Variational autoencoder Bayesian matrix factorization (VABMF) for collaborative filtering
Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; howeve...
Uloženo v:
| Vydáno v: | Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 7; s. 5132 - 5145 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Probabilistic matrix factorization (PMF) is the most popular method among low-rank matrix approximation approaches that address the sparsity problem in collaborative filtering for recommender systems. PMF depends on the classical maximum a posteriori estimator for estimating model parameters; however, these approaches are vulnerable to overfitting because of the nature of a single point estimation that is pursued by these models. An alternative approach to PMF is a Bayesian PMF model that suggests the Markov chain Monte Carlo algorithm as a full estimation for approximate intractable posterior over model parameters. However, despite its success in increasing prediction, it has a high computational cost. To this end, we proposed a novel Bayesian deep learning-based model treatment, namely, variational autoencoder Bayesian matrix factorization (VABMF). The proposed model uses stochastic gradient variational Bayes to estimate intractable posteriors and expectation–maximization-style estimators to learn model parameters. The model was evaluated on the basis of three MovieLens datasets, namely, Ml-100k, Ml-1M, and Ml-10M. Experimental results showed that our proposed VABMF model significantly outperforms state-of-the-art RS. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-669X 1573-7497 |
| DOI: | 10.1007/s10489-020-02049-9 |