Towards a Standard Feature Set for Network Intrusion Detection System Datasets
Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based app...
Gespeichert in:
| Veröffentlicht in: | Mobile networks and applications Jg. 27; H. 1; S. 357 - 370 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1383-469X, 1572-8153 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available NIDS datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features. For our evaluation, we converted four widely used NIDS datasets (UNSW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018) into new variants with our proposed NetFlow based feature sets. Based on an Extra Tree classifier, we compared the classification performance of the NetFlow-based feature sets with the proprietary feature sets provided with the original datasets. While the smaller feature set cannot match the classification performance of the proprietary feature sets, the larger set with 43 NetFlow features, surprisingly achieves a consistently higher classification performance compared to the original feature set, which was tailored to each of the considered NIDS datasets. The proposed NetFlow-based NIDS feature set, together with four benchmark datasets, made available to the research community, allow a fair comparison of ML-based network traffic classifiers across different NIDS datasets. We believe that having a standard feature set is critical for allowing a more rigorous and thorough evaluation of ML-based NIDSs and that it can help bridge the gap between academic research and the practical deployment of such systems. |
|---|---|
| AbstractList | Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available NIDS datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features. For our evaluation, we converted four widely used NIDS datasets (UNSW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018) into new variants with our proposed NetFlow based feature sets. Based on an Extra Tree classifier, we compared the classification performance of the NetFlow-based feature sets with the proprietary feature sets provided with the original datasets. While the smaller feature set cannot match the classification performance of the proprietary feature sets, the larger set with 43 NetFlow features, surprisingly achieves a consistently higher classification performance compared to the original feature set, which was tailored to each of the considered NIDS datasets. The proposed NetFlow-based NIDS feature set, together with four benchmark datasets, made available to the research community, allow a fair comparison of ML-based network traffic classifiers across different NIDS datasets. We believe that having a standard feature set is critical for allowing a more rigorous and thorough evaluation of ML-based NIDSs and that it can help bridge the gap between academic research and the practical deployment of such systems. |
| Author | Sarhan, Mohanad Layeghy, Siamak Portmann, Marius |
| Author_xml | – sequence: 1 givenname: Mohanad surname: Sarhan fullname: Sarhan, Mohanad email: m.sarhan@uq.net.au organization: University of Queensland – sequence: 2 givenname: Siamak surname: Layeghy fullname: Layeghy, Siamak organization: University of Queensland – sequence: 3 givenname: Marius surname: Portmann fullname: Portmann, Marius organization: University of Queensland |
| BookMark | eNp9kE1PwkAQhjcGEwH9A5428Vyd_W6PBkRJCB7AxNtmaacGhBZ3tyH8e4s1MfHAad7D-8xMngHpVXWFhNwyuGcA5iEwBkInwFkCLJUigQvSZ8rwJGVK9NosUpFInb1fkUEIGwBQKpV9Ml_WB-eLQB1dRFcVbaYTdLHxSBcYaVl7Osd4qP0nnVbRN2FdV3SMEfN4SotjiLijYxddwBiuyWXptgFvfueQvE2elqOXZPb6PB09zpJcsCwmZa5dKg1fyUIaxRiKgqPjbmWcYVIzQGMAcl3w0gijAFVZrrIiz7SGolSZGJK7bu_e118Nhmg3deOr9qTlWnLNpZS6baVdK_d1CB5Lm6-jO_0dvVtvLQN7smc7e7a1Z3_sWWhR_g_d-_XO-eN5SHRQaMvVB_q_r85Q3z5zg5I |
| CitedBy_id | crossref_primary_10_1007_s10586_025_05194_3 crossref_primary_10_1007_s42979_023_02448_y crossref_primary_10_1145_3701724 crossref_primary_10_1109_ACCESS_2022_3186026 crossref_primary_10_1016_j_jisa_2022_103248 crossref_primary_10_1007_s00521_023_09309_y crossref_primary_10_3390_s23198153 crossref_primary_10_1109_ACCESS_2024_3445533 crossref_primary_10_3390_iot5030022 crossref_primary_10_1016_j_comnet_2025_111177 crossref_primary_10_1109_TIFS_2025_3541890 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1109_ACCESS_2025_3575705 crossref_primary_10_1007_s12083_024_01786_9 crossref_primary_10_1007_s10791_025_09708_w crossref_primary_10_3390_sym15030568 crossref_primary_10_3390_make7030078 crossref_primary_10_1016_j_cose_2023_103176 crossref_primary_10_1016_j_cose_2025_104422 crossref_primary_10_1016_j_compeleceng_2024_109627 crossref_primary_10_1007_s11227_024_06409_x crossref_primary_10_1016_j_comnet_2023_110010 crossref_primary_10_3390_s23052415 crossref_primary_10_32604_cmc_2024_057660 crossref_primary_10_1016_j_knosys_2022_110030 crossref_primary_10_1007_s10489_025_06422_4 crossref_primary_10_1016_j_cose_2025_104536 crossref_primary_10_1109_ACCESS_2025_3585445 crossref_primary_10_1109_TETC_2022_3178283 crossref_primary_10_1016_j_dsp_2025_105153 crossref_primary_10_1007_s44163_024_00120_9 crossref_primary_10_26599_BDMA_2022_9020032 crossref_primary_10_3390_e23111532 crossref_primary_10_1109_ACCESS_2025_3574672 crossref_primary_10_1007_s10207_023_00777_w crossref_primary_10_3390_s22166164 crossref_primary_10_3390_electronics12040930 crossref_primary_10_1007_s10586_024_04888_4 crossref_primary_10_1007_s40860_024_00238_8 crossref_primary_10_3390_app15158466 crossref_primary_10_1016_j_iot_2023_100819 crossref_primary_10_1007_s10586_024_04404_8 crossref_primary_10_3390_jsan12050067 crossref_primary_10_1007_s11227_024_06471_5 crossref_primary_10_1631_FITEE_2400932 crossref_primary_10_2478_ijssis_2025_0017 crossref_primary_10_1109_ACCESS_2024_3472907 crossref_primary_10_1016_j_heliyon_2024_e28844 crossref_primary_10_1002_cpe_7197 crossref_primary_10_3390_rs15143611 crossref_primary_10_1007_s13369_024_09805_w crossref_primary_10_1109_JIOT_2024_3408634 crossref_primary_10_1109_ACCESS_2024_3503497 crossref_primary_10_3390_s23239583 crossref_primary_10_1016_j_comcom_2025_108312 crossref_primary_10_1016_j_compeleceng_2023_108692 crossref_primary_10_1007_s42979_023_02242_w crossref_primary_10_3390_s22155690 crossref_primary_10_7717_peerj_cs_2333 crossref_primary_10_3390_jcp5010003 crossref_primary_10_3390_electronics12041044 crossref_primary_10_1016_j_cose_2024_103820 crossref_primary_10_3390_s25010216 crossref_primary_10_1080_19393555_2024_2362813 crossref_primary_10_1016_j_cose_2025_104510 crossref_primary_10_1109_COMST_2023_3288942 crossref_primary_10_1016_j_jpdc_2024_104976 crossref_primary_10_55452_1998_6688_2024_21_3_48_57 crossref_primary_10_1186_s42400_024_00296_8 crossref_primary_10_3390_computers14070281 crossref_primary_10_1007_s10489_022_04039_5 crossref_primary_10_1007_s11227_023_05829_5 crossref_primary_10_1016_j_engappai_2025_111471 crossref_primary_10_1155_2022_4553502 crossref_primary_10_3390_s25123812 crossref_primary_10_1016_j_engappai_2025_110546 crossref_primary_10_1007_s12083_024_01720_z crossref_primary_10_1016_j_aei_2025_103142 crossref_primary_10_1109_ACCESS_2024_3350197 crossref_primary_10_1007_s10791_025_09688_x crossref_primary_10_1016_j_cose_2025_104462 crossref_primary_10_1109_TIFS_2025_3530702 crossref_primary_10_1109_ACCESS_2023_3296444 crossref_primary_10_3390_app14166995 crossref_primary_10_1109_TNSM_2022_3193099 crossref_primary_10_1109_ACCESS_2025_3575236 crossref_primary_10_3390_math11092048 crossref_primary_10_1109_ACCESS_2025_3564031 crossref_primary_10_3390_app15147915 crossref_primary_10_1038_s41598_025_08905_3 crossref_primary_10_1109_ACCESS_2025_3581354 crossref_primary_10_1109_ACCESS_2025_3589872 crossref_primary_10_1016_j_iot_2025_101536 crossref_primary_10_1007_s12083_025_01944_7 crossref_primary_10_3390_technologies13030102 crossref_primary_10_3390_fi16120482 crossref_primary_10_3390_s23167191 crossref_primary_10_1007_s10586_025_05215_1 crossref_primary_10_3390_computers13010025 crossref_primary_10_1016_j_eswa_2024_123439 crossref_primary_10_3390_make5030046 crossref_primary_10_3390_fi16120481 crossref_primary_10_1016_j_procs_2024_11_109 crossref_primary_10_1109_TIFS_2025_3602226 crossref_primary_10_1016_j_engappai_2025_110046 crossref_primary_10_1109_ACCESS_2023_3283567 crossref_primary_10_1007_s10586_024_05075_1 crossref_primary_10_1007_s11277_022_10100_w crossref_primary_10_1007_s12243_022_00926_7 crossref_primary_10_3390_a16020075 crossref_primary_10_1016_j_jpdc_2024_105010 crossref_primary_10_3390_electronics14173483 crossref_primary_10_3390_a18020069 crossref_primary_10_1007_s10115_024_02068_9 crossref_primary_10_1007_s41870_024_02219_9 crossref_primary_10_1016_j_dib_2025_111487 crossref_primary_10_1109_ACCESS_2023_3238664 crossref_primary_10_1016_j_comcom_2025_108072 crossref_primary_10_1016_j_cose_2025_104562 crossref_primary_10_33187_jmsm_1484997 crossref_primary_10_1109_ACCESS_2023_3275789 crossref_primary_10_32604_cmc_2023_030831 crossref_primary_10_3390_ai6080168 crossref_primary_10_1016_j_engappai_2025_110851 crossref_primary_10_1007_s40860_025_00248_0 crossref_primary_10_3389_fdata_2025_1526480 crossref_primary_10_1016_j_micpro_2025_105172 crossref_primary_10_3390_electronics14183729 |
| Cites_doi | 10.1109/ICCCNT.2012.6396086 10.1007/978-3-030-72802-1_9 10.1016/j.future.2019.05.041 10.5220/0006639801080116 10.1016/j.cose.2011.12.012 10.1109/access.2019.2929487 10.1016/j.cose.2008.08.003 10.1109/ACCESS.2020.3022862 10.1109/IAdCC.2014.6779523 10.1016/j.cose.2019.06.005 10.1016/j.jnca.2012.12.020 10.1109/sp.2010.25 10.17487/rfc3954 10.1109/milcis.2015.7348942 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11036-021-01843-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8153 |
| EndPage | 370 |
| ExternalDocumentID | 10_1007_s11036_021_01843_0 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-fc6a8472b4d47511e3d2ea2ab7a714610e7700c6d2f73750e5ffb9dc9660df593 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 202 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716371500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-469X |
| IngestDate | Wed Nov 12 05:01:13 EST 2025 Sat Nov 29 03:18:15 EST 2025 Tue Nov 18 22:24:59 EST 2025 Fri Feb 21 02:47:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | NetFlow Network intrusion detection system Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-fc6a8472b4d47511e3d2ea2ab7a714610e7700c6d2f73750e5ffb9dc9660df593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2642624446 |
| PQPubID | 26070 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2642624446 crossref_citationtrail_10_1007_s11036_021_01843_0 crossref_primary_10_1007_s11036_021_01843_0 springer_journals_10_1007_s11036_021_01843_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing |
| PublicationTitle | Mobile networks and applications |
| PublicationTitleAbbrev | Mobile Netw Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Li, Springer, Bebis, Hadi Gunes (CR8) 2013; 36 CR2 CR4 CR3 CR6 Shiravi, Shiravi, Tavallaee, Ghorbani (CR17) 2012; 31 CR7 CR18 CR9 CR16 CR15 CR14 Alsaedi, Moustafa, Tari, Mahmood, Anwar (CR1) 2020; 8 CR13 CR11 CR10 Garcia-Teodoro, Diaz-Verdejo, Maciá-Fernández, Vázquez (CR5) 2009; 28 Ring, Wunderlich, Scheuring, Landes, Hotho (CR12) 2019; 86 1843_CR4 1843_CR7 1843_CR6 1843_CR3 1843_CR2 B Li (1843_CR8) 2013; 36 1843_CR10 1843_CR11 M Ring (1843_CR12) 2019; 86 1843_CR13 P Garcia-Teodoro (1843_CR5) 2009; 28 1843_CR14 1843_CR15 1843_CR16 1843_CR18 A Shiravi (1843_CR17) 2012; 31 A Alsaedi (1843_CR1) 2020; 8 1843_CR9 |
| References_xml | – ident: CR18 – volume: 36 start-page: 567 issue: 2 year: 2013 end-page: 581 ident: CR8 article-title: A survey of network flow applications publication-title: J Netw Comput Appl – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR15 – ident: CR2 – ident: CR16 – ident: CR13 – ident: CR10 – ident: CR11 – ident: CR9 – volume: 86 start-page: 147 year: 2019 end-page: 167 ident: CR12 article-title: A survey of network-based intrusion detection data sets publication-title: Comput Secur – ident: CR6 – volume: 8 start-page: 165130 year: 2020 end-page: 165150 ident: CR1 article-title: Ton_iot telemetry dataset: A new generation dataset of iot and iiot for data-driven intrusion detection systems publication-title: IEEE Access – volume: 28 start-page: 18 issue: 1-2 year: 2009 end-page: 28 ident: CR5 article-title: Anomaly-based network intrusion detection: Techniques, systems and challenges publication-title: Comput Secur – ident: CR7 – volume: 31 start-page: 357 issue: 3 year: 2012 end-page: 374 ident: CR17 article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection publication-title: Comput Secur – ident: 1843_CR9 doi: 10.1109/ICCCNT.2012.6396086 – ident: 1843_CR3 – ident: 1843_CR15 doi: 10.1007/978-3-030-72802-1_9 – ident: 1843_CR7 doi: 10.1016/j.future.2019.05.041 – ident: 1843_CR16 doi: 10.5220/0006639801080116 – volume: 31 start-page: 357 issue: 3 year: 2012 ident: 1843_CR17 publication-title: Comput Secur doi: 10.1016/j.cose.2011.12.012 – ident: 1843_CR2 doi: 10.1109/access.2019.2929487 – ident: 1843_CR14 – volume: 28 start-page: 18 issue: 1-2 year: 2009 ident: 1843_CR5 publication-title: Comput Secur doi: 10.1016/j.cose.2008.08.003 – volume: 8 start-page: 165130 year: 2020 ident: 1843_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022862 – ident: 1843_CR11 – ident: 1843_CR13 doi: 10.1109/IAdCC.2014.6779523 – volume: 86 start-page: 147 year: 2019 ident: 1843_CR12 publication-title: Comput Secur doi: 10.1016/j.cose.2019.06.005 – volume: 36 start-page: 567 issue: 2 year: 2013 ident: 1843_CR8 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.12.020 – ident: 1843_CR18 doi: 10.1109/sp.2010.25 – ident: 1843_CR6 – ident: 1843_CR4 doi: 10.17487/rfc3954 – ident: 1843_CR10 doi: 10.1109/milcis.2015.7348942 |
| SSID | ssj0005584 |
| Score | 2.6824205 |
| Snippet | Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 357 |
| SubjectTerms | Classification Classifiers Communications Engineering Communications traffic Computer Communication Networks Computer networks Cybersecurity Datasets Electrical Engineering Engineering Intrusion detection systems IT in Business Machine learning Networks Proprietary |
| SummonAdditionalLinks | – databaseName: Springer LINK Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2yetCD3-LqKjl400CbfqQ9iqsoSBF3lb2VNJmAIFW21d_vJG2tigp6bhrKTJJ507x5Q8gRYgAji8IwwPTDJiiKSd-TTIE2geY6kuDU9a9FliWzWXrTFoVVHdu9u5J0J3Vf7OZb8VxLKfBskxKGifoihrvEbsfbyX1P7IiSppVtEjBM_mZtqcz3c3wORz3G_HIt6qLNxdr_vnOdrLbokp42y2GDLEC5SVY-aA5ukWzqiLIVlXTS_kagFge-zIFOoKYIYmnWcMPpVWlLMtBzdAy142yVtJE4p2NZY_yrq21yd3E-PbtkbVMFpnC31cyoWGJE4kWoQ4FoC9AjILkshBS2x7cHQnieijU3IkA4AZExRaqVVfHUJkqDHTIon0rYJVTqQBklAuCJDgOIU6mlNjyC0BdeEaVD4ne2zVWrOG4bXzzmvVaytVWOtsqdrXJvSI7f33lu9DZ-HT3qXJa3e6_KEeLxGFFLGA_JSeei_vHPs-39bfg-Wea2FsJRuEdkgB6BA7KkXuuHan7o1uQbR93acg priority: 102 providerName: Springer Nature |
| Title | Towards a Standard Feature Set for Network Intrusion Detection System Datasets |
| URI | https://link.springer.com/article/10.1007/s11036-021-01843-0 https://www.proquest.com/docview/2642624446 |
| Volume | 27 |
| WOSCitedRecordID | wos000716371500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005584 issn: 1383-469X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7aOg7sMDZgWrdS-cBtWDjODzcnNNZOm4CoagsULpHjH9KkKeuajL-f58QlgLRddvElPxTls_2e7e99H8BbzAGsLApLDS4_3AJFURkwSZXRNtRcx9I06vqfRZaNlst06jfcKk-r3MyJzUStb5XbI3-PgZsnGIui5MPqjjrXKHe66i00tmEn4Dxw_fyToB3FIx61prajkOIycOmLZtrSucBJ8TqCAnOWJ5T9G5i6bPO_A9Im7ly8eOoX78OezzjJWdtFDmDLlC9h9y8dwleQLRrybEUkmfutBeJyw_u1IXNTE0xsSdbyxclV6co0EE0yNnXD4ypJK3tOxrLGmFhXr-HrxWRxfkm90QJVOAJralUiMUrxItKRwAzMIEpGclkIKZzvNzNCMKYSza0IMcUwsbVFqpVT9tQ2TsND6JW3pTkCInWorBKh4SMdhSZJpZba8thEgWBFnPYh2PzlXHkVcmeGcZN3-skOmRyRyRtkctaH0z_PrFoNjkfvHmzgyP14rPIOiz682wDaXX74bcePv-0EnnNXD9HQuAfQQwTMG3imftXX1XoI2-L7jyHsfJxk09mw6ZvYfmHn2E7jn9jO5t9-A1ML6e0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpVLhwKNQsVDABzgVC6_z8O4BIdRt1VWXCKlbaW_BsccSEkpLE1rxp_iNzORBAKm99dBzEivJfJ4Z2998A_CacoBgiyJIpOUHL1CctGNlpUMfIq99YrFR11-YLJusVtPPa_Crr4VhWmXvExtH7U8d75G_o8CtU4pFcfrh7LvkrlF8utq30GhhcYQ_L2nJVr2fz8i-b7Q-2F_uHcquq4B0BLdaBpdacsm6iH1sKN1AeiW02hbGGm5yrdAYpVzqdTARxVNMQiim3rGMpQ8Jiy-Ry78TxzQdmCqo9gZKSTJpm-hOIknLzlVXpNOW6o1Z-pcJEYpbrEj1byAcstv_DmSbOHfw4Lb9oYdwv8uoxcd2CjyCNSy34N5fOouPIVs25OBKWHHcbZ0Izn1_nKM4xlpQ4i6ylg8v5iWXoRBaxQzrhqdWilbWXcxsTTG_rp7AyY180Dasl6clPgVhfeSCMxHqiY8jTKfWWx90gvHYqCKZjmDcWzV3nco6N_v4lg_60IyEnJCQN0jI1Qh2_zxz1mqMXHv3Tm_-vPM3VT7YfgRvewANl68e7dn1o72CzcPlp0W-mGdHz-Gu5tqPhrK-A-tkDXwBG-6i_lqdv2xmgoAvNw2s38ODQSc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWlXtgRYo6gItPsCptcg6D-8eqqrqsupqUYQElfYWHHssIVVZStJW_Wv9dczk0QAS3Dj0nMRK4s_zsL_5BmCfYgBv8txLpPSDExQrzTAw0qLzoVMuNlir6x_rNB0tFuOTFfjb1cIwrbKzibWhdkvLe-SH5LhVQr4oSg59S4s4mUw_Xf6Q3EGKT1q7dhoNROb45zelb-XH2YTm-kCp6dHZl6-y7TAgLUGvkt4mhsyzyiMXaQo9kF4PjTK5NpobXgeodRDYxCmvQ_KtGHufj51lSUvnYxZiIvP_hLxwzGtsrmVPL4lHTUPdUSgpBV20BTtN2d6QZYCZHBFwuxUZ3HaKfaR753C29nnTl__z33oFa22kLT43S2MdVrDYgBc39Bc3IT2rScOlMOK03VIRHBP_vEJxipWggF6kDU9ezAouTyEUiwlWNX-tEI3cu5iYimKBqnwN3x7lg7ZgtVgW-AaEcaH1VoeoRi4KMRkbZ5xXMUZDHeTxeADDboYz26qvcxOQ71mvG82oyAgVWY2KLBjA-3_PXDbaIw_evdtBIWvtUJn1OBjAhw5M_eX7R9t-eLQ9eEZ4yo5n6XwHnisuCamZ7LuwSpOBb-Gp_VVdlFfv6kUh4PyxcXUNSmVJzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Standard+Feature+Set+for+Network+Intrusion+Detection+System+Datasets&rft.jtitle=Mobile+networks+and+applications&rft.au=Sarhan+Mohanad&rft.au=Layeghy+Siamak&rft.au=Portmann+Marius&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=27&rft.issue=1&rft.spage=357&rft.epage=370&rft_id=info:doi/10.1007%2Fs11036-021-01843-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon |