Variational autoencoder Bayesian matrix factorization (VABMF) for collaborative filtering

Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; howeve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 7; s. 5132 - 5145
Hlavní autoři: Aldhubri, Ali, Lasheng, Yu, Mohsen, Farida, Al-Qatf, Majjed
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2021
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; however, these approaches are vulnerable to overfitting because of the nature of a single point estimation that is pursued by these models. An alternative approach to PMF is a Bayesian PMF model that suggests the Markov chain Monte Carlo algorithm as a full estimation for approximate intractable posterior over model parameters. However, despite its success in increasing prediction, it has a high computational cost. To this end, we proposed a novel Bayesian deep learning-based model treatment, namely, variational autoencoder Bayesian matrix factorization (VABMF). The proposed model uses stochastic gradient variational Bayes to estimate intractable posteriors and expectation–maximization-style estimators to learn model parameters. The model was evaluated on the basis of three MovieLens datasets, namely, Ml-100k, Ml-1M, and Ml-10M. Experimental results showed that our proposed VABMF model significantly outperforms state-of-the-art RS.
AbstractList Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; however, these approaches are vulnerable to overfitting because of the nature of a single point estimation that is pursued by these models. An alternative approach to PMF is a Bayesian PMF model that suggests the Markov chain Monte Carlo algorithm as a full estimation for approximate intractable posterior over model parameters. However, despite its success in increasing prediction, it has a high computational cost. To this end, we proposed a novel Bayesian deep learning-based model treatment, namely, variational autoencoder Bayesian matrix factorization (VABMF). The proposed model uses stochastic gradient variational Bayes to estimate intractable posteriors and expectation–maximization-style estimators to learn model parameters. The model was evaluated on the basis of three MovieLens datasets, namely, Ml-100k, Ml-1M, and Ml-10M. Experimental results showed that our proposed VABMF model significantly outperforms state-of-the-art RS.
Author Mohsen, Farida
Al-Qatf, Majjed
Aldhubri, Ali
Lasheng, Yu
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-2926-4240
  surname: Aldhubri
  fullname: Aldhubri, Ali
  organization: School of Computer Science and Engineering, Central South University
– sequence: 2
  givenname: Yu
  orcidid: 0000-0001-7078-9068
  surname: Lasheng
  fullname: Lasheng, Yu
  email: yulasheng@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University
– sequence: 3
  givenname: Farida
  orcidid: 0000-0002-0766-4315
  surname: Mohsen
  fullname: Mohsen, Farida
  organization: School of Computer Science and Engineering, Central South University
– sequence: 4
  givenname: Majjed
  orcidid: 0000-0002-1796-344X
  surname: Al-Qatf
  fullname: Al-Qatf, Majjed
  organization: School of Computer Science and Technology, University of Science and Technology of China
BookMark eNp9kE1LAzEQhoNUsK3-AU8BL3pYzdd2N8e2WBUqXrToKczuJpKy3dQkFeuvd9sVBA-FDDnM-wwzzwD1GtdohM4puaaEZDeBEpHLhDCyKyETeYT6NM14kgmZ9VCfSCaS0Ui-nqBBCEtCCOeE9tHbAryFaF0DNYZNdLopXaU9nsBWBwsNXkH09gsbKKPz9nufxZeL8eRxdoWN87h0dQ2F823nU2Nj66i9bd5P0bGBOuiz33-IXma3z9P7ZP509zAdz5OSUxkTo3la0ioHqWXFC2AjXtEs16QyBReFaB8nBQFesLwyFS1IyiClI0Z5KTIGfIguurlr7z42OkS1dBvfnhMUSwVLOWsHtKm8S5XeheC1UaWN-1uiB1srStROpOpEqlai2otUskXZP3Tt7Qr89jDEOyisdzK0_9vqAPUDOySIhw
CitedBy_id crossref_primary_10_1109_TIM_2023_3324674
crossref_primary_10_1111_coin_70062
crossref_primary_10_1007_s10489_025_06301_y
crossref_primary_10_1007_s10489_022_04419_x
crossref_primary_10_1007_s00521_023_09007_9
crossref_primary_10_1109_ACCESS_2025_3583186
Cites_doi 10.1109/ACCESS.2020.2979255
10.1007/s10489-019-01469-6
10.1080/01621459.2017.1285773
10.1109/MC.2009.263
10.1007/s10489-018-1219-x
10.1016/j.ins.2020.02.052
10.1007/s11042-018-7079-x
10.1201/b10905
10.1016/j.ipm.2017.03.002
10.1016/j.dss.2015.03.008
10.1177/0165551518808191
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1016/j.knosys.2019.105371
10.1007/s11761-016-0191-8
10.1016/j.sigpro.2019.107366
10.1109/TKDE.2005.99
10.1109/ACCESS.2018.2883742
10.1109/TKDE.2018.2789443
10.1109/TNNLS.2015.2458986
10.1145/1390156.1390267
10.1145/1401890.1401944
10.1145/1015330.1015437
10.1007/978-3-030-48861-1_4
10.1145/2783258.2783273
10.1145/2806416.2806527
10.1007/978-0-387-85820-3_1
10.18653/v1/k16-1002
10.1007/s10115-018-1254-2
10.1145/2835776.2835837
10.1155/2009/421425
10.1145/3270323.3270329
10.1145/3289600.3291007
10.1109/ASONAM.2018.8508723
10.1007/978-3-030-42835-8_7
10.1109/ICTER.2016.7829914
10.24963/ijcai.2017/447
10.1109/PACCS.2009.66
10.1109/CVPR.1998.698673
10.1109/IKT.2014.7030341
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-02049-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 5145
ExternalDocumentID 10_1007_s10489_020_02049_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Z201G10110G20003
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-fe35c1d8a9e9d3ba263d178e0dfb34b44b430b0a3b28dfd1b052a516213c472a3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605561500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:59:41 EST 2025
Sat Nov 29 05:33:22 EST 2025
Tue Nov 18 21:55:29 EST 2025
Fri Feb 21 02:48:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Recommender system (RS)
Collaborative filtering (CF)
Variational autoencoder (VAE)
Variational autoencoder Bayesian matrix factorization (VABMF)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fe35c1d8a9e9d3ba263d178e0dfb34b44b430b0a3b28dfd1b052a516213c472a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2926-4240
0000-0002-0766-4315
0000-0001-7078-9068
0000-0002-1796-344X
PQID 2542532430
PQPubID 326365
PageCount 14
ParticipantIDs proquest_journals_2542532430
crossref_citationtrail_10_1007_s10489_020_02049_9
crossref_primary_10_1007_s10489_020_02049_9
springer_journals_10_1007_s10489_020_02049_9
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liu, Tao (CR43) 2015; 27
Ahmadian, Meghdadi, Afsharchi (CR6) 2018; 48
Ahmadian, Joorabloo, Jalili, Ren, Meghdadi, Afsharchi (CR14) 2020; 192
CR39
CR38
CR36
CR35
CR34
Koren, Bell, Volinsky (CR41) 2009; 42
CR32
CR31
CR30
Dong, Zhu, Li, Wu (CR37) 2020; 8
Ahmadian, Meghdadi, Afsharchi (CR13) 2018; 54
CR2
CR4
Adomavicius, Tuzhilin (CR3) 2005; 17
Yu, Huang (CR8) 2017; 11
Ahmadian, Afsharchi, Meghdadi (CR5) 2019; 45
CR9
CR49
CR47
Feng, Liang, Song, Wang (CR48) 2020; 521
Xiao, Shen (CR33) 2019; 49
CR42
CR40
Lu, Wu, Mao, Wang, Zhang (CR18) 2015; 74
Jalili, Ahmadian, Izadi, Moradi, Salehi (CR10) 2018; 6
Wang, Tang, Wang, Liu (CR44) 2018; 30
CR19
CR17
CR16
CR15
CR12
CR11
Ahmadian, Afsharchi, Meghdadi (CR1) 2019; 78
Blei, Kucukelbir, McAuliffe (CR29) 2017; 112
CR28
CR27
CR26
CR23
CR22
Mongia, Jhamb, Chouzenoux, Majumdar (CR45) 2020; 169
Sachan, Richariya (CR7) 2013; 2
CR21
CR20
Brooks, Gelman, Jones, Meng (CR25) 2011
Deerwester, Dumais, Furnas, Landauer, Harshman (CR46) 1990; 41
Hoffman, Blei, Wang, Paisley (CR24) 2013; 14
S Ahmadian (2049_CR13) 2018; 54
2049_CR27
2049_CR28
2049_CR20
2049_CR21
2049_CR22
MD Hoffman (2049_CR24) 2013; 14
2049_CR23
2049_CR2
2049_CR26
G Adomavicius (2049_CR3) 2005; 17
2049_CR4
2049_CR9
M Jalili (2049_CR10) 2018; 6
C Yu (2049_CR8) 2017; 11
S Ahmadian (2049_CR1) 2019; 78
S Wang (2049_CR44) 2018; 30
2049_CR16
2049_CR17
2049_CR19
2049_CR11
2049_CR12
2049_CR15
A Mongia (2049_CR45) 2020; 169
T Liu (2049_CR43) 2015; 27
2049_CR49
J Lu (2049_CR18) 2015; 74
2049_CR42
C Feng (2049_CR48) 2020; 521
2049_CR47
T Xiao (2049_CR33) 2019; 49
A Sachan (2049_CR7) 2013; 2
S Brooks (2049_CR25) 2011
2049_CR40
Y Koren (2049_CR41) 2009; 42
S Ahmadian (2049_CR6) 2018; 48
2049_CR38
2049_CR39
S Ahmadian (2049_CR5) 2019; 45
B Dong (2049_CR37) 2020; 8
2049_CR30
S Deerwester (2049_CR46) 1990; 41
2049_CR31
2049_CR32
2049_CR34
S Ahmadian (2049_CR14) 2020; 192
2049_CR35
2049_CR36
DM Blei (2049_CR29) 2017; 112
References_xml – ident: CR22
– volume: 8
  start-page: 46030
  year: 2020
  end-page: 46040
  ident: CR37
  article-title: Hybrid collaborative recommendation via dual-autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979255
– volume: 49
  start-page: 3558
  issue: 10
  year: 2019
  end-page: 3569
  ident: CR33
  article-title: Neural variational matrix factorization for collaborative filtering in recommendation systems
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01469-6
– ident: CR49
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR12
– ident: CR35
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  end-page: 877
  ident: CR29
  article-title: Variational inference: a review for statisticians
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1285773
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  end-page: 37
  ident: CR41
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: CR42
– ident: CR21
– ident: CR19
– volume: 48
  start-page: 4448
  issue: 11
  year: 2018
  end-page: 4469
  ident: CR6
  article-title: Incorporating reliable virtual ratings into social recommendation systems
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1219-x
– ident: CR15
– volume: 2
  start-page: 8
  issue: 2
  year: 2013
  end-page: 14
  ident: CR7
  article-title: A survey on recommender systems based on collaborative filtering technique
  publication-title: International Journal of Innovations in Engineering and Technology (IJIET)
– volume: 521
  start-page: 365
  year: 2020
  end-page: 379
  ident: CR48
  article-title: A fusion collaborative filtering method for sparse data in recommender systems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.052
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 78
  start-page: 17763
  issue: 13
  year: 2019
  end-page: 17798
  ident: CR1
  article-title: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7079-x
– ident: CR36
– year: 2011
  ident: CR25
  publication-title: Handbook of Markov chain Monte Carlo
  doi: 10.1201/b10905
– ident: CR26
– volume: 54
  start-page: 707
  issue: 4
  year: 2018
  end-page: 725
  ident: CR13
  article-title: A social recommendation method based on an adaptive neighbor selection mechanism
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2017.03.002
– ident: CR47
– ident: CR2
– ident: CR30
– volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  ident: CR18
  article-title: Recommender system application developments: a survey
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2015.03.008
– ident: CR40
– volume: 45
  start-page: 607
  issue: 5
  year: 2019
  end-page: 642
  ident: CR5
  article-title: An effective social recommendation method based on user reputation model and rating profile enhancement
  publication-title: J Inf Sci
  doi: 10.1177/0165551518808191
– ident: CR27
– ident: CR23
– volume: 41
  start-page: 391
  issue: 6
  year: 1990
  end-page: 407
  ident: CR46
  article-title: Indexing by latent semantic analysis
  publication-title: J Am Soc Inf Sci
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: CR38
– volume: 192
  start-page: 105371
  year: 2020
  ident: CR14
  article-title: A social recommender system based on reliable implicit relationships
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105371
– volume: 11
  start-page: 33
  issue: 1
  year: 2017
  end-page: 45
  ident: CR8
  article-title: Clucf: a clustering cf algorithm to address data sparsity problem
  publication-title: SOCA
  doi: 10.1007/s11761-016-0191-8
– ident: CR17
– ident: CR31
– volume: 169
  start-page: 107366
  year: 2020
  ident: CR45
  article-title: Deep latent factor model for collaborative filtering
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.107366
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  end-page: 749
  ident: CR3
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
– ident: CR34
– volume: 6
  start-page: 74003
  year: 2018
  end-page: 74024
  ident: CR10
  article-title: Evaluating collaborative filtering recommender algorithms: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883742
– volume: 30
  start-page: 1022
  issue: 6
  year: 2018
  end-page: 1035
  ident: CR44
  article-title: Exploring hierarchical structures for recommender systems
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2789443
– volume: 27
  start-page: 1851
  issue: 9
  year: 2015
  end-page: 1863
  ident: CR43
  article-title: On the performance of manhattan nonnegative matrix factorization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2458986
– ident: CR28
– ident: CR20
– volume: 14
  start-page: 1303
  issue: 1
  year: 2013
  end-page: 1347
  ident: CR24
  article-title: Stochastic variational inference
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 74003
  year: 2018
  ident: 2049_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883742
– volume-title: Handbook of Markov chain Monte Carlo
  year: 2011
  ident: 2049_CR25
  doi: 10.1201/b10905
– ident: 2049_CR12
  doi: 10.1145/1390156.1390267
– ident: 2049_CR11
– volume: 521
  start-page: 365
  year: 2020
  ident: 2049_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.052
– ident: 2049_CR47
  doi: 10.1145/1401890.1401944
– ident: 2049_CR21
  doi: 10.1145/1015330.1015437
– ident: 2049_CR30
– ident: 2049_CR34
  doi: 10.1007/978-3-030-48861-1_4
– ident: 2049_CR38
  doi: 10.1145/2783258.2783273
– volume: 54
  start-page: 707
  issue: 4
  year: 2018
  ident: 2049_CR13
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2017.03.002
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 2049_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
– volume: 41
  start-page: 391
  issue: 6
  year: 1990
  ident: 2049_CR46
  publication-title: J Am Soc Inf Sci
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: 2049_CR31
– volume: 8
  start-page: 46030
  year: 2020
  ident: 2049_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979255
– volume: 2
  start-page: 8
  issue: 2
  year: 2013
  ident: 2049_CR7
  publication-title: International Journal of Innovations in Engineering and Technology (IJIET)
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  ident: 2049_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1285773
– ident: 2049_CR39
  doi: 10.1145/2806416.2806527
– ident: 2049_CR4
  doi: 10.1007/978-0-387-85820-3_1
– volume: 74
  start-page: 12
  year: 2015
  ident: 2049_CR18
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2015.03.008
– ident: 2049_CR49
  doi: 10.18653/v1/k16-1002
– volume: 78
  start-page: 17763
  issue: 13
  year: 2019
  ident: 2049_CR1
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7079-x
– ident: 2049_CR28
– volume: 48
  start-page: 4448
  issue: 11
  year: 2018
  ident: 2049_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1219-x
– ident: 2049_CR9
  doi: 10.1007/s10115-018-1254-2
– ident: 2049_CR36
  doi: 10.1145/2835776.2835837
– ident: 2049_CR2
  doi: 10.1155/2009/421425
– ident: 2049_CR35
  doi: 10.1145/3270323.3270329
– ident: 2049_CR32
– ident: 2049_CR40
  doi: 10.1145/3289600.3291007
– ident: 2049_CR15
  doi: 10.1109/ASONAM.2018.8508723
– volume: 169
  start-page: 107366
  year: 2020
  ident: 2049_CR45
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.107366
– volume: 11
  start-page: 33
  issue: 1
  year: 2017
  ident: 2049_CR8
  publication-title: SOCA
  doi: 10.1007/s11761-016-0191-8
– volume: 30
  start-page: 1022
  issue: 6
  year: 2018
  ident: 2049_CR44
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2789443
– ident: 2049_CR23
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 2049_CR41
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: 2049_CR19
  doi: 10.1007/978-3-030-42835-8_7
– volume: 49
  start-page: 3558
  issue: 10
  year: 2019
  ident: 2049_CR33
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01469-6
– ident: 2049_CR16
  doi: 10.1109/ICTER.2016.7829914
– ident: 2049_CR42
  doi: 10.24963/ijcai.2017/447
– ident: 2049_CR20
  doi: 10.1109/PACCS.2009.66
– ident: 2049_CR27
  doi: 10.1109/CVPR.1998.698673
– volume: 14
  start-page: 1303
  issue: 1
  year: 2013
  ident: 2049_CR24
  publication-title: J Mach Learn Res
– volume: 192
  start-page: 105371
  year: 2020
  ident: 2049_CR14
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105371
– volume: 27
  start-page: 1851
  issue: 9
  year: 2015
  ident: 2049_CR43
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2458986
– ident: 2049_CR17
  doi: 10.1109/IKT.2014.7030341
– ident: 2049_CR22
– ident: 2049_CR26
– volume: 45
  start-page: 607
  issue: 5
  year: 2019
  ident: 2049_CR5
  publication-title: J Inf Sci
  doi: 10.1177/0165551518808191
SSID ssj0003301
Score 2.3059015
Snippet Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5132
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Bayesian analysis
Collaboration
Computer Science
Factorization
Filtration
Machine learning
Machines
Manufacturing
Markov chains
Mathematical models
Mechanical Engineering
Parameter estimation
Processes
Recommender systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3LwoGigTZquOW7i8OIQ1DFPJWlSGOgmWzf0vzfJ0m2KCgq9NQ3hJXl5X_Pe9wGcGs8nLAkJbhiUgy1CwJJpgnmQS0ET4zaVdGITjU4n6fX4nS8KG5fZ7uWVpPPUS8VukU3vMXDHFnRyzFdhjVm2GYvR77tz_2sQutPJM8gCxzHv-VKZ7_v4fBwtYswv16LutGlX_zfOLdj00SVqzpbDNqzowQ5US-UG5DfyLjx1DUT2vwGRmBRDS2epTIuWeNe2rBK9WOr-NzST4_G1muis22zdts-RCXTR0gKaapT37a27GeYePLavH65usBdZwJnZfQXONWVZqBLBNVdUChJTFTYSHahc0khG5qGBDASVJFG5CmXAiGBhTEKaRQ0i6D5UBsOBPgDkUqbyLKAsURELpZRUWcEqncUq0yKuQVjaOs08A7kVwnhOF9zJ1napsVvqbJfyGlzMv3md8W_82rpeTmHq9-I4NRCYMBM30qAGl-WULV7_3Nvh35ofwQaxCS8ul7cOlWI00cewnk2L_nh04tboB9HW3-I
  priority: 102
  providerName: Springer Nature
Title Variational autoencoder Bayesian matrix factorization (VABMF) for collaborative filtering
URI https://link.springer.com/article/10.1007/s10489-020-02049-9
https://www.proquest.com/docview/2542532430
Volume 51
WOSCitedRecordID wos000605561500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58Hbz4FuuLPXhQdDHJ5nkSKxZBLMVHrV7CvgKCtmqr6L93Jt1YFfQihIGQTUgys7M7uzPfB7CFnk8SCAlPMMrhFCFwFdmAZ16hpEjRbRpVkk0kzWba6WQtt-DWd2mVlU8sHbXpaVoj38dAJohw9BfeweMTJ9Yo2l11FBrjMElIZWjnk_XjZuv80xdjtF5y5mGUweM467iyGVc8F1K6EIZPVCCa8ez70DSab_7YIi1Hnsbsf995DmbcnJMdDo1kHsZsdwFmKz4H5rr3Ity0MXB2i4NMvgx6BHJpsEVdvlsqtmQPBOj_xoYkPa6Ck223D-tnjR2G01_2xaxeLSvuaC8eP2oJrhrHl0cn3FEvcI19csALKyLtm1RmNjNCySAWxk9S65lCiVCFeAhPeVKoIDWF8ZUXBTLy48AXOkwCKZZhotvr2hVgZSJVoT0RpSaMfKWUMERjZXVstJVxDfzqr-fa4ZITPcZ9PkJUJk3lqKW81FSe1WD3857HISrHn63XK_Xkrof285FuarBXKXh0-fenrf79tDWYDijtpczoXYeJwfOL3YAp_Tq46z9vwnhyfbPprBTPThOO8sw7IplcoGxFtyjPL9ofim7w0Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RitReoKWtuoUWH1qJqrXq2Ek2OSAElBUIdsUB0PYU_BVpJdilu8vXn-I3MpN12LYS3DhUyi2Opdhvxn72zDyAz-j5NBUh4U1kOZwYAjeJlzwXpdEqQ7fpTCU20ex0sm43P5iB2zoXhsIqa59YOWo3sHRG_gOJjExw9Vdi_fw3J9Uoul2tJTQmsNjzN1dI2UZruz9xfr9I2do-3NrhQVWAW4TbmJdeJTZymc597pTRMlUuamZeuNKo2MT4KGGEVkZmrnSREYnUSZTKSNm4KbXCfp_B8xiJF9lVW2zde36lKrllgZyGp2neDUk6IVUvpuAkJGuUjprz_O-FcLq7_edCtlrnWgv_2wi9gvmwo2YbExN4DTO-vwgLtVoFC87rDfw61sNeOPpk-mI8oBKeDlts6htPqaTsjOQKrtlEgijkp7LV443Ndusrw809-8NoLj0rexRpgIP4Fo6e5AffwWx_0PfvgVVhYqUVKslcnETGGOVIpMvb1Fmv0wZE9SwXNlRdJ_GP02JaL5qQUSAqigoZRd6Ab_ffnE9qjjzaermGQxH8z6iYYqEB32tATV8_3NuHx3tbgRc7h-39Yn-3s7cELyUF-FSxy8swOx5e-I8wZy_HvdHwU2UZDE6eGmh3ewFG4g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1Riiou0EIRAdr6UCQqarFr7-cBVVCIiihRDgWlvWz9tVIkSCAJUP5afx0zGy-hSHDjUGlv67W09vOMx34zD-AjWj5FRUh4ilEOpwiB69gJngelVjJDs2l1JTaRtlpZp5O3p-BvnQtDtMraJlaG2vYNnZFvYSAjYvT-MtgqPS2ivdf8cn7BSUGKblprOY0xRA7dzTWGb8Ptgz2c63Uhmvs_vn7jXmGAG4TeiJdOxia0mcpdbqVWIpE2TDMX2FLLSEf4yEAHSmqR2dKGOoiFisNEhNJEqVAS-30BL9MoyYhO1o5_3XkBKSvp5QDjG54keccn7Pi0vYiIShi4UWpqzvN_neJkp_vgcrbyec35_3m0XsOc32mznfHSeANTrrcA87WKBfNGbRF-nqhB1x-JMnU56lNpT4stdtWNoxRTdkYyBn_YWJrI562yjZOd3aPmJ4abfnZvMV05VnaJgYAD-haOn-UHl2C61--5ZWAVfaw0gYwzG8Wh1lpaEu9yJrHGqaQBYT3jhfHV2EkU5LSY1JEmlBSIkKJCSZE3YPPum_NxLZInW6_V0Ci8XRoWE1w04HMNrsnrx3tbebq3D_AK8VV8P2gdrsKsIN5PRWleg-nR4NK9gxlzNeoOB--rRcLg93Pj7BZG5E_y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+autoencoder+Bayesian+matrix+factorization+%28VABMF%29+for+collaborative+filtering&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Aldhubri+Ali&rft.au=Yu%2C+Lasheng&rft.au=Mohsen+Farida&rft.au=Al-Qatf+Majjed&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=7&rft.spage=5132&rft.epage=5145&rft_id=info:doi/10.1007%2Fs10489-020-02049-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon