Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network

Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflec...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research Vol. 339; no. 1-2; pp. 813 - 833
Main Authors: Lee, Sangho, Choi, Jeongsub, Son, Youngdoo
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2024
Springer Nature B.V
Subjects:
ISSN:0254-5330, 1572-9338
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis.
AbstractList Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis.
Author Lee, Sangho
Choi, Jeongsub
Son, Youngdoo
Author_xml – sequence: 1
  givenname: Sangho
  orcidid: 0000-0002-7784-8515
  surname: Lee
  fullname: Lee, Sangho
  organization: Department of Industrial and Systems Engineering, Dongguk University – Seoul, Data Science Laboratory (DSLAB), Dongguk University – Seoul
– sequence: 2
  givenname: Jeongsub
  orcidid: 0000-0003-2220-295X
  surname: Choi
  fullname: Choi, Jeongsub
  organization: Department of Management Information Systems, West Virginia University
– sequence: 3
  givenname: Youngdoo
  orcidid: 0000-0002-1912-5853
  surname: Son
  fullname: Son, Youngdoo
  email: youngdoo@dongguk.edu
  organization: Department of Industrial and Systems Engineering, Dongguk University – Seoul, Data Science Laboratory (DSLAB), Dongguk University – Seoul
BookMark eNp9kMFu1DAQhi1UJLaFF-BkibNhJk6amBuqSkGq1AucLScZZ6dk7WB72-6lz07aRULi0NNc_u-fme9UnIQYSIj3CB8RoP2UEerWKKgqBQ20qB5eiQ02baWM1t2J2EDV1KrRGt6I05xvAQCxazbi8dJ7HphCkXecueeZy0G6eYqJy3YnfUxyy9NW-US_9xSGgyy8I5UpMeXP0i3LzIMrHIMsUXq3n4sc2U0hZs7yfi2RU3LLVg4x3MV5_5R0swxU7mP69Va89m7O9O7vPBM_v17-uPimrm-uvl98uVaDRlOUJ6yh806T7kmf6xHQkXG-MrqruwFwbHRfj5VBUzWAPbp-NNR6NM6MRKjPxIdj75Li-kYu9jbu03pIthq6c6yNrps1VR1TQ4o5J_J2Sbxz6WAR7JNne_RsV8_22bN9WKHuP2jg8iykJMfzy6g-onndEyZK_656gfoDvaaYlg
CitedBy_id crossref_primary_10_1007_s10479_023_05508_x
crossref_primary_10_1109_ACCESS_2024_3369679
Cites_doi 10.1109/TIE.2016.2519325
10.1016/j.ymssp.2017.03.034
10.1007/s42417-021-00286-x
10.1109/TNNLS.2020.2978386
10.1007/s10618-019-00619-1
10.1007/s10489-021-02956-5
10.1016/j.ymssp.2006.01.007
10.1073/pnas.0709247105
10.1007/s11634-017-0300-3
10.1016/j.ymssp.2015.04.021
10.1016/j.ymssp.2009.08.004
10.1016/j.measurement.2006.10.010
10.1109/ACCESS.2019.2926986
10.1109/TII.2018.2864759
10.1007/s10845-020-01600-2
10.1145/1081870.1081893
10.1109/TII.2019.2934901
10.1016/j.ymssp.2016.02.007
10.1109/ROBOT.2006.1642054
10.1016/j.knosys.2019.07.008
10.1007/s10479-019-03247-6
10.1109/CESA.2006.4281698
10.1080/21642583.2014.913821
10.1007/s10479-019-03220-3
10.1016/j.ymssp.2004.11.002
10.3233/JIFS-169526
10.1109/PHM-Jinan48558.2020.00042
10.1109/GUCON48875.2020.9231086
10.1016/j.asoc.2015.02.015
10.1007/s10618-016-0483-9
10.1109/DDCLS49620.2020.9275054
10.1007/s10115-016-0987-z
10.1016/j.renene.2018.10.031
10.1209/0295-5075/116/50001
10.1109/TSMC.2017.2754287
10.1016/j.ins.2015.07.046
10.3390/ma11112262
10.1142/S0218195995000179
10.1103/PhysRevE.80.046103
10.1007/s10479-021-04242-6
10.1109/ICSMD50554.2020.9261687
10.1016/j.measurement.2019.107036
10.1016/B978-0-12-811534-3.00006-8
10.3390/app11073194
10.1016/j.chaos.2018.07.039
10.1016/j.physa.2020.125476
10.1007/s00454-016-9831-1
10.1109/ACCESS.2018.2794765
10.1371/journal.pone.0143015
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10479-022-05071-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
Computing Database
Science Database (subscription)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 833
ExternalDocumentID 10_1007_s10479_022_05071_x
GrantInformation_xml – fundername: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
  grantid: 322050-3
  funderid: http://dx.doi.org/10.13039/501100014189
– fundername: National Research Foundation of Korea
  grantid: 2020R1C1C1003425; 2020R1A4A3079710
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-fe1408fa3e3be363d01ae9af293848c01d53b4d29192501b1abd9e7f19a9dee13
IEDL.DBID 7WY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000945237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Wed Nov 05 14:49:43 EST 2025
Sat Nov 29 02:36:49 EST 2025
Tue Nov 18 22:36:13 EST 2025
Fri Feb 21 02:39:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Deep learning
Fault diagnosis
High-frequency time series
Graph convolutional network
Visibility algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fe1408fa3e3be363d01ae9af293848c01d53b4d29192501b1abd9e7f19a9dee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7784-8515
0000-0003-2220-295X
0000-0002-1912-5853
PQID 3086149345
PQPubID 25585
PageCount 21
ParticipantIDs proquest_journals_3086149345
crossref_primary_10_1007_s10479_022_05071_x
crossref_citationtrail_10_1007_s10479_022_05071_x
springer_journals_10_1007_s10479_022_05071_x
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yela, Thalmann, Nicosia, Stowell, Sandler (CR53) 2020; 2
Lei, Liu, Jiang (CR22) 2019; 133
Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (CR15) 2019; 33
Zhang, Ashuri, Deng (CR54) 2017; 11
CR38
CR35
Ferreira, Zhao (CR8) 2016; 326
Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (CR28) 2016; 76
Junsheng, Dejie, Yu (CR17) 2006; 20
Cardinal, Hoffmann (CR3) 2017; 57
Wu, Pan, Chen, Long, Zhang, Philip (CR49) 2020; 32
Li, Huang, Mi, Peng, Han (CR29) 2022; 311
Stephen, Gu, Yang (CR43) 2015; 10
CR4
CR5
Hu, He, Zhang, Zi (CR13) 2007; 21
CR48
CR47
CR44
CR42
Gao, Small, Kurths (CR10) 2017; 116
Liu, Wang, Deng (CR33) 2020; 193
Smith, Randall (CR41) 2015; 64
Lin, Liu (CR31) 2020; 201
Guo, Li, Song, Wang, Chen (CR11) 2019; 16
Jedliński, Jonak (CR16) 2015; 30
Liu, Deng (CR32) 2019; 7
Wen, Gao, Li (CR46) 2017; 49
Lacasa, Luque, Ballesteros, Luque, Nuno (CR20) 2008; 105
Sanchez, Lucero, Vásquez, Cerrada, Macancela, Cabrera (CR37) 2018; 34
Wang, Zhang, Zhao, Hu (CR45) 2022; 311
Harrou, Nounou (CR12) 2014; 2
CR18
Zhou, Yang, Fujita, Chen, Wen (CR57) 2020; 187
Gao, Yu, Wang (CR9) 2020; 149
Zhang, Qin, Jia, Chen (CR55) 2018; 11
Kozitsin, Katser, Lakontsev (CR19) 2021; 11
Lei, Jia, Lin, Xing, Ding (CR24) 2016; 63
CR51
Chen, Yu (CR6) 2022; 311
Shao, Jiang, Zhao, Wang (CR39) 2017; 95
Li, Mo, Yan (CR27) 2021; 70
Pham, Yang (CR36) 2010; 24
Iacobello, Ridolfi, Scarsoglio (CR14) 2021; 563
Lin, Skiena (CR30) 1995; 5
Yang, Yu, Cheng (CR52) 2007; 40
Bagnall, Lines, Bostrom, Large, Keogh (CR2) 2017; 31
Aminikhanghahi, Cook (CR1) 2017; 51
CR26
CR25
Shao, McAleer, Yan, Baldi (CR40) 2018; 15
CR23
Xu, Zhang, Deng (CR50) 2018; 117
Lan, Mo, Chen, Liu, Deng (CR21) 2015; 25
Chen, Zhang, Gao (CR7) 2021; 32
Zhao, Sun, Jin (CR56) 2018; 6
Luque, Lacasa, Ballesteros, Luque (CR34) 2009; 80
H Ismail Fawaz (5071_CR15) 2019; 33
R-V Sanchez (5071_CR37) 2018; 34
Y-L Lin (5071_CR30) 1995; 5
5071_CR35
X Lan (5071_CR21) 2015; 25
F Liu (5071_CR32) 2019; 7
Y Lei (5071_CR24) 2016; 63
G Iacobello (5071_CR14) 2021; 563
Z Zhang (5071_CR55) 2018; 11
5071_CR38
WA Smith (5071_CR41) 2015; 64
Y Yang (5071_CR52) 2007; 40
Q Hu (5071_CR13) 2007; 21
F Harrou (5071_CR12) 2014; 2
5071_CR4
S Aminikhanghahi (5071_CR1) 2017; 51
5071_CR5
H Zhao (5071_CR56) 2018; 6
A Bagnall (5071_CR2) 2017; 31
LN Ferreira (5071_CR8) 2016; 326
5071_CR42
P Xu (5071_CR50) 2018; 117
5071_CR44
H Shao (5071_CR39) 2017; 95
5071_CR48
5071_CR47
L Lacasa (5071_CR20) 2008; 105
F Liu (5071_CR33) 2020; 193
Z-K Gao (5071_CR10) 2017; 116
Ł Jedliński (5071_CR16) 2015; 30
Q Guo (5071_CR11) 2019; 16
J Cardinal (5071_CR3) 2017; 57
Y-F Li (5071_CR29) 2022; 311
F Zhou (5071_CR57) 2020; 187
5071_CR51
B Luque (5071_CR34) 2009; 80
L Wen (5071_CR46) 2017; 49
C Li (5071_CR28) 2016; 76
R Zhang (5071_CR54) 2017; 11
Y Gao (5071_CR9) 2020; 149
C Junsheng (5071_CR17) 2006; 20
S Shao (5071_CR40) 2018; 15
M Stephen (5071_CR43) 2015; 10
J Lei (5071_CR22) 2019; 133
X Chen (5071_CR7) 2021; 32
5071_CR23
HT Pham (5071_CR36) 2010; 24
5071_CR26
5071_CR25
DF Yela (5071_CR53) 2020; 2
5071_CR18
V Kozitsin (5071_CR19) 2021; 11
C Li (5071_CR27) 2021; 70
K-S Chen (5071_CR6) 2022; 311
Z Wu (5071_CR49) 2020; 32
N Wang (5071_CR45) 2022; 311
Z Lin (5071_CR31) 2020; 201
References_xml – volume: 49
  start-page: 136
  issue: 1
  year: 2017
  end-page: 144
  ident: CR46
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 149
  start-page: 107036
  year: 2020
  ident: CR9
  article-title: Fault diagnosis of rolling bearings using weighted horizontal visibility graph and graph Fourier transform
  publication-title: Measurement
– ident: CR4
– volume: 76
  start-page: 283
  year: 2016
  end-page: 293
  ident: CR28
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mechanical Systems and Signal Processing
– ident: CR51
– volume: 187
  start-page: 104837
  year: 2020
  ident: CR57
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowledge-Based Systems
– volume: 34
  start-page: 3463
  issue: 6
  year: 2018
  end-page: 3473
  ident: CR37
  article-title: Feature ranking for multi-fault diagnosis of rotating machinery by using random forest and KNN
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 80
  issue: 4
  year: 2009
  ident: CR34
  article-title: Horizontal visibility graphs: Exact results for random time series
  publication-title: Physical Review E
– volume: 11
  start-page: 3194
  issue: 7
  year: 2021
  ident: CR19
  article-title: Online forecasting and anomaly detection based on the ARIMA model
  publication-title: Applied Sciences
– ident: CR35
– volume: 40
  start-page: 943
  issue: 9–10
  year: 2007
  end-page: 950
  ident: CR52
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
– volume: 563
  year: 2021
  ident: CR14
  article-title: A review on turbulent and vortical flow analyses via complex networks
  publication-title: Physica A: Statistical Mechanics and its Applications
– ident: CR25
– ident: CR42
– volume: 51
  start-page: 339
  issue: 2
  year: 2017
  end-page: 367
  ident: CR1
  article-title: A survey of methods for time series change point detection
  publication-title: Knowledge and Information Systems
– volume: 116
  start-page: 50001
  issue: 5
  year: 2017
  ident: CR10
  article-title: Complex network analysis of time series
  publication-title: EPL (Europhysics Letters)
– volume: 32
  start-page: 971
  year: 2021
  end-page: 987
  ident: CR7
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: Journal of Intelligent Manufacturing
– volume: 11
  start-page: 2262
  issue: 11
  year: 2018
  ident: CR55
  article-title: Visibility graph feature model of vibration signals: A novel bearing fault diagnosis approach
  publication-title: Materials
– volume: 2
  issue: 2
  year: 2020
  ident: CR53
  article-title: Online visibility graphs: Encoding visibility in a binary search tree
  publication-title: Physical Review Research
– volume: 105
  start-page: 4972
  issue: 13
  year: 2008
  end-page: 4975
  ident: CR20
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proceedings of the National Academy of Sciences
– volume: 311
  start-page: 417
  issue: 1
  year: 2022
  end-page: 435
  ident: CR45
  article-title: Recognition method of equipment state with the FLDA based Mahalanobis–Taguchi system
  publication-title: Annals of Operations Research
– volume: 311
  start-page: 51
  issue: 1
  year: 2022
  end-page: 64
  ident: CR6
  article-title: Lifetime performance evaluation and analysis model of passive component capacitor products
  publication-title: Annals of Operations Research
– volume: 201
  year: 2020
  ident: CR31
  article-title: Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network
  publication-title: Energy
– volume: 311
  start-page: 195
  issue: 1
  year: 2022
  end-page: 209
  ident: CR29
  article-title: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability
  publication-title: Annals of Operations Research
– volume: 64
  start-page: 100
  year: 2015
  end-page: 131
  ident: CR41
  article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
– volume: 6
  start-page: 12929
  year: 2018
  end-page: 12939
  ident: CR56
  article-title: Sequential fault diagnosis based on LSTM neural network
  publication-title: IEEE Access
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  end-page: 3147
  ident: CR24
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Transactions on Industrial Electronics
– ident: CR5
– ident: CR26
– volume: 7
  start-page: 102554
  year: 2019
  end-page: 102560
  ident: CR32
  article-title: A fast algorithm for network forecasting time series
  publication-title: IEEE Access
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR27
  article-title: Fault diagnosis of rolling bearing based on WHVG and GCN
  publication-title: IEEE Transactions on Instrumentation and Measurement
– ident: CR18
– volume: 117
  start-page: 201
  year: 2018
  end-page: 208
  ident: CR50
  article-title: A novel visibility graph transformation of time series into weighted networks
  publication-title: Chaos, Solitons & Fractals
– ident: CR47
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  end-page: 24
  ident: CR49
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 2
  start-page: 433
  issue: 1
  year: 2014
  end-page: 443
  ident: CR12
  article-title: Monitoring linear antenna arrays using an exponentially weighted moving average-based fault detection scheme
  publication-title: Systems Science & Control Engineering: An Open Access Journal
– volume: 21
  start-page: 688
  issue: 2
  year: 2007
  end-page: 705
  ident: CR13
  article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
  publication-title: Mechanical Systems and Signal Processing
– volume: 24
  start-page: 546
  issue: 2
  year: 2010
  end-page: 558
  ident: CR36
  article-title: Estimation and forecasting of machine health condition using ARMA/GARCH model
  publication-title: Mechanical Systems and Signal Processing
– volume: 20
  start-page: 350
  issue: 2
  year: 2006
  end-page: 362
  ident: CR17
  article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model
  publication-title: Mechanical Systems and Signal Processing
– volume: 30
  start-page: 636
  year: 2015
  end-page: 641
  ident: CR16
  article-title: Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform
  publication-title: Applied Soft Computing
– volume: 16
  start-page: 2044
  issue: 3
  year: 2019
  end-page: 2053
  ident: CR11
  article-title: Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 5
  start-page: 289
  issue: 03
  year: 1995
  end-page: 312
  ident: CR30
  article-title: Complexity aspects of visibility graphs
  publication-title: International Journal of Computational Geometry & Applications
– volume: 11
  start-page: 759
  issue: 4
  year: 2017
  end-page: 783
  ident: CR54
  article-title: A novel method for forecasting time series based on fuzzy logic and visibility graph
  publication-title: Advances in Data Analysis and Classification
– volume: 57
  start-page: 164
  issue: 1
  year: 2017
  end-page: 178
  ident: CR3
  article-title: Recognition and complexity of point visibility graphs
  publication-title: Discrete & Computational Geometry
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: CR39
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– ident: CR23
– ident: CR44
– ident: CR48
– volume: 25
  issue: 8
  year: 2015
  ident: CR21
  article-title: Fast transformation from time series to visibility graphs
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– ident: CR38
– volume: 193
  year: 2020
  ident: CR33
  article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks
  publication-title: Knowledge-Based Systems
– volume: 326
  start-page: 227
  year: 2016
  end-page: 242
  ident: CR8
  article-title: Time series clustering via community detection in networks
  publication-title: Information Sciences
– volume: 15
  start-page: 2446
  issue: 4
  year: 2018
  end-page: 2455
  ident: CR40
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 10
  start-page: e0143015
  issue: 11
  year: 2015
  ident: CR43
  article-title: Visibility graph based time series analysis
  publication-title: PloS One
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  end-page: 660
  ident: CR2
  article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances
  publication-title: Data Mining and Knowledge Discovery
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  end-page: 963
  ident: CR15
  article-title: Deep learning for time series classification: A review
  publication-title: Data Mining and Knowledge Discovery
– volume: 133
  start-page: 422
  year: 2019
  end-page: 432
  ident: CR22
  article-title: Fault diagnosis of wind turbine based on long short-term memory networks
  publication-title: Renewable Energy
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 5071_CR24
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2519325
– volume: 95
  start-page: 187
  year: 2017
  ident: 5071_CR39
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.03.034
– ident: 5071_CR44
  doi: 10.1007/s42417-021-00286-x
– ident: 5071_CR5
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 5071_CR49
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 5071_CR15
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-019-00619-1
– ident: 5071_CR42
  doi: 10.1007/s10489-021-02956-5
– volume: 21
  start-page: 688
  issue: 2
  year: 2007
  ident: 5071_CR13
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.01.007
– volume: 105
  start-page: 4972
  issue: 13
  year: 2008
  ident: 5071_CR20
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0709247105
– volume: 25
  issue: 8
  year: 2015
  ident: 5071_CR21
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– volume: 11
  start-page: 759
  issue: 4
  year: 2017
  ident: 5071_CR54
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-017-0300-3
– volume: 64
  start-page: 100
  year: 2015
  ident: 5071_CR41
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.04.021
– ident: 5071_CR48
– volume: 24
  start-page: 546
  issue: 2
  year: 2010
  ident: 5071_CR36
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2009.08.004
– volume: 40
  start-page: 943
  issue: 9–10
  year: 2007
  ident: 5071_CR52
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.10.010
– volume: 7
  start-page: 102554
  year: 2019
  ident: 5071_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926986
– volume: 15
  start-page: 2446
  issue: 4
  year: 2018
  ident: 5071_CR40
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2864759
– volume: 32
  start-page: 971
  year: 2021
  ident: 5071_CR7
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01600-2
– ident: 5071_CR25
  doi: 10.1145/1081870.1081893
– volume: 16
  start-page: 2044
  issue: 3
  year: 2019
  ident: 5071_CR11
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2934901
– volume: 76
  start-page: 283
  year: 2016
  ident: 5071_CR28
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.02.007
– ident: 5071_CR47
  doi: 10.1109/ROBOT.2006.1642054
– volume: 201
  year: 2020
  ident: 5071_CR31
  publication-title: Energy
– volume: 187
  start-page: 104837
  year: 2020
  ident: 5071_CR57
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.07.008
– volume: 311
  start-page: 195
  issue: 1
  year: 2022
  ident: 5071_CR29
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03247-6
– ident: 5071_CR51
  doi: 10.1109/CESA.2006.4281698
– volume: 2
  start-page: 433
  issue: 1
  year: 2014
  ident: 5071_CR12
  publication-title: Systems Science & Control Engineering: An Open Access Journal
  doi: 10.1080/21642583.2014.913821
– volume: 311
  start-page: 417
  issue: 1
  year: 2022
  ident: 5071_CR45
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03220-3
– volume: 20
  start-page: 350
  issue: 2
  year: 2006
  ident: 5071_CR17
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.11.002
– volume: 34
  start-page: 3463
  issue: 6
  year: 2018
  ident: 5071_CR37
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-169526
– ident: 5071_CR4
  doi: 10.1109/PHM-Jinan48558.2020.00042
– ident: 5071_CR18
– ident: 5071_CR38
  doi: 10.1109/GUCON48875.2020.9231086
– volume: 30
  start-page: 636
  year: 2015
  ident: 5071_CR16
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.02.015
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 5071_CR2
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-016-0483-9
– ident: 5071_CR35
  doi: 10.1109/DDCLS49620.2020.9275054
– volume: 51
  start-page: 339
  issue: 2
  year: 2017
  ident: 5071_CR1
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-016-0987-z
– volume: 133
  start-page: 422
  year: 2019
  ident: 5071_CR22
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.10.031
– volume: 116
  start-page: 50001
  issue: 5
  year: 2017
  ident: 5071_CR10
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/116/50001
– volume: 49
  start-page: 136
  issue: 1
  year: 2017
  ident: 5071_CR46
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2754287
– volume: 326
  start-page: 227
  year: 2016
  ident: 5071_CR8
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.07.046
– volume: 11
  start-page: 2262
  issue: 11
  year: 2018
  ident: 5071_CR55
  publication-title: Materials
  doi: 10.3390/ma11112262
– volume: 5
  start-page: 289
  issue: 03
  year: 1995
  ident: 5071_CR30
  publication-title: International Journal of Computational Geometry & Applications
  doi: 10.1142/S0218195995000179
– volume: 80
  issue: 4
  year: 2009
  ident: 5071_CR34
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.80.046103
– volume: 70
  start-page: 1
  year: 2021
  ident: 5071_CR27
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 311
  start-page: 51
  issue: 1
  year: 2022
  ident: 5071_CR6
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-021-04242-6
– ident: 5071_CR26
  doi: 10.1109/ICSMD50554.2020.9261687
– volume: 149
  start-page: 107036
  year: 2020
  ident: 5071_CR9
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107036
– ident: 5071_CR23
  doi: 10.1016/B978-0-12-811534-3.00006-8
– volume: 11
  start-page: 3194
  issue: 7
  year: 2021
  ident: 5071_CR19
  publication-title: Applied Sciences
  doi: 10.3390/app11073194
– volume: 2
  issue: 2
  year: 2020
  ident: 5071_CR53
  publication-title: Physical Review Research
– volume: 117
  start-page: 201
  year: 2018
  ident: 5071_CR50
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2018.07.039
– volume: 193
  year: 2020
  ident: 5071_CR33
  publication-title: Knowledge-Based Systems
– volume: 563
  year: 2021
  ident: 5071_CR14
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2020.125476
– volume: 57
  start-page: 164
  issue: 1
  year: 2017
  ident: 5071_CR3
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-016-9831-1
– volume: 6
  start-page: 12929
  year: 2018
  ident: 5071_CR56
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2794765
– volume: 10
  start-page: e0143015
  issue: 11
  year: 2015
  ident: 5071_CR43
  publication-title: PloS One
  doi: 10.1371/journal.pone.0143015
SSID ssj0001185
Score 2.4286666
Snippet Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 813
SubjectTerms Algorithms
Artificial neural networks
Business and Management
Combinatorics
Computational efficiency
Computing costs
Cost analysis
Data points
Fault diagnosis
Graphs
Operations Research/Decision Theory
Original Research
Pattern recognition
Rotating machinery
Theory of Computation
Time series
Visibility
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6IiujB6VScv8jBmwbWJVkbbyIbnkTwB95K2iQ6mJusnbiLf7svabtNUUHPTUNI38v7XvO97wEcK4xamCUEVIuoTXkaKiqtRMdT7VRzK0WktW82EV5dRQ8P8rosCssqtnt1JelP6rliNx5K6tjnTQdiKCLHJeHUZlyOfnM_PX8RMnviIqY-1HEny1KZ7-f4HI5mGPPLtaiPNt3a_9a5AesluiTnhTlswoIZ1GGlIrfXoVY1cSClT9dhbU6RcAveO15SAiMRcVXnnjk7Iar_OBz18qdnghCXOIVjakcFB3tCXHd66gzZZGdk7j6c5ENi1bifE13Q-XoZcX99idfIJo7uXpo9rnhQsNG34a7bub24pGWLBpqi7-bUGkzQIquYYYlhbaabgTJSWQQREY_SZqAFS7huSQSSohkkgUq0NKENpJLamIDtwOJgODC7QLRV2gpEG0xLLmwSMe3E-EXIU472pBoQVF8qTkv9ctdGox_PlJfdzse487Hf-fitASfTd14K9Y5fRx9UBhCXnpzFDHM-zCIZFw04rT747PHPs-39bfg-rLYQLxXcwgNYzEdjcwjL6Wvey0ZH3sI_AMki-G8
  priority: 102
  providerName: Springer Nature
Title Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network
URI https://link.springer.com/article/10.1007/s10479-022-05071-x
https://www.proquest.com/docview/3086149345
Volume 339
WOSCitedRecordID wos000945237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BhhA8sFFAdIzJD3sbFkltN_Fe0Jg6ISGqahsweImc2IZJpR1NhrYXfvvuHGcdSOyFl5OiJmmku_N9tj_fB7BtsGrhLCHlVuVDLqvMcO01Jp4ZVlZ6rXJrg9hENh7nJyd6Ehfc6kir7MbEMFDbeUVr5K8FYm9E80KqN2c_OalG0e5qlNC4C6tYqBUpGGSfv1yPxAieA4URJ0GcWJTx0Ew8OiczzYnLnhAk4hd_FqYl2vxrgzTUnYO1__3idXgUESfba0PkMdxxsx7c7wjvPVjrhB1YzPMePLzRpfAJ_B6FNhNYnRidRA9s2ktmpt_wz5rvPxjCXkZdj7lftLzsS0aK9ZyC29W77MYeOWvmzJvzacNsS_E7rRmtBLPQN5sRBT6mAn7xrGWoP4WPB6Pj_Xc8yjbwCvO54d7hpC33RjhROjEUNkmN08YjsMhlXiWpVaKUdqARXKokLVNTWu0yn2qjrXOpeAYrs_nMPQdmvbFeIQIRVkvly1xYatCvMllJjDHTh7TzWVHFnuYkrTEtlt2Yyc8F-rkIfi4u-rBz_cxZ29Hj1rs3O-cWMbvrYunZPrzqwmP587_ftnH7217AgwFippZfuAkrzeLcvYR71a_mtF5shdjegtW3o_HkEK_eZxzth2Sf7GBCNjtCO1Ff0R4efboCZ3YJNw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgHaXA7DdRVuePrAnsLapnSZGQgjxEKhQcQCJW3BiGyqVFprw6IWfxG9k7CQUkODGgXMSK3G-mflsfzMDsCwxauEqwaPKDxuUJ4Gkwgg0PNlIFDfCD5VyzSaCVis8PRVHI_BY5sJYWWXpE52jVr3E7pH_Z8i9kc0z7m9cXVPbNcqerpYtNHJYNPXgDpds6fr-Nv7ff_X67s7x1h4tugrQBOGWUaNxTREayTSLNWswVfOkFtJg3At5mNQ85bOYq7pA7uPXvNiTsRI6MJ6QQmntMRz3G4xxFjasRTUD-uz5kaw7ySQuuqhVbRZJOkWqHg8Etdr5mqVg9P51IByy2zcHsi7O7U59tRmahsmCUZPN3AR-wYjuVuB7KeivwFTZuIIUfqwCEy-qMP6Ghx1XRgOjL7GZ9k4tPCCyc44fl11cEqT1xFZ1pqaf684HJGtfamqNV6dr5IUGgGQ9YuRNJyMqlzC2U2J3uomrC06sxL8wdXzjbq7A_wMnnzI9MzDa7XX1XyDKSGV8ZFhMCe6bOGTKNiDwA55wtCFZBa_ESJQUNdtt65BONKw2bXEVIa4ih6vovgorz89c5RVLPrx7vgRTVHivNBoiqQqrJRyHl98fbfbj0Zbgx97x4UF0sN9qzsHPOvLDXEs5D6NZ_0YvwHhym7XT_qKzKwJnnw3TJ4ofXxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iZULbAVg3tPLTh3FiFk3tNDESQjBagZiqCoHELXNie1QqLWvCj174w_jreE4cypDgxoFzEitxvvfe9-zP7wH8kBi1MEvwqPLDJuVJIKkwAg1PNhPFjfBDpfJmE0GnE56die4U3JdnYayssvSJuaNWw8SukW8y5N7I5hn3N42TRXT32zuX_6jtIGV3Wst2GgVEjvT4BtO3dPtwH__1eqPRbp38OqCuwwBNEHoZNRrzi9BIplmsWZOpuie1kAZjYMjDpO4pn8VcNQTyIL_uxZ6MldCB8YQUSmuP4bgfYDpgmPRUYHqv1ekeP8YBpO65gBJTMGo1nO7Ijju4xwNBrZK-bgkZvf0_LE647rPt2Tzqtefe83zNw6zj2mS3MI4vMKUHVZgppf5VmCtbWhDn4arw-Ul9xq9w18oLbGBcJvYMfq4jHhPZ_4sfl51fECT8xNZ7pmZUKNLHJOtdaGrNWqdb5Ik6gGRDYuRVPyOqEDf2UmLXwEleMZxY8b9zAvjGg0Kb_w1O32R6FqAyGA70dyDKSGV85F5MCe6bOGTKtibwA55wtC5ZA6_ES5S4au62qUg_mtShthiLEGNRjrHotgYbj89cFrVMXr17uQRW5PxaGk1QVYOfJTQnl18ebfH10dZgBtEZ_T7sHC3BpwYSx0JkuQyVbHSlV-Bjcp310tGqMzICf94apw9Bk2lu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+visibility+algorithm+for+high-frequency+time-series%3A+application+to+fault+diagnosis+with+graph+convolutional+network&rft.jtitle=Annals+of+operations+research&rft.au=Lee%2C+Sangho&rft.au=Choi%2C+Jeongsub&rft.au=Son%2C+Youngdoo&rft.date=2024-08-01&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=339&rft.issue=1-2&rft.spage=813&rft.epage=833&rft_id=info:doi/10.1007%2Fs10479-022-05071-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10479_022_05071_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon