Online prediction of composite material drilling quality based on multi-sensor fusion

The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of intelligent manufacturing Ročník 36; číslo 8; s. 5889 - 5901
Hlavní autori: Liu, Wei, Cui, ·Jiacheng, Lu, Yongkang, Yin, Pengbo, Han, Lei, Jiang, Yingxin, Zhang, Yang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2025
Springer Nature B.V
Predmet:
ISSN:0956-5515, 1572-8145
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian deep learning framework, was developed to manage the uncertainty inherent in composite material processing. Experimental validation, utilizing a specifically constructed dataset from multi-sensor data including force, temperature, and vibration measurements, demonstrates that our approach significantly enhances the predictability of hole quality during drilling. The MFLSTM model outperformed traditional machining process monitoring techniques by reducing prediction errors by over 25%, offering both accurate point predictions and reliable interval estimates. This method not only advances the intelligence of composite component manufacturing but also facilitates its industrial application through the development of supportive software.
AbstractList The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in real-time. The Multi-sensor Fusion Long Short-Term Memory (MFLSTM) model, which incorporates a Stacked Sparse Autoencoder (SSAE) within a Bayesian deep learning framework, was developed to manage the uncertainty inherent in composite material processing. Experimental validation, utilizing a specifically constructed dataset from multi-sensor data including force, temperature, and vibration measurements, demonstrates that our approach significantly enhances the predictability of hole quality during drilling. The MFLSTM model outperformed traditional machining process monitoring techniques by reducing prediction errors by over 25%, offering both accurate point predictions and reliable interval estimates. This method not only advances the intelligence of composite component manufacturing but also facilitates its industrial application through the development of supportive software.
Author Cui, ·Jiacheng
Zhang, Yang
Lu, Yongkang
Liu, Wei
Han, Lei
Yin, Pengbo
Jiang, Yingxin
Author_xml – sequence: 1
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 2
  givenname: ·Jiacheng
  surname: Cui
  fullname: Cui, ·Jiacheng
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 3
  givenname: Yongkang
  orcidid: 0000-0002-2906-5591
  surname: Lu
  fullname: Lu, Yongkang
  email: lyk2024@dlut.edu.cn
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 4
  givenname: Pengbo
  surname: Yin
  fullname: Yin, Pengbo
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 5
  givenname: Lei
  surname: Han
  fullname: Han, Lei
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 6
  givenname: Yingxin
  surname: Jiang
  fullname: Jiang, Yingxin
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
– sequence: 7
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology
BookMark eNp9kM9rwyAUx2V0sLbbP7CTsLObGo3JcZT9gkIv61lM1GJJYqrm0P9-dhkMdtjh8eDx-byn3xVYDH4wANwT_EgwFk-R4IpxhCnLxXGB6BVYEi4oqgjjC7DENS8R54TfgFWMR4xxXZVkCfa7oXODgWMw2rXJ-QF6C1vfjz66ZGCvkglOdVAH12XyAE-T6lw6w0ZFo2Hm-6lLDkUzRB-gnWLecQuureqiufvpa7B_ffncvKPt7u1j87xFbUHqhKxWlBvVaF2LSpuKKcHq1uax5SVjumC6aTm1LWWmwQXPYKOp0MLqquBUF2vwMO8dgz9NJiZ59FMY8klZ0FIIJhgrM1XNVBt8jMFY2bqkLn9NQblOEiwvIco5RJlDlN8hSppV-kcdg-tVOP8vFbMUMzwcTPh91T_WF6LuiQQ
CitedBy_id crossref_primary_10_1007_s10845_025_02602_8
crossref_primary_10_1109_TIM_2025_3585221
Cites_doi 10.1007/s10845-022-02020-0
10.1016/j.compstruct.2018.06.051
10.1016/j.cirp.2018.05.005
10.1016/j.jmapro.2019.02.028
10.1016/j.patcog.2018.04.010
10.3390/app10062108
10.1007/s10845-023-02074-8
10.1007/s10845-020-01625-7
10.1177/0021998320984245
10.1007/s10845-022-01923-2
10.1016/j.ijmachtools.2005.05.023
10.1109/TII.2020.3004445
10.1051/jp4:1993701
10.1016/j.cie.2024.110074
10.1080/02664760601004973
10.1007/s00170-020-05310-0
10.1007/s00170-020-06049-4
10.1016/j.jmatprotec.2020.116665
10.1016/j.compstruct.2019.111803
10.1007/s10845-021-01821-z
10.1109/ICDMW.2017.19
10.1109/TII.2021.3070109
10.1177/0021998317724591
10.1007/s12588-019-09233-8
10.1016/j.ymssp.2021.107708
10.1016/j.jestch.2019.10.002
10.1007/s10845-019-01505-9
10.1016/j.jmatprotec.2018.06.037
10.1007/s10845-017-1348-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
DOI 10.1007/s10845-024-02503-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 5901
ExternalDocumentID 10_1007_s10845_024_02503_2
GrantInformation_xml – fundername: Dalian High-Level Talent Innovation Program
  grantid: 2023RG001
  funderid: http://dx.doi.org/10.13039/100015789
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC2202017
  funderid: http://dx.doi.org/10.13039/501100018617
– fundername: National Natural Science Foundation of China
  grantid: 52125504; 52275519
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-fda25eabdd978de84a749cffdaf5644d34dbc52fc24eb035bddbd27d7fd8352d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331063700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Wed Nov 05 06:29:15 EST 2025
Sat Nov 29 06:58:12 EST 2025
Tue Nov 18 21:05:51 EST 2025
Mon Nov 03 01:29:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Drilling quality prediction
Stacked sparse autoencoder (SSAE)
Multi-sensor fusion
Bayesian deep learning
Composite material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fda25eabdd978de84a749cffdaf5644d34dbc52fc24eb035bddbd27d7fd8352d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2906-5591
PQID 3267747446
PQPubID 32407
PageCount 13
ParticipantIDs proquest_journals_3267747446
crossref_citationtrail_10_1007_s10845_024_02503_2
crossref_primary_10_1007_s10845_024_02503_2
springer_journals_10_1007_s10845_024_02503_2
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J Saoudi (2503_CR20) 2018; 52
C Liu (2503_CR12) 2022; 18
J Cui (2503_CR6) 2021; 157
2503_CR27
P Jieyang (2503_CR28) 2023; 34
Y Zhang (2503_CR70) 2021; 55
2503_CR29
DY Pimenov (2503_CR16) 2023; 34
J Fleischer (2503_CR7) 2018; 67
A Jiao (2503_CR10) 2020; 10
H Hegab (2503_CR8) 2020; 110
Q Wang (2503_CR24) 2020; 235
A Chabot (2503_CR4) 2020; 31
Z Jia (2503_CR9) 2020; 282
A Nurunnabi (2503_CR15) 2018; 81
T Liu (2503_CR13) 2021; 17
M Pratama (2503_CR17) 2019; 30
C Ma (2503_CR14) 2023; 34
NS Ross (2503_CR19) 2024; 35
Y Shen (2503_CR21) 2021; 32
JG Choi (2503_CR5) 2024; 190
K-M Jung (2503_CR11) 2007; 34
J Xu (2503_CR25) 2018; 201
L Romoli (2503_CR18) 2019; 40
D Zhang (2503_CR26) 2020; 107
F Su (2503_CR23) 2018; 262
MF Ashby (2503_CR3) 1993; 03
BOP Soepangkat (2503_CR22) 2020; 23
U Aich (2503_CR1) 2019; 23
S Arul (2503_CR2) 2006; 46
References_xml – volume: 34
  start-page: 3277
  issue: 8
  year: 2023
  ident: 2503_CR28
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-02020-0
– volume: 201
  start-page: 1076
  year: 2018
  ident: 2503_CR25
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2018.06.051
– volume: 67
  start-page: 603
  issue: 2
  year: 2018
  ident: 2503_CR7
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2018.05.005
– volume: 40
  start-page: 16
  year: 2019
  ident: 2503_CR18
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2019.02.028
– volume: 81
  start-page: 417
  year: 2018
  ident: 2503_CR15
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.04.010
– volume: 10
  start-page: 2108
  year: 2020
  ident: 2503_CR10
  publication-title: Applied Sciences
  doi: 10.3390/app10062108
– volume: 35
  start-page: 757
  issue: 2
  year: 2024
  ident: 2503_CR19
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-023-02074-8
– volume: 32
  start-page: 1753
  issue: 6
  year: 2021
  ident: 2503_CR21
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01625-7
– volume: 55
  start-page: 2061
  year: 2021
  ident: 2503_CR70
  publication-title: Journal of Composite Materials
  doi: 10.1177/0021998320984245
– volume: 34
  start-page: 2079
  issue: 5
  year: 2023
  ident: 2503_CR16
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-01923-2
– volume: 46
  start-page: 252
  issue: 3
  year: 2006
  ident: 2503_CR2
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2005.05.023
– ident: 2503_CR27
– volume: 17
  start-page: 2621
  issue: 4
  year: 2021
  ident: 2503_CR13
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.3004445
– volume: 03
  start-page: C7
  issue: C7
  year: 1993
  ident: 2503_CR3
  publication-title: Le Journal De Physique IV
  doi: 10.1051/jp4:1993701
– volume: 190
  year: 2024
  ident: 2503_CR5
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2024.110074
– volume: 34
  start-page: 331
  issue: 3
  year: 2007
  ident: 2503_CR11
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664760601004973
– volume: 107
  start-page: 3847
  issue: 9–10
  year: 2020
  ident: 2503_CR26
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-05310-0
– volume: 110
  start-page: 2881
  issue: 11–12
  year: 2020
  ident: 2503_CR8
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-06049-4
– volume: 282
  year: 2020
  ident: 2503_CR9
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2020.116665
– volume: 235
  year: 2020
  ident: 2503_CR24
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2019.111803
– volume: 34
  start-page: 695
  issue: 2
  year: 2023
  ident: 2503_CR14
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01821-z
– ident: 2503_CR29
  doi: 10.1109/ICDMW.2017.19
– volume: 18
  start-page: 922
  issue: 2
  year: 2022
  ident: 2503_CR12
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3070109
– volume: 52
  start-page: 1281
  issue: 10
  year: 2018
  ident: 2503_CR20
  publication-title: Journal of Composite Materials
  doi: 10.1177/0021998317724591
– volume: 23
  start-page: 77
  issue: 1
  year: 2019
  ident: 2503_CR1
  publication-title: International Journal of Plastics Technology
  doi: 10.1007/s12588-019-09233-8
– volume: 157
  year: 2021
  ident: 2503_CR6
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2021.107708
– volume: 23
  start-page: 700
  issue: 3
  year: 2020
  ident: 2503_CR22
  publication-title: Engineering Science and Technology: An International Journal
  doi: 10.1016/j.jestch.2019.10.002
– volume: 31
  start-page: 1191
  issue: 5
  year: 2020
  ident: 2503_CR4
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01505-9
– volume: 262
  start-page: 157
  year: 2018
  ident: 2503_CR23
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2018.06.037
– volume: 30
  start-page: 1717
  issue: 4
  year: 2019
  ident: 2503_CR17
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1348-9
SSID ssj0009861
Score 2.440082
Snippet The study introduces a novel online prediction method using a multi-sensor fusion approach for assessing the drilling quality of composite materials in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5889
SubjectTerms Algorithms
Business and Management
Composite materials
Control
Datasets
Deep learning
Drilling
Error reduction
Industrial applications
Machines
Machining
Manufacturing
Mechatronics
Methods
Multisensor fusion
Processes
Production
Quality control
Real time
Robotics
Sensors
Software
Test systems
Vibration measurement
Title Online prediction of composite material drilling quality based on multi-sensor fusion
URI https://link.springer.com/article/10.1007/s10845-024-02503-2
https://www.proquest.com/docview/3267747446
Volume 36
WOSCitedRecordID wos001331063700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED5k-qAPTqfidEoefNNC1ya2fRRx-CBD1I29lTSXwEA2aTfBf-8lbe0UFfS1TUu5S3Lf19x9B3DGI6HC8DL2MiRuwqXgnswkbYboJwEGiR-69m3ju2g4jCeT5L4qCivqbPf6SNLt1CvFbjG31cTcs3E79GjjXadwF9lEvofHcSO1GzuVVKewR3hAVKUy37_jczhqMOaXY1EXbQbt_33nDmxX6JJdldNhF9b0rAPtunMDqxZyB7ZWZAj3YFTqjbKX3J7aWE-xuWE22dxmdGlGoNbNU4b51El4s7IU843ZGIiMxru8RK8gTjzPmVnaX3D7MBrcPF3felW7BU_ROlx4BmUgtMwQiVmijrmMeKIMXTaCUBOGHDMlAqMCrjM_FDSQHBxhZNDCOAwPoDWbz_QhMKK9SsaSyBgRSN1XUhiOHIn6KaOUn3ShX1s9VZUWuW2J8Zw2KsrWiilZMXVWTIMunH8881Iqcfw6ulc7M61WZZESVCW0GxED7sJF7bzm9s9vO_rb8GPYDGybYJf10oPWIl_qE9hQr4tpkZ-62foONRjkbg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED5kCuqD06k4nZoH37TQpaltH0UcE-cQ3MbeQpo0MJBttJvgv_eStnaKCvrapqXcJbnva-6-A7hggS897zp0YoXchAmfOSIWuBkqN6KKRq5n27eNekG_H47H0VNRFJaV2e7lkaTdqVeK3UJmqomZY-K25-DGu84oInzD0Z9HldRuaFVSrcIe4gG_KJX5_h2fw1GFMb8ci9po06n_7zt3YadAl-Qmnw57sJZMG1AvOzeQYiE3YHtFhnAfhrneKJmn5tTGeIrMNDHJ5iajKyEIau08JSqdWAlvkpdivhETAxXB8TYv0cmQE89SopfmF9wBDDt3g9uuU7RbcCSuw4WjlaB-ImKlkFmqJGQiYJHUeFn7iJqUx1QsfaolZUnsej4ORAcHKtDKwDjlHUJtOpsmR0CQ9koRCiRjSCCTthS-ZooppH5SS-lGTWiXVuey0CI3LTFeeKWibKzI0YrcWpHTJlx-PDPPlTh-Hd0qncmLVZlxhKqIdgNkwE24Kp1X3f75bcd_G34Om93BY4_37vsPJ7BFTctgmwHTgtoiXSansCFfF5MsPbMz9x3ym-dS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED5ERfTB6VScTs2Db1q2taltH0UdimMMdGNvJc01MJBudJ3gv_eStnaKCuJrey0ll-S-r7n7DuCce650nCvfipC4CRcut0QkaDPEdmCjHbQd075t1PP6fX88DgZLVfwm2708ksxrGrRKU5K1ZqhaS4VvPteVxdzSMdyxaBNe4zpdTvP1p1Elu-sbxVSjtkfYwC3KZr5_x-fQVOHNL0ekJvJ0a___5h3YLlAnu86nyS6sxEkdamVHB1Ys8DpsLckT7sEw1yFls1Sf5mgPsqliOgldZ3rFjMCumb8M04mR9mZ5ieYb07ERGdmbfEVrTlx5mjK10L_m9mHYvXu-ubeKNgyWpPWZWQqF7cYiQiTGibHPhccDqeiycglNocMxkq6tpM3jqO24ZEiO99BTqOEdOgewmkyT-BAY0WEpfEEkjYhl3JHCVRw5EiWUSsp20IBO6YFQFhrlulXGS1ipK-tRDGkUQzOKod2Ai49nZrlCx6_WzdKxYbFa5yFBWELBHjHjBlyWjqxu__y2o7-Zn8HG4LYb9h76j8ewaetOwiYxpgmrWbqIT2BdvmaTeXpqJvE73hXwLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+prediction+of+composite+material+drilling+quality+based+on+multi-sensor+fusion&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Liu%2C+Wei&rft.au=Cui%2C+%C2%B7Jiacheng&rft.au=Lu%2C+Yongkang&rft.au=Yin%2C+Pengbo&rft.date=2025-12-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=36&rft.issue=8&rft.spage=5889&rft.epage=5901&rft_id=info:doi/10.1007%2Fs10845-024-02503-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_024_02503_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon