi: 10.1109/ICASSP.2012.6287951
– volume: 350
  start-page: 117
  year: 2012
  ident: 1712_CR12
  publication-title: C.R. Math.
  doi: 10.1016/j.crma.2011.12.014
– volume: 13
  start-page: 1113
  year: 2019
  ident: 1712_CR11
  publication-title: SIViP
  doi: 10.1007/s11760-019-01453-0
– volume: 10
  start-page: 046017
  year: 2013
  ident: 1712_CR22
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046017
– volume: 55
  start-page: 1741
  year: 2007
  ident: 1712_CR15
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.890907
– volume: 23
  start-page: 1153
  year: 2017
  ident: 1712_CR7
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-016-9502-x
– volume: 95
  start-page: 2308
  issue: 11
  year: 2018
  ident: 1712_CR19
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2017.1387252
– ident: 1712_CR24
  doi: 10.1109/ICOSP.2008.4697568
– volume: 109
  start-page: 125
  year: 2015
  ident: 1712_CR4
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-014-0639-x
– volume: 15
  start-page: 1315
  year: 2015
  ident: 1712_CR6
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-014-9228-6
– volume: 14
  start-page: 17
  issue: 1
  year: 2015
  ident: 1712_CR14
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549586
– volume: 25
  start-page: 31
  year: 2008
  ident: 1712_CR2
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914998
– volume: 162
  start-page: 268
  year: 2019
  ident: 1712_CR13
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2019.04.016
– volume: 61
  start-page: 832
  year: 2017
  ident: 1712_CR27
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.051
– ident: 1712_CR5
– volume: 56
  start-page: 5135
  year: 2008
  ident: 1712_CR16
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.928510
– volume: 50
  start-page: 1417
  year: 2002
  ident: 1712_CR3
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.1003065
– ident: 1712_CR9
– volume: 49
  start-page: 1407
  year: 2008
  ident: 1712_CR26
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.12.023
– volume: 52
  start-page: 1
  year: 2015
  ident: 1712_CR20
  publication-title: IEEE Trans. Magn.
– volume: 22
  start-page: 387
  year: 2018
  ident: 1712_CR28
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 19
  start-page: 1229
  year: 2013
  ident: 1712_CR8
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-013-9292-3
SSID ssj0000327868
Score 2.1925557
Snippet The paradigmatic example of signals with finite rate of innovation (FRI) is a linear combination of a finite number of Diracs per time unit, a.k.a. spike...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1707
SubjectTerms Algorithms
Computer Imaging
Computer Science
Image Processing and Computer Vision
Innovations
Maximum likelihood estimation
Multimedia Information Systems
Noise
Original Paper
Parameter estimation
Particle swarm optimization
Pattern Recognition and Graphics
Reconstruction
Robustness (mathematics)
Signal,Image and Speech Processing
Spikes
Vision
Title Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm
URI https://link.springer.com/article/10.1007/s11760-020-01712-5
https://www.proquest.com/docview/2473800260
Volume 14
WOSCitedRecordID wos000549700500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHb1pYP9Ik3kQcHmSIX-xW8qmFuY51E_zvTbp2VVFBj02TUvLea96vye_3AI5DoX2sfOPFghHP5rfCo0JiT4dYBcxnTKqiask16ffpYMBuSlJYXp12r7Ykiy91TXbzSdz1HNxxGi8WQi3Dil3uqAvH27vHxZ-VbhgQOufA0djpb3bDki3z_WM-r0h1mvllZ7RYcHrN_73qJmyUCSY6n3vEFizpUQuaVfEGVMZyC9Y_KBFuw9jB0FpMFmUGmdSlo8hJSbjLdFE-FbkzH9ZrbRPiaJSl-RtymlAWdWdntmWSiVk-PUVcylkx2gl5zBmSiA-fskk6fX7ZgYfe5f3FlVcWY_CkjdKpZzSlFr0QbVMwHSlBVGR8FWDe5Qxjqay9uQVn3Km7ON6e4IHwlcCYEqKZiMNdaIyykd4DhIXmVMRKGsOiwITCuoiySJQaEmIm4zb4lUESWSqVu4IZw6TWWHYTnNgJTooJTnAbThZjxnOdjl97dyo7J2XM5kkQkZAWGmttOK3sWt_--Wn7f-t-AGuBc42C0NiBhjWtPoRV-TpN88lR4cvvTnfteg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah5808J6SZP4JqIoziHe8K3kqoW5yjoF_71J164qKuhj0ySUnJPmfEm-7wDshkL7WPnGiwUjno1vhUeFxJ4OsQqYz5hURdaSDul26f09uyxJYXl12706kiz-1DXZzSdx23Nwx2m8WAg1CVORXbHcRb6r67vxzko7DAgdceBo7PQ322HJlvm-m88rUh1mfjkZLRack4X_feoizJcBJjocecQSTOj-MixUyRtQOZeXYe6DEuEKPDsYWovJoswgk7pwFDkpCfeYjtOnInfnw3qtLUIc9bM0f0NOE8qi7uzAlgwy8ZIP9xGX8qVo7YQ8RgxJxHsP2SAdPj6twu3J8c3RqVcmY_CknaVDz2hKLXoh2oZgOlKCqMj4KsC8zRnGUll7cwvOuFN3cbw9wQPhK4ExJUQzEYdr0Ohnfb0OCAvNqYiVNIZFgQmFdRFlkSg1JMRMxk3wK4MkslQqdwkzekmtsewGOLEDnBQDnOAm7I3bPI90On6t3arsnJRzNk-CiIS00Fhrwn5l1_r1z71t_K36Dsyc3lx0ks5Z93wTZgPnJgW5sQUNa2a9BdPydZjmg-3Cr98BeC3wXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BRag9AIVWbKHUh94gYvNwbHNDhRWoaIVEi7hFfkIkmqx2A1L_fT15bGhFkRDHOLYVzYzl-WJ_3wB8jZUNqQldkCrBAp_fqoArTQMbUxOJUAht6qol52w85tfX4uIRi7--7d4dSTacBlRpKqqDiXEHPfEtZOkwQOiDei8eTi3CmwSLBiFev7ya_2UZxhHjDR-Op6jFOYxb5szT0_y9O_Up5z-npPXmM1p7_Wevw2qbeJKjJlLew4ItNmCtK-pA2jW-Ae8eKRRuwgThaS8yS0pHXI5pKkGJCXzM52VVCd4F8dHsm4gkRZnPfhPUivJovDz0LdNS3c-qfSK1vq9Ho8BHw5wk8u6mnObV7a8P8HN08uPbadAWaQi0X71V4CznHtUw61MzmxjFTOJCE1E5lIJSbXwcSA_aJKq-IJ9PyUiFRlHKGbNCpfFHWCrKwm4BocpKrlKjnRNJ5GLlQ8d4hModi6nQ6QDCzjmZbhXMsZDGXdZrL6OBM2_grDZwRgewNx8zafQ7nu290_k8a9fyLIsSFvNae20A-52P-9f_n-3Ty7p_gZWL41F2fjb-vg1vI4ySmvO4A0vey_YzLOuHKp9Nd-sQ_wORVvlC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+finite+rate+of+innovation+signals+in+a+noisy+scenario%3A+a+robust%2C+accurate+estimation+algorithm&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Najjarzadeh+Meisam&rft.au=Sadjedi+Hamed&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=8&rft.spage=1707&rft.epage=1715&rft_id=info:doi/10.1007%2Fs11760-020-01712-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon