Upper bounds of nodal sets for eigenfunctions of eigenvalue problems

The aim of this article is to provide a simple and unified way to obtain the sharp upper bounds of nodal sets of eigenfunctions for different types of eigenvalue problems on real analytic domains. The examples include biharmonic Steklov eigenvalue problems, buckling eigenvalue problems and champed-p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematische annalen Ročník 382; číslo 3-4; s. 1957 - 1984
Hlavní autoři: Lin, Fanghua, Zhu, Jiuyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Témata:
ISSN:0025-5831, 1432-1807
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this article is to provide a simple and unified way to obtain the sharp upper bounds of nodal sets of eigenfunctions for different types of eigenvalue problems on real analytic domains. The examples include biharmonic Steklov eigenvalue problems, buckling eigenvalue problems and champed-plate eigenvalue problems. The geometric measure of nodal sets are derived from doubling inequalities and growth estimates for eigenfunctions. It is done through analytic estimates of Morrey–Nirenberg and Carleman estimates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02098-y