Upper bounds of nodal sets for eigenfunctions of eigenvalue problems

The aim of this article is to provide a simple and unified way to obtain the sharp upper bounds of nodal sets of eigenfunctions for different types of eigenvalue problems on real analytic domains. The examples include biharmonic Steklov eigenvalue problems, buckling eigenvalue problems and champed-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen Jg. 382; H. 3-4; S. 1957 - 1984
Hauptverfasser: Lin, Fanghua, Zhu, Jiuyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Schlagworte:
ISSN:0025-5831, 1432-1807
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this article is to provide a simple and unified way to obtain the sharp upper bounds of nodal sets of eigenfunctions for different types of eigenvalue problems on real analytic domains. The examples include biharmonic Steklov eigenvalue problems, buckling eigenvalue problems and champed-plate eigenvalue problems. The geometric measure of nodal sets are derived from doubling inequalities and growth estimates for eigenfunctions. It is done through analytic estimates of Morrey–Nirenberg and Carleman estimates.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02098-y