Online prediction of composite material drilling quality based on multi-sensor fusion
The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian d...
Uložené v:
| Vydané v: | Journal of intelligent manufacturing Ročník 36; číslo 8; s. 5889 - 5901 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0956-5515, 1572-8145 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian deep learning framework, was developed to manage the uncertainty inherent in composite material processing. Experimental validation, utilizing a specifically constructed dataset from multi-sensor data including force, temperature, and vibration measurements, demonstrates that our approach significantly enhances the predictability of hole quality during drilling. The MFLSTM model outperformed traditional machining process monitoring techniques by reducing prediction errors by over 25%, offering both accurate point predictions and reliable interval estimates. This method not only advances the intelligence of composite component manufacturing but also facilitates its industrial application through the development of supportive software. |
|---|---|
| AbstractList | The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian deep learning framework, was developed to manage the uncertainty inherent in composite material processing. Experimental validation, utilizing a specifically constructed dataset from multi-sensor data including force, temperature, and vibration measurements, demonstrates that our approach significantly enhances the predictability of hole quality during drilling. The MFLSTM model outperformed traditional machining process monitoring techniques by reducing prediction errors by over 25%, offering both accurate point predictions and reliable interval estimates. This method not only advances the intelligence of composite component manufacturing but also facilitates its industrial application through the development of supportive software. |
| Author | Cui, ·Jiacheng Zhang, Yang Lu, Yongkang Liu, Wei Han, Lei Yin, Pengbo Jiang, Yingxin |
| Author_xml | – sequence: 1 givenname: Wei surname: Liu fullname: Liu, Wei organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 2 givenname: ·Jiacheng surname: Cui fullname: Cui, ·Jiacheng organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 3 givenname: Yongkang orcidid: 0000-0002-2906-5591 surname: Lu fullname: Lu, Yongkang email: lyk2024@dlut.edu.cn organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 4 givenname: Pengbo surname: Yin fullname: Yin, Pengbo organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 5 givenname: Lei surname: Han fullname: Han, Lei organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 6 givenname: Yingxin surname: Jiang fullname: Jiang, Yingxin organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology – sequence: 7 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology |
| BookMark | eNp9kM9rwyAUx2V0sLbbP7CTsLObGo3JcZT9gkIv61lM1GJJYqrm0P9-dhkMdtjh8eDx-byn3xVYDH4wANwT_EgwFk-R4IpxhCnLxXGB6BVYEi4oqgjjC7DENS8R54TfgFWMR4xxXZVkCfa7oXODgWMw2rXJ-QF6C1vfjz66ZGCvkglOdVAH12XyAE-T6lw6w0ZFo2Hm-6lLDkUzRB-gnWLecQuureqiufvpa7B_ffncvKPt7u1j87xFbUHqhKxWlBvVaF2LSpuKKcHq1uax5SVjumC6aTm1LWWmwQXPYKOp0MLqquBUF2vwMO8dgz9NJiZ59FMY8klZ0FIIJhgrM1XNVBt8jMFY2bqkLn9NQblOEiwvIco5RJlDlN8hSppV-kcdg-tVOP8vFbMUMzwcTPh91T_WF6LuiQQ |
| CitedBy_id | crossref_primary_10_1007_s10845_025_02602_8 crossref_primary_10_1109_TIM_2025_3585221 |
| Cites_doi | 10.1007/s10845-022-02020-0 10.1016/j.compstruct.2018.06.051 10.1016/j.cirp.2018.05.005 10.1016/j.jmapro.2019.02.028 10.1016/j.patcog.2018.04.010 10.3390/app10062108 10.1007/s10845-023-02074-8 10.1007/s10845-020-01625-7 10.1177/0021998320984245 10.1007/s10845-022-01923-2 10.1016/j.ijmachtools.2005.05.023 10.1109/TII.2020.3004445 10.1051/jp4:1993701 10.1016/j.cie.2024.110074 10.1080/02664760601004973 10.1007/s00170-020-05310-0 10.1007/s00170-020-06049-4 10.1016/j.jmatprotec.2020.116665 10.1016/j.compstruct.2019.111803 10.1007/s10845-021-01821-z 10.1109/ICDMW.2017.19 10.1109/TII.2021.3070109 10.1177/0021998317724591 10.1007/s12588-019-09233-8 10.1016/j.ymssp.2021.107708 10.1016/j.jestch.2019.10.002 10.1007/s10845-019-01505-9 10.1016/j.jmatprotec.2018.06.037 10.1007/s10845-017-1348-9 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 K9. L7M L~C L~D |
| DOI | 10.1007/s10845-024-02503-2 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1572-8145 |
| EndPage | 5901 |
| ExternalDocumentID | 10_1007_s10845_024_02503_2 |
| GrantInformation_xml | – fundername: Dalian High-Level Talent Innovation Program grantid: 2023RG001 funderid: http://dx.doi.org/10.13039/100015789 – fundername: Liaoning Revitalization Talents Program grantid: XLYC2202017 funderid: http://dx.doi.org/10.13039/501100018617 – fundername: National Natural Science Foundation of China grantid: 52125504; 52275519 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I OAM OVD P19 P2P P62 P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZYFGU ~A9 ~EX AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 K9. L7M L~C L~D |
| ID | FETCH-LOGICAL-c319t-fda25eabdd978de84a749cffdaf5644d34dbc52fc24eb035bddbd27d7fd8352d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331063700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-5515 |
| IngestDate | Wed Nov 05 06:29:15 EST 2025 Sat Nov 29 06:58:12 EST 2025 Tue Nov 18 21:05:51 EST 2025 Mon Nov 03 01:29:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Drilling quality prediction Stacked sparse autoencoder (SSAE) Multi-sensor fusion Bayesian deep learning Composite material |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-fda25eabdd978de84a749cffdaf5644d34dbc52fc24eb035bddbd27d7fd8352d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2906-5591 |
| PQID | 3267747446 |
| PQPubID | 32407 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3267747446 crossref_citationtrail_10_1007_s10845_024_02503_2 crossref_primary_10_1007_s10845_024_02503_2 springer_journals_10_1007_s10845_024_02503_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | J Saoudi (2503_CR20) 2018; 52 C Liu (2503_CR12) 2022; 18 J Cui (2503_CR6) 2021; 157 2503_CR27 P Jieyang (2503_CR28) 2023; 34 Y Zhang (2503_CR70) 2021; 55 2503_CR29 DY Pimenov (2503_CR16) 2023; 34 J Fleischer (2503_CR7) 2018; 67 A Jiao (2503_CR10) 2020; 10 H Hegab (2503_CR8) 2020; 110 Q Wang (2503_CR24) 2020; 235 A Chabot (2503_CR4) 2020; 31 Z Jia (2503_CR9) 2020; 282 A Nurunnabi (2503_CR15) 2018; 81 T Liu (2503_CR13) 2021; 17 M Pratama (2503_CR17) 2019; 30 C Ma (2503_CR14) 2023; 34 NS Ross (2503_CR19) 2024; 35 Y Shen (2503_CR21) 2021; 32 JG Choi (2503_CR5) 2024; 190 K-M Jung (2503_CR11) 2007; 34 J Xu (2503_CR25) 2018; 201 L Romoli (2503_CR18) 2019; 40 D Zhang (2503_CR26) 2020; 107 F Su (2503_CR23) 2018; 262 MF Ashby (2503_CR3) 1993; 03 BOP Soepangkat (2503_CR22) 2020; 23 U Aich (2503_CR1) 2019; 23 S Arul (2503_CR2) 2006; 46 |
| References_xml | – volume: 34 start-page: 3277 issue: 8 year: 2023 ident: 2503_CR28 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-02020-0 – volume: 201 start-page: 1076 year: 2018 ident: 2503_CR25 publication-title: Composite Structures doi: 10.1016/j.compstruct.2018.06.051 – volume: 67 start-page: 603 issue: 2 year: 2018 ident: 2503_CR7 publication-title: CIRP Annals doi: 10.1016/j.cirp.2018.05.005 – volume: 40 start-page: 16 year: 2019 ident: 2503_CR18 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2019.02.028 – volume: 81 start-page: 417 year: 2018 ident: 2503_CR15 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.04.010 – volume: 10 start-page: 2108 year: 2020 ident: 2503_CR10 publication-title: Applied Sciences doi: 10.3390/app10062108 – volume: 35 start-page: 757 issue: 2 year: 2024 ident: 2503_CR19 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-023-02074-8 – volume: 32 start-page: 1753 issue: 6 year: 2021 ident: 2503_CR21 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01625-7 – volume: 55 start-page: 2061 year: 2021 ident: 2503_CR70 publication-title: Journal of Composite Materials doi: 10.1177/0021998320984245 – volume: 34 start-page: 2079 issue: 5 year: 2023 ident: 2503_CR16 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-01923-2 – volume: 46 start-page: 252 issue: 3 year: 2006 ident: 2503_CR2 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2005.05.023 – ident: 2503_CR27 – volume: 17 start-page: 2621 issue: 4 year: 2021 ident: 2503_CR13 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.3004445 – volume: 03 start-page: C7 issue: C7 year: 1993 ident: 2503_CR3 publication-title: Le Journal De Physique IV doi: 10.1051/jp4:1993701 – volume: 190 year: 2024 ident: 2503_CR5 publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2024.110074 – volume: 34 start-page: 331 issue: 3 year: 2007 ident: 2503_CR11 publication-title: Journal of Applied Statistics doi: 10.1080/02664760601004973 – volume: 107 start-page: 3847 issue: 9–10 year: 2020 ident: 2503_CR26 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-05310-0 – volume: 110 start-page: 2881 issue: 11–12 year: 2020 ident: 2503_CR8 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-020-06049-4 – volume: 282 year: 2020 ident: 2503_CR9 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2020.116665 – volume: 235 year: 2020 ident: 2503_CR24 publication-title: Composite Structures doi: 10.1016/j.compstruct.2019.111803 – volume: 34 start-page: 695 issue: 2 year: 2023 ident: 2503_CR14 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01821-z – ident: 2503_CR29 doi: 10.1109/ICDMW.2017.19 – volume: 18 start-page: 922 issue: 2 year: 2022 ident: 2503_CR12 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3070109 – volume: 52 start-page: 1281 issue: 10 year: 2018 ident: 2503_CR20 publication-title: Journal of Composite Materials doi: 10.1177/0021998317724591 – volume: 23 start-page: 77 issue: 1 year: 2019 ident: 2503_CR1 publication-title: International Journal of Plastics Technology doi: 10.1007/s12588-019-09233-8 – volume: 157 year: 2021 ident: 2503_CR6 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2021.107708 – volume: 23 start-page: 700 issue: 3 year: 2020 ident: 2503_CR22 publication-title: Engineering Science and Technology: An International Journal doi: 10.1016/j.jestch.2019.10.002 – volume: 31 start-page: 1191 issue: 5 year: 2020 ident: 2503_CR4 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01505-9 – volume: 262 start-page: 157 year: 2018 ident: 2503_CR23 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2018.06.037 – volume: 30 start-page: 1717 issue: 4 year: 2019 ident: 2503_CR17 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1348-9 |
| SSID | ssj0009861 |
| Score | 2.440082 |
| Snippet | The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5889 |
| SubjectTerms | Algorithms Business and Management Composite materials Control Datasets Deep learning Drilling Error reduction Industrial applications Machines Machining Manufacturing Mechatronics Methods Multisensor fusion Processes Production Quality control Real time Robotics Sensors Software Test systems Vibration measurement |
| Title | Online prediction of composite material drilling quality based on multi-sensor fusion |
| URI | https://link.springer.com/article/10.1007/s10845-024-02503-2 https://www.proquest.com/docview/3267747446 |
| Volume | 36 |
| WOSCitedRecordID | wos001331063700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED5k-qAPTqfidEoefNNC1ya2fRRx-CBD1I29lTSXwEA2aTfBf-8lbe0UFfS1TUu5S3Lf19x9B3DGI6HC8DL2MiRuwqXgnswkbYboJwEGiR-69m3ju2g4jCeT5L4qCivqbPf6SNLt1CvFbjG31cTcs3E79GjjXadwF9lEvofHcSO1GzuVVKewR3hAVKUy37_jczhqMOaXY1EXbQbt_33nDmxX6JJdldNhF9b0rAPtunMDqxZyB7ZWZAj3YFTqjbKX3J7aWE-xuWE22dxmdGlGoNbNU4b51El4s7IU843ZGIiMxru8RK8gTjzPmVnaX3D7MBrcPF3felW7BU_ROlx4BmUgtMwQiVmijrmMeKIMXTaCUBOGHDMlAqMCrjM_FDSQHBxhZNDCOAwPoDWbz_QhMKK9SsaSyBgRSN1XUhiOHIn6KaOUn3ShX1s9VZUWuW2J8Zw2KsrWiilZMXVWTIMunH8881Iqcfw6ulc7M61WZZESVCW0GxED7sJF7bzm9s9vO_rb8GPYDGybYJf10oPWIl_qE9hQr4tpkZ-62foONRjkbg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED5kCuqD06k4nZoH37TQpaltH0UcE-cQ3MbeQpo0MJBttJvgv_eStnaKCvrapqXcJbnva-6-A7hggS897zp0YoXchAmfOSIWuBkqN6KKRq5n27eNekG_H47H0VNRFJaV2e7lkaTdqVeK3UJmqomZY-K25-DGu84oInzD0Z9HldRuaFVSrcIe4gG_KJX5_h2fw1GFMb8ci9po06n_7zt3YadAl-Qmnw57sJZMG1AvOzeQYiE3YHtFhnAfhrneKJmn5tTGeIrMNDHJ5iajKyEIau08JSqdWAlvkpdivhETAxXB8TYv0cmQE89SopfmF9wBDDt3g9uuU7RbcCSuw4WjlaB-ImKlkFmqJGQiYJHUeFn7iJqUx1QsfaolZUnsej4ORAcHKtDKwDjlHUJtOpsmR0CQ9koRCiRjSCCTthS-ZooppH5SS-lGTWiXVuey0CI3LTFeeKWibKzI0YrcWpHTJlx-PDPPlTh-Hd0qncmLVZlxhKqIdgNkwE24Kp1X3f75bcd_G34Om93BY4_37vsPJ7BFTctgmwHTgtoiXSansCFfF5MsPbMz9x3ym-dS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED5ERfTB6VScTs2Db1q2taltH0UdimMMdGNvJc01MJBudJ3gv_eStnaKCuJrey0ll-S-r7n7DuCce650nCvfipC4CRcut0QkaDPEdmCjHbQd075t1PP6fX88DgZLVfwm2708ksxrGrRKU5K1ZqhaS4VvPteVxdzSMdyxaBNe4zpdTvP1p1Elu-sbxVSjtkfYwC3KZr5_x-fQVOHNL0ekJvJ0a___5h3YLlAnu86nyS6sxEkdamVHB1Ys8DpsLckT7sEw1yFls1Sf5mgPsqliOgldZ3rFjMCumb8M04mR9mZ5ieYb07ERGdmbfEVrTlx5mjK10L_m9mHYvXu-ubeKNgyWpPWZWQqF7cYiQiTGibHPhccDqeiycglNocMxkq6tpM3jqO24ZEiO99BTqOEdOgewmkyT-BAY0WEpfEEkjYhl3JHCVRw5EiWUSsp20IBO6YFQFhrlulXGS1ipK-tRDGkUQzOKod2Ai49nZrlCx6_WzdKxYbFa5yFBWELBHjHjBlyWjqxu__y2o7-Zn8HG4LYb9h76j8ewaetOwiYxpgmrWbqIT2BdvmaTeXpqJvE73hXwLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+prediction+of+composite+material+drilling+quality+based+on+multi-sensor+fusion&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Liu%2C+Wei&rft.au=Cui%2C+%C2%B7Jiacheng&rft.au=Lu%2C+Yongkang&rft.au=Yin%2C+Pengbo&rft.date=2025-12-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=36&rft.issue=8&rft.spage=5889&rft.epage=5901&rft_id=info:doi/10.1007%2Fs10845-024-02503-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_024_02503_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |