Variational autoencoder Bayesian matrix factorization (VABMF) for collaborative filtering

Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; howeve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 7; s. 5132 - 5145
Hlavní autori: Aldhubri, Ali, Lasheng, Yu, Mohsen, Farida, Al-Qatf, Majjed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2021
Springer Nature B.V
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; however, these approaches are vulnerable to overfitting because of the nature of a single point estimation that is pursued by these models. An alternative approach to PMF is a Bayesian PMF model that suggests the Markov chain Monte Carlo algorithm as a full estimation for approximate intractable posterior over model parameters. However, despite its success in increasing prediction, it has a high computational cost. To this end, we proposed a novel Bayesian deep learning-based model treatment, namely, variational autoencoder Bayesian matrix factorization (VABMF). The proposed model uses stochastic gradient variational Bayes to estimate intractable posteriors and expectation–maximization-style estimators to learn model parameters. The model was evaluated on the basis of three MovieLens datasets, namely, Ml-100k, Ml-1M, and Ml-10M. Experimental results showed that our proposed VABMF model significantly outperforms state-of-the-art RS.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-020-02049-9