Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network
Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflec...
Saved in:
| Published in: | Annals of operations research Vol. 339; no. 1-2; pp. 813 - 833 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis. |
|---|---|
| AbstractList | Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis. |
| Author | Lee, Sangho Choi, Jeongsub Son, Youngdoo |
| Author_xml | – sequence: 1 givenname: Sangho orcidid: 0000-0002-7784-8515 surname: Lee fullname: Lee, Sangho organization: Department of Industrial and Systems Engineering, Dongguk University – Seoul, Data Science Laboratory (DSLAB), Dongguk University – Seoul – sequence: 2 givenname: Jeongsub orcidid: 0000-0003-2220-295X surname: Choi fullname: Choi, Jeongsub organization: Department of Management Information Systems, West Virginia University – sequence: 3 givenname: Youngdoo orcidid: 0000-0002-1912-5853 surname: Son fullname: Son, Youngdoo email: youngdoo@dongguk.edu organization: Department of Industrial and Systems Engineering, Dongguk University – Seoul, Data Science Laboratory (DSLAB), Dongguk University – Seoul |
| BookMark | eNp9kMFu1DAQhi1UJLaFF-BkibNhJk6amBuqSkGq1AucLScZZ6dk7WB72-6lz07aRULi0NNc_u-fme9UnIQYSIj3CB8RoP2UEerWKKgqBQ20qB5eiQ02baWM1t2J2EDV1KrRGt6I05xvAQCxazbi8dJ7HphCkXecueeZy0G6eYqJy3YnfUxyy9NW-US_9xSGgyy8I5UpMeXP0i3LzIMrHIMsUXq3n4sc2U0hZs7yfi2RU3LLVg4x3MV5_5R0swxU7mP69Va89m7O9O7vPBM_v17-uPimrm-uvl98uVaDRlOUJ6yh806T7kmf6xHQkXG-MrqruwFwbHRfj5VBUzWAPbp-NNR6NM6MRKjPxIdj75Li-kYu9jbu03pIthq6c6yNrps1VR1TQ4o5J_J2Sbxz6WAR7JNne_RsV8_22bN9WKHuP2jg8iykJMfzy6g-onndEyZK_656gfoDvaaYlg |
| CitedBy_id | crossref_primary_10_1007_s10479_023_05508_x crossref_primary_10_1109_ACCESS_2024_3369679 |
| Cites_doi | 10.1109/TIE.2016.2519325 10.1016/j.ymssp.2017.03.034 10.1007/s42417-021-00286-x 10.1109/TNNLS.2020.2978386 10.1007/s10618-019-00619-1 10.1007/s10489-021-02956-5 10.1016/j.ymssp.2006.01.007 10.1073/pnas.0709247105 10.1007/s11634-017-0300-3 10.1016/j.ymssp.2015.04.021 10.1016/j.ymssp.2009.08.004 10.1016/j.measurement.2006.10.010 10.1109/ACCESS.2019.2926986 10.1109/TII.2018.2864759 10.1007/s10845-020-01600-2 10.1145/1081870.1081893 10.1109/TII.2019.2934901 10.1016/j.ymssp.2016.02.007 10.1109/ROBOT.2006.1642054 10.1016/j.knosys.2019.07.008 10.1007/s10479-019-03247-6 10.1109/CESA.2006.4281698 10.1080/21642583.2014.913821 10.1007/s10479-019-03220-3 10.1016/j.ymssp.2004.11.002 10.3233/JIFS-169526 10.1109/PHM-Jinan48558.2020.00042 10.1109/GUCON48875.2020.9231086 10.1016/j.asoc.2015.02.015 10.1007/s10618-016-0483-9 10.1109/DDCLS49620.2020.9275054 10.1007/s10115-016-0987-z 10.1016/j.renene.2018.10.031 10.1209/0295-5075/116/50001 10.1109/TSMC.2017.2754287 10.1016/j.ins.2015.07.046 10.3390/ma11112262 10.1142/S0218195995000179 10.1103/PhysRevE.80.046103 10.1007/s10479-021-04242-6 10.1109/ICSMD50554.2020.9261687 10.1016/j.measurement.2019.107036 10.1016/B978-0-12-811534-3.00006-8 10.3390/app11073194 10.1016/j.chaos.2018.07.039 10.1016/j.physa.2020.125476 10.1007/s00454-016-9831-1 10.1109/ACCESS.2018.2794765 10.1371/journal.pone.0143015 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7TA 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JG9 JQ2 K60 K6~ K7- KR7 L.- L6V M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10479-022-05071-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Materials Business File Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Materials Business File ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1572-9338 |
| EndPage | 833 |
| ExternalDocumentID | 10_1007_s10479_022_05071_x |
| GrantInformation_xml | – fundername: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry grantid: 322050-3 funderid: http://dx.doi.org/10.13039/501100014189 – fundername: National Research Foundation of Korea grantid: 2020R1C1C1003425; 2020R1A4A3079710 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBO EBS EBU EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEA IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 Z8N Z8U Z92 ZL0 ZMTXR ZYFGU ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7TA 7TB 7XB 8AL 8FD 8FK FR3 JG9 JQ2 KR7 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-fe1408fa3e3be363d01ae9af293848c01d53b4d29192501b1abd9e7f19a9dee13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000945237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-5330 |
| IngestDate | Wed Nov 05 14:49:43 EST 2025 Sat Nov 29 02:36:49 EST 2025 Tue Nov 18 22:36:13 EST 2025 Fri Feb 21 02:39:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Deep learning Fault diagnosis High-frequency time series Graph convolutional network Visibility algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-fe1408fa3e3be363d01ae9af293848c01d53b4d29192501b1abd9e7f19a9dee13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7784-8515 0000-0003-2220-295X 0000-0002-1912-5853 |
| PQID | 3086149345 |
| PQPubID | 25585 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3086149345 crossref_primary_10_1007_s10479_022_05071_x crossref_citationtrail_10_1007_s10479_022_05071_x springer_journals_10_1007_s10479_022_05071_x |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Annals of operations research |
| PublicationTitleAbbrev | Ann Oper Res |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Yela, Thalmann, Nicosia, Stowell, Sandler (CR53) 2020; 2 Lei, Liu, Jiang (CR22) 2019; 133 Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (CR15) 2019; 33 Zhang, Ashuri, Deng (CR54) 2017; 11 CR38 CR35 Ferreira, Zhao (CR8) 2016; 326 Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (CR28) 2016; 76 Junsheng, Dejie, Yu (CR17) 2006; 20 Cardinal, Hoffmann (CR3) 2017; 57 Wu, Pan, Chen, Long, Zhang, Philip (CR49) 2020; 32 Li, Huang, Mi, Peng, Han (CR29) 2022; 311 Stephen, Gu, Yang (CR43) 2015; 10 CR4 CR5 Hu, He, Zhang, Zi (CR13) 2007; 21 CR48 CR47 CR44 CR42 Gao, Small, Kurths (CR10) 2017; 116 Liu, Wang, Deng (CR33) 2020; 193 Smith, Randall (CR41) 2015; 64 Lin, Liu (CR31) 2020; 201 Guo, Li, Song, Wang, Chen (CR11) 2019; 16 Jedliński, Jonak (CR16) 2015; 30 Liu, Deng (CR32) 2019; 7 Wen, Gao, Li (CR46) 2017; 49 Lacasa, Luque, Ballesteros, Luque, Nuno (CR20) 2008; 105 Sanchez, Lucero, Vásquez, Cerrada, Macancela, Cabrera (CR37) 2018; 34 Wang, Zhang, Zhao, Hu (CR45) 2022; 311 Harrou, Nounou (CR12) 2014; 2 CR18 Zhou, Yang, Fujita, Chen, Wen (CR57) 2020; 187 Gao, Yu, Wang (CR9) 2020; 149 Zhang, Qin, Jia, Chen (CR55) 2018; 11 Kozitsin, Katser, Lakontsev (CR19) 2021; 11 Lei, Jia, Lin, Xing, Ding (CR24) 2016; 63 CR51 Chen, Yu (CR6) 2022; 311 Shao, Jiang, Zhao, Wang (CR39) 2017; 95 Li, Mo, Yan (CR27) 2021; 70 Pham, Yang (CR36) 2010; 24 Iacobello, Ridolfi, Scarsoglio (CR14) 2021; 563 Lin, Skiena (CR30) 1995; 5 Yang, Yu, Cheng (CR52) 2007; 40 Bagnall, Lines, Bostrom, Large, Keogh (CR2) 2017; 31 Aminikhanghahi, Cook (CR1) 2017; 51 CR26 CR25 Shao, McAleer, Yan, Baldi (CR40) 2018; 15 CR23 Xu, Zhang, Deng (CR50) 2018; 117 Lan, Mo, Chen, Liu, Deng (CR21) 2015; 25 Chen, Zhang, Gao (CR7) 2021; 32 Zhao, Sun, Jin (CR56) 2018; 6 Luque, Lacasa, Ballesteros, Luque (CR34) 2009; 80 H Ismail Fawaz (5071_CR15) 2019; 33 R-V Sanchez (5071_CR37) 2018; 34 Y-L Lin (5071_CR30) 1995; 5 5071_CR35 X Lan (5071_CR21) 2015; 25 F Liu (5071_CR32) 2019; 7 Y Lei (5071_CR24) 2016; 63 G Iacobello (5071_CR14) 2021; 563 Z Zhang (5071_CR55) 2018; 11 5071_CR38 WA Smith (5071_CR41) 2015; 64 Y Yang (5071_CR52) 2007; 40 Q Hu (5071_CR13) 2007; 21 F Harrou (5071_CR12) 2014; 2 5071_CR4 S Aminikhanghahi (5071_CR1) 2017; 51 5071_CR5 H Zhao (5071_CR56) 2018; 6 A Bagnall (5071_CR2) 2017; 31 LN Ferreira (5071_CR8) 2016; 326 5071_CR42 P Xu (5071_CR50) 2018; 117 5071_CR44 H Shao (5071_CR39) 2017; 95 5071_CR48 5071_CR47 L Lacasa (5071_CR20) 2008; 105 F Liu (5071_CR33) 2020; 193 Z-K Gao (5071_CR10) 2017; 116 Ł Jedliński (5071_CR16) 2015; 30 Q Guo (5071_CR11) 2019; 16 J Cardinal (5071_CR3) 2017; 57 Y-F Li (5071_CR29) 2022; 311 F Zhou (5071_CR57) 2020; 187 5071_CR51 B Luque (5071_CR34) 2009; 80 L Wen (5071_CR46) 2017; 49 C Li (5071_CR28) 2016; 76 R Zhang (5071_CR54) 2017; 11 Y Gao (5071_CR9) 2020; 149 C Junsheng (5071_CR17) 2006; 20 S Shao (5071_CR40) 2018; 15 M Stephen (5071_CR43) 2015; 10 J Lei (5071_CR22) 2019; 133 X Chen (5071_CR7) 2021; 32 5071_CR23 HT Pham (5071_CR36) 2010; 24 5071_CR26 5071_CR25 DF Yela (5071_CR53) 2020; 2 5071_CR18 V Kozitsin (5071_CR19) 2021; 11 C Li (5071_CR27) 2021; 70 K-S Chen (5071_CR6) 2022; 311 Z Wu (5071_CR49) 2020; 32 N Wang (5071_CR45) 2022; 311 Z Lin (5071_CR31) 2020; 201 |
| References_xml | – volume: 49 start-page: 136 issue: 1 year: 2017 end-page: 144 ident: CR46 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 149 start-page: 107036 year: 2020 ident: CR9 article-title: Fault diagnosis of rolling bearings using weighted horizontal visibility graph and graph Fourier transform publication-title: Measurement – ident: CR4 – volume: 76 start-page: 283 year: 2016 end-page: 293 ident: CR28 article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals publication-title: Mechanical Systems and Signal Processing – ident: CR51 – volume: 187 start-page: 104837 year: 2020 ident: CR57 article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data publication-title: Knowledge-Based Systems – volume: 34 start-page: 3463 issue: 6 year: 2018 end-page: 3473 ident: CR37 article-title: Feature ranking for multi-fault diagnosis of rotating machinery by using random forest and KNN publication-title: Journal of Intelligent & Fuzzy Systems – volume: 80 issue: 4 year: 2009 ident: CR34 article-title: Horizontal visibility graphs: Exact results for random time series publication-title: Physical Review E – volume: 11 start-page: 3194 issue: 7 year: 2021 ident: CR19 article-title: Online forecasting and anomaly detection based on the ARIMA model publication-title: Applied Sciences – ident: CR35 – volume: 40 start-page: 943 issue: 9–10 year: 2007 end-page: 950 ident: CR52 article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM publication-title: Measurement – volume: 563 year: 2021 ident: CR14 article-title: A review on turbulent and vortical flow analyses via complex networks publication-title: Physica A: Statistical Mechanics and its Applications – ident: CR25 – ident: CR42 – volume: 51 start-page: 339 issue: 2 year: 2017 end-page: 367 ident: CR1 article-title: A survey of methods for time series change point detection publication-title: Knowledge and Information Systems – volume: 116 start-page: 50001 issue: 5 year: 2017 ident: CR10 article-title: Complex network analysis of time series publication-title: EPL (Europhysics Letters) – volume: 32 start-page: 971 year: 2021 end-page: 987 ident: CR7 article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model publication-title: Journal of Intelligent Manufacturing – volume: 11 start-page: 2262 issue: 11 year: 2018 ident: CR55 article-title: Visibility graph feature model of vibration signals: A novel bearing fault diagnosis approach publication-title: Materials – volume: 2 issue: 2 year: 2020 ident: CR53 article-title: Online visibility graphs: Encoding visibility in a binary search tree publication-title: Physical Review Research – volume: 105 start-page: 4972 issue: 13 year: 2008 end-page: 4975 ident: CR20 article-title: From time series to complex networks: The visibility graph publication-title: Proceedings of the National Academy of Sciences – volume: 311 start-page: 417 issue: 1 year: 2022 end-page: 435 ident: CR45 article-title: Recognition method of equipment state with the FLDA based Mahalanobis–Taguchi system publication-title: Annals of Operations Research – volume: 311 start-page: 51 issue: 1 year: 2022 end-page: 64 ident: CR6 article-title: Lifetime performance evaluation and analysis model of passive component capacitor products publication-title: Annals of Operations Research – volume: 201 year: 2020 ident: CR31 article-title: Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network publication-title: Energy – volume: 311 start-page: 195 issue: 1 year: 2022 end-page: 209 ident: CR29 article-title: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability publication-title: Annals of Operations Research – volume: 64 start-page: 100 year: 2015 end-page: 131 ident: CR41 article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study publication-title: Mechanical Systems and Signal Processing – volume: 6 start-page: 12929 year: 2018 end-page: 12939 ident: CR56 article-title: Sequential fault diagnosis based on LSTM neural network publication-title: IEEE Access – volume: 63 start-page: 3137 issue: 5 year: 2016 end-page: 3147 ident: CR24 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Transactions on Industrial Electronics – ident: CR5 – ident: CR26 – volume: 7 start-page: 102554 year: 2019 end-page: 102560 ident: CR32 article-title: A fast algorithm for network forecasting time series publication-title: IEEE Access – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: CR27 article-title: Fault diagnosis of rolling bearing based on WHVG and GCN publication-title: IEEE Transactions on Instrumentation and Measurement – ident: CR18 – volume: 117 start-page: 201 year: 2018 end-page: 208 ident: CR50 article-title: A novel visibility graph transformation of time series into weighted networks publication-title: Chaos, Solitons & Fractals – ident: CR47 – volume: 32 start-page: 4 issue: 1 year: 2020 end-page: 24 ident: CR49 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 2 start-page: 433 issue: 1 year: 2014 end-page: 443 ident: CR12 article-title: Monitoring linear antenna arrays using an exponentially weighted moving average-based fault detection scheme publication-title: Systems Science & Control Engineering: An Open Access Journal – volume: 21 start-page: 688 issue: 2 year: 2007 end-page: 705 ident: CR13 article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble publication-title: Mechanical Systems and Signal Processing – volume: 24 start-page: 546 issue: 2 year: 2010 end-page: 558 ident: CR36 article-title: Estimation and forecasting of machine health condition using ARMA/GARCH model publication-title: Mechanical Systems and Signal Processing – volume: 20 start-page: 350 issue: 2 year: 2006 end-page: 362 ident: CR17 article-title: A fault diagnosis approach for roller bearings based on EMD method and AR model publication-title: Mechanical Systems and Signal Processing – volume: 30 start-page: 636 year: 2015 end-page: 641 ident: CR16 article-title: Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform publication-title: Applied Soft Computing – volume: 16 start-page: 2044 issue: 3 year: 2019 end-page: 2053 ident: CR11 article-title: Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network publication-title: IEEE Transactions on Industrial Informatics – volume: 5 start-page: 289 issue: 03 year: 1995 end-page: 312 ident: CR30 article-title: Complexity aspects of visibility graphs publication-title: International Journal of Computational Geometry & Applications – volume: 11 start-page: 759 issue: 4 year: 2017 end-page: 783 ident: CR54 article-title: A novel method for forecasting time series based on fuzzy logic and visibility graph publication-title: Advances in Data Analysis and Classification – volume: 57 start-page: 164 issue: 1 year: 2017 end-page: 178 ident: CR3 article-title: Recognition and complexity of point visibility graphs publication-title: Discrete & Computational Geometry – volume: 95 start-page: 187 year: 2017 end-page: 204 ident: CR39 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Mechanical Systems and Signal Processing – ident: CR23 – ident: CR44 – ident: CR48 – volume: 25 issue: 8 year: 2015 ident: CR21 article-title: Fast transformation from time series to visibility graphs publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – ident: CR38 – volume: 193 year: 2020 ident: CR33 article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks publication-title: Knowledge-Based Systems – volume: 326 start-page: 227 year: 2016 end-page: 242 ident: CR8 article-title: Time series clustering via community detection in networks publication-title: Information Sciences – volume: 15 start-page: 2446 issue: 4 year: 2018 end-page: 2455 ident: CR40 article-title: Highly accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics – volume: 10 start-page: e0143015 issue: 11 year: 2015 ident: CR43 article-title: Visibility graph based time series analysis publication-title: PloS One – volume: 31 start-page: 606 issue: 3 year: 2017 end-page: 660 ident: CR2 article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances publication-title: Data Mining and Knowledge Discovery – volume: 33 start-page: 917 issue: 4 year: 2019 end-page: 963 ident: CR15 article-title: Deep learning for time series classification: A review publication-title: Data Mining and Knowledge Discovery – volume: 133 start-page: 422 year: 2019 end-page: 432 ident: CR22 article-title: Fault diagnosis of wind turbine based on long short-term memory networks publication-title: Renewable Energy – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 5071_CR24 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2519325 – volume: 95 start-page: 187 year: 2017 ident: 5071_CR39 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.03.034 – ident: 5071_CR44 doi: 10.1007/s42417-021-00286-x – ident: 5071_CR5 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 5071_CR49 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2978386 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 5071_CR15 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-019-00619-1 – ident: 5071_CR42 doi: 10.1007/s10489-021-02956-5 – volume: 21 start-page: 688 issue: 2 year: 2007 ident: 5071_CR13 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.01.007 – volume: 105 start-page: 4972 issue: 13 year: 2008 ident: 5071_CR20 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0709247105 – volume: 25 issue: 8 year: 2015 ident: 5071_CR21 publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – volume: 11 start-page: 759 issue: 4 year: 2017 ident: 5071_CR54 publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-017-0300-3 – volume: 64 start-page: 100 year: 2015 ident: 5071_CR41 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.04.021 – ident: 5071_CR48 – volume: 24 start-page: 546 issue: 2 year: 2010 ident: 5071_CR36 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2009.08.004 – volume: 40 start-page: 943 issue: 9–10 year: 2007 ident: 5071_CR52 publication-title: Measurement doi: 10.1016/j.measurement.2006.10.010 – volume: 7 start-page: 102554 year: 2019 ident: 5071_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926986 – volume: 15 start-page: 2446 issue: 4 year: 2018 ident: 5071_CR40 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2864759 – volume: 32 start-page: 971 year: 2021 ident: 5071_CR7 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01600-2 – ident: 5071_CR25 doi: 10.1145/1081870.1081893 – volume: 16 start-page: 2044 issue: 3 year: 2019 ident: 5071_CR11 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2934901 – volume: 76 start-page: 283 year: 2016 ident: 5071_CR28 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.02.007 – ident: 5071_CR47 doi: 10.1109/ROBOT.2006.1642054 – volume: 201 year: 2020 ident: 5071_CR31 publication-title: Energy – volume: 187 start-page: 104837 year: 2020 ident: 5071_CR57 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.07.008 – volume: 311 start-page: 195 issue: 1 year: 2022 ident: 5071_CR29 publication-title: Annals of Operations Research doi: 10.1007/s10479-019-03247-6 – ident: 5071_CR51 doi: 10.1109/CESA.2006.4281698 – volume: 2 start-page: 433 issue: 1 year: 2014 ident: 5071_CR12 publication-title: Systems Science & Control Engineering: An Open Access Journal doi: 10.1080/21642583.2014.913821 – volume: 311 start-page: 417 issue: 1 year: 2022 ident: 5071_CR45 publication-title: Annals of Operations Research doi: 10.1007/s10479-019-03220-3 – volume: 20 start-page: 350 issue: 2 year: 2006 ident: 5071_CR17 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.11.002 – volume: 34 start-page: 3463 issue: 6 year: 2018 ident: 5071_CR37 publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-169526 – ident: 5071_CR4 doi: 10.1109/PHM-Jinan48558.2020.00042 – ident: 5071_CR18 – ident: 5071_CR38 doi: 10.1109/GUCON48875.2020.9231086 – volume: 30 start-page: 636 year: 2015 ident: 5071_CR16 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.02.015 – volume: 31 start-page: 606 issue: 3 year: 2017 ident: 5071_CR2 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-016-0483-9 – ident: 5071_CR35 doi: 10.1109/DDCLS49620.2020.9275054 – volume: 51 start-page: 339 issue: 2 year: 2017 ident: 5071_CR1 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-016-0987-z – volume: 133 start-page: 422 year: 2019 ident: 5071_CR22 publication-title: Renewable Energy doi: 10.1016/j.renene.2018.10.031 – volume: 116 start-page: 50001 issue: 5 year: 2017 ident: 5071_CR10 publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/116/50001 – volume: 49 start-page: 136 issue: 1 year: 2017 ident: 5071_CR46 publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2754287 – volume: 326 start-page: 227 year: 2016 ident: 5071_CR8 publication-title: Information Sciences doi: 10.1016/j.ins.2015.07.046 – volume: 11 start-page: 2262 issue: 11 year: 2018 ident: 5071_CR55 publication-title: Materials doi: 10.3390/ma11112262 – volume: 5 start-page: 289 issue: 03 year: 1995 ident: 5071_CR30 publication-title: International Journal of Computational Geometry & Applications doi: 10.1142/S0218195995000179 – volume: 80 issue: 4 year: 2009 ident: 5071_CR34 publication-title: Physical Review E doi: 10.1103/PhysRevE.80.046103 – volume: 70 start-page: 1 year: 2021 ident: 5071_CR27 publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 311 start-page: 51 issue: 1 year: 2022 ident: 5071_CR6 publication-title: Annals of Operations Research doi: 10.1007/s10479-021-04242-6 – ident: 5071_CR26 doi: 10.1109/ICSMD50554.2020.9261687 – volume: 149 start-page: 107036 year: 2020 ident: 5071_CR9 publication-title: Measurement doi: 10.1016/j.measurement.2019.107036 – ident: 5071_CR23 doi: 10.1016/B978-0-12-811534-3.00006-8 – volume: 11 start-page: 3194 issue: 7 year: 2021 ident: 5071_CR19 publication-title: Applied Sciences doi: 10.3390/app11073194 – volume: 2 issue: 2 year: 2020 ident: 5071_CR53 publication-title: Physical Review Research – volume: 117 start-page: 201 year: 2018 ident: 5071_CR50 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2018.07.039 – volume: 193 year: 2020 ident: 5071_CR33 publication-title: Knowledge-Based Systems – volume: 563 year: 2021 ident: 5071_CR14 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2020.125476 – volume: 57 start-page: 164 issue: 1 year: 2017 ident: 5071_CR3 publication-title: Discrete & Computational Geometry doi: 10.1007/s00454-016-9831-1 – volume: 6 start-page: 12929 year: 2018 ident: 5071_CR56 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2794765 – volume: 10 start-page: e0143015 issue: 11 year: 2015 ident: 5071_CR43 publication-title: PloS One doi: 10.1371/journal.pone.0143015 |
| SSID | ssj0001185 |
| Score | 2.428749 |
| Snippet | Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 813 |
| SubjectTerms | Algorithms Artificial neural networks Business and Management Combinatorics Computational efficiency Computing costs Cost analysis Data points Fault diagnosis Graphs Operations Research/Decision Theory Original Research Pattern recognition Rotating machinery Theory of Computation Time series Visibility |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74itGDj1Xj-goHb0osC5XixRij8WQ8aNRTQwvoJuuubqvRi7_doaWumujFM4WSzAzzAR_zAWxnsXQJE45ak-RUCCOpErJDVcZiyzS28lpsQp6fJzc36iIcuBWBVtmsidVCbQa5PyPf44i9Ec1zER8-PlGvGuVvV4OExjhMYqKOvYKBvL79XIkRPFcURtwEUc-iDI9mwtM5IRX1XPbIQyL6-j0xjdDmjwvSKu-czv93xgswFxAnOapdZBHGbL8F0w3hvQXzjbADCXHegtkvVQqX4P2kKjOB2Yn4l-gVm_aN6N4d_qy8fyAIe4mvekzdsOZlvxGvWE-9c9vigHy5IyflgDj93CuJqSl-3YL4k2BS1c0mngIfQgFn3K8Z6stwdXpyeXxGg2wDzTGeS-osbtoSp7nlmeX73ERMW6UdAotEJHnETMwzYToKwWUcsYzpzCgrHVNaGWsZX4GJ_qBvV4FI7VRkJG6irRFRniRC6I7RzBjs7_h-G1hjszQPNc29tEYvHVVj9nZO0c5pZef0tQ07n30e64oef3690Rg3DdFdpCPLtmG3cY9R8--jrf092jrMdBAz1fzCDZgoh892E6byl7JbDLcq3_4Aw-YCPA priority: 102 providerName: ProQuest |
| Title | Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network |
| URI | https://link.springer.com/article/10.1007/s10479-022-05071-x https://www.proquest.com/docview/3086149345 |
| Volume | 339 |
| WOSCitedRecordID | wos000945237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sSqkPWq9Kz48jD77ZwGaTNRvfVE4E8ThqrbYvS3aT6MF5V27Xoi_-7U72w7uKLdiXgSUfhGQm-c3mlxmAnTSSLmbCUWvijAphJFVChlSlLLJMYymvkk3IXi--ulL9-lFY3rDdmyvJcqeeeewmpKKefR54EEMROS5EPtqM99HPvz_vvwiZS-Iiuj7UcyfrpzKv9_HncTTFmC-uRcvT5njl_8b5EZZrdEkOKnVYhTk7asH7htzegpUmiQOpbboFSzMRCT_BY7cMKYEnEfGvzkvm7APRw-vxZFDc3BKEuMRHOKZuUnGwH4jPTk-9Itt8n8zch5NiTJy-GxbEVHS-QU78X19Sxsgmnu5eqz2OeFSx0dfg4rj77eiE1ikaaIa2W1Bn0UGLneaWp5bvcRMwbZV2CCJiEWcBMxFPhQkVAskoYCnTqVFWOqa0MtYyvg7zo_HIfgYitVOBkegwWyOCLI6F0KHRzBhs7_heG1izUklWxy_3aTSGyTTysp_5BGc-KWc-uW_D7nObX1X0jn_W3moUIKktOU84-nzoRXIRteFLs-DT4r_3tvG26pvwIUS8VHELt2C-mNzZbVjMfheDfNKBd_LyRwcWDru9_lf8OpUU5Vlw5GXY91Keo-xHPzulNTwBejUADQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BNCoH0VXjImgPetLG6bSzbU2MMfwIZGHjARNuY2fawibLLu4Myl74k_gbfZ0fLJDIjYPnTpuZzvdev7bfew_gXZZIr5jw1FmVUyGspFrImOqMJY4ZbOV1sQk5GKiDA_19AS7aWJggq2x9YuWo7SQPZ-SfOHJvZPNcJF9PftFQNSrcrrYlNGpY9N3sD27Zii87G_h_38fx1ub--jZtqgrQHOFWUu9wT6G84Y5njve4jZhx2nhc95RQecRswjNhY43cJ4lYxkxmtZOeaaOtc4zjuPfgvuCqFyyqL-ml50eyXkkmcdNFg2qzCdJpQvWE1DRo56NAwejZ9YVwzm5vXMhW69zW8v82Q0_hScOoybfaBJ7Bght34GEr6O_Aclu4gjR-rANLV7IwPofzzSqNBq6-JETaV2rhGTGjQ_y48uiYIK0nIasz9dNadz4j5fDY0WC8rvhMrmgASDkh3pyOSmJrCeOwIOGkm1R5wUmQ-Demjm88rhX4L-DHnUzPS1gcT8buFRBpvI6sVFw6K6JcKSFMbA2zFvt73usCazGS5k3O9lA6ZJTOs00HXKWIq7TCVXrWhQ-XfU7qjCW3Pr3agiltvFeRzpHUhY8tHOfN_x5t5fbR3sKj7f293XR3Z9B_DY9j5Ie1lnIVFsvpqVuDB_nvclhM31R2ReDnXcP0L_fhX3A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aHZrGgUFhWtkAH-AE1uLYmeNJCAFrxTRUVQik3YIT26xS144mg_XCD-PX8Zw460Bitx04O7YS5_N7n-3vvQfwLE-kS5lw1Jq0oEIYSZWQMVU5SyzT2MqbYhNyOEyPj9VoBX61sTBeVtnaxNpQm1nhz8h3OXJvZPNcJLsuyCJGB4PXZ9-oryDlb1rbchoNRI7s4gdu38pXhwf4r5_H8aD_6d17GioM0AKhV1FncX-ROs0tzy3f4yZi2irt0AemIi0iZhKeCxMr5EFJxHKmc6OsdExpZaxlHMe9BauS46anA6tv-8PRx0s_gNS9FlDiFox6DWcI2QmBe0Iq6pX0kSdk9OJPt7jkun9dz9Zeb7DxP8_XPbgbuDZ50yyO-7Bip11Ya6X-XdhoS1qQYOG6cOdKfsYH8LNfJ9hAv0x8DH6tI14QPfmKH1ednBIk_MTne6Zu3ijSF6Qan1rql7Ut98kVdQCpZsTp80lFTCNuHJfEn4GTOmM48eL_YATwjaeNNv8hfL6R6dmEznQ2tVtApHYqMjLl0hoRFWkqhI6NZsZgf8f3esBavGRFyObui4pMsmUeao-xDDGW1RjLLnrw4rLPWZPL5Nqnd1pgZcGuldkSVT142UJz2fzv0R5dP9pTWEN0Zh8Oh0fbsB4jcWxEljvQqebn9jHcLr5X43L-JCwyAl9uGqe_Aa8nacI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+visibility+algorithm+for+high-frequency+time-series%3A+application+to+fault+diagnosis+with+graph+convolutional+network&rft.jtitle=Annals+of+operations+research&rft.au=Lee%2C+Sangho&rft.au=Choi%2C+Jeongsub&rft.au=Son%2C+Youngdoo&rft.date=2024-08-01&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=339&rft.issue=1-2&rft.spage=813&rft.epage=833&rft_id=info:doi/10.1007%2Fs10479-022-05071-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10479_022_05071_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon |