Towards a Standard Feature Set for Network Intrusion Detection System Datasets

Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications Jg. 27; H. 1; S. 357 - 370
Hauptverfasser: Sarhan, Mohanad, Layeghy, Siamak, Portmann, Marius
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2022
Springer Nature B.V
Schlagworte:
ISSN:1383-469X, 1572-8153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available NIDS datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features. For our evaluation, we converted four widely used NIDS datasets (UNSW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018) into new variants with our proposed NetFlow based feature sets. Based on an Extra Tree classifier, we compared the classification performance of the NetFlow-based feature sets with the proprietary feature sets provided with the original datasets. While the smaller feature set cannot match the classification performance of the proprietary feature sets, the larger set with 43 NetFlow features, surprisingly achieves a consistently higher classification performance compared to the original feature set, which was tailored to each of the considered NIDS datasets. The proposed NetFlow-based NIDS feature set, together with four benchmark datasets, made available to the research community, allow a fair comparison of ML-based network traffic classifiers across different NIDS datasets. We believe that having a standard feature set is critical for allowing a more rigorous and thorough evaluation of ML-based NIDSs and that it can help bridge the gap between academic research and the practical deployment of such systems.
AbstractList Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available NIDS datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features. For our evaluation, we converted four widely used NIDS datasets (UNSW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018) into new variants with our proposed NetFlow based feature sets. Based on an Extra Tree classifier, we compared the classification performance of the NetFlow-based feature sets with the proprietary feature sets provided with the original datasets. While the smaller feature set cannot match the classification performance of the proprietary feature sets, the larger set with 43 NetFlow features, surprisingly achieves a consistently higher classification performance compared to the original feature set, which was tailored to each of the considered NIDS datasets. The proposed NetFlow-based NIDS feature set, together with four benchmark datasets, made available to the research community, allow a fair comparison of ML-based network traffic classifiers across different NIDS datasets. We believe that having a standard feature set is critical for allowing a more rigorous and thorough evaluation of ML-based NIDSs and that it can help bridge the gap between academic research and the practical deployment of such systems.
Author Sarhan, Mohanad
Layeghy, Siamak
Portmann, Marius
Author_xml – sequence: 1
  givenname: Mohanad
  surname: Sarhan
  fullname: Sarhan, Mohanad
  email: m.sarhan@uq.net.au
  organization: University of Queensland
– sequence: 2
  givenname: Siamak
  surname: Layeghy
  fullname: Layeghy, Siamak
  organization: University of Queensland
– sequence: 3
  givenname: Marius
  surname: Portmann
  fullname: Portmann, Marius
  organization: University of Queensland
BookMark eNp9kE1PwkAQhjcGEwH9A5428Vyd_W6PBkRJCB7AxNtmaacGhBZ3tyH8e4s1MfHAad7D-8xMngHpVXWFhNwyuGcA5iEwBkInwFkCLJUigQvSZ8rwJGVK9NosUpFInb1fkUEIGwBQKpV9Ml_WB-eLQB1dRFcVbaYTdLHxSBcYaVl7Osd4qP0nnVbRN2FdV3SMEfN4SotjiLijYxddwBiuyWXptgFvfueQvE2elqOXZPb6PB09zpJcsCwmZa5dKg1fyUIaxRiKgqPjbmWcYVIzQGMAcl3w0gijAFVZrrIiz7SGolSZGJK7bu_e118Nhmg3deOr9qTlWnLNpZS6baVdK_d1CB5Lm6-jO_0dvVtvLQN7smc7e7a1Z3_sWWhR_g_d-_XO-eN5SHRQaMvVB_q_r85Q3z5zg5I
CitedBy_id crossref_primary_10_1007_s10586_025_05194_3
crossref_primary_10_1007_s42979_023_02448_y
crossref_primary_10_1145_3701724
crossref_primary_10_1109_ACCESS_2022_3186026
crossref_primary_10_1016_j_jisa_2022_103248
crossref_primary_10_1007_s00521_023_09309_y
crossref_primary_10_3390_s23198153
crossref_primary_10_1109_ACCESS_2024_3445533
crossref_primary_10_3390_iot5030022
crossref_primary_10_1016_j_comnet_2025_111177
crossref_primary_10_1109_TIFS_2025_3541890
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1109_ACCESS_2025_3575705
crossref_primary_10_1007_s12083_024_01786_9
crossref_primary_10_1007_s10791_025_09708_w
crossref_primary_10_3390_sym15030568
crossref_primary_10_3390_make7030078
crossref_primary_10_1016_j_cose_2023_103176
crossref_primary_10_1016_j_cose_2025_104422
crossref_primary_10_1016_j_compeleceng_2024_109627
crossref_primary_10_1007_s11227_024_06409_x
crossref_primary_10_1016_j_comnet_2023_110010
crossref_primary_10_3390_s23052415
crossref_primary_10_32604_cmc_2024_057660
crossref_primary_10_1016_j_knosys_2022_110030
crossref_primary_10_1007_s10489_025_06422_4
crossref_primary_10_1016_j_cose_2025_104536
crossref_primary_10_1109_ACCESS_2025_3585445
crossref_primary_10_1109_TETC_2022_3178283
crossref_primary_10_1016_j_dsp_2025_105153
crossref_primary_10_1007_s44163_024_00120_9
crossref_primary_10_26599_BDMA_2022_9020032
crossref_primary_10_3390_e23111532
crossref_primary_10_1109_ACCESS_2025_3574672
crossref_primary_10_1007_s10207_023_00777_w
crossref_primary_10_3390_s22166164
crossref_primary_10_3390_electronics12040930
crossref_primary_10_1007_s10586_024_04888_4
crossref_primary_10_1007_s40860_024_00238_8
crossref_primary_10_3390_app15158466
crossref_primary_10_1016_j_iot_2023_100819
crossref_primary_10_1007_s10586_024_04404_8
crossref_primary_10_3390_jsan12050067
crossref_primary_10_1007_s11227_024_06471_5
crossref_primary_10_1631_FITEE_2400932
crossref_primary_10_2478_ijssis_2025_0017
crossref_primary_10_1109_ACCESS_2024_3472907
crossref_primary_10_1016_j_heliyon_2024_e28844
crossref_primary_10_1002_cpe_7197
crossref_primary_10_3390_rs15143611
crossref_primary_10_1007_s13369_024_09805_w
crossref_primary_10_1109_JIOT_2024_3408634
crossref_primary_10_1109_ACCESS_2024_3503497
crossref_primary_10_3390_s23239583
crossref_primary_10_1016_j_comcom_2025_108312
crossref_primary_10_1016_j_compeleceng_2023_108692
crossref_primary_10_1007_s42979_023_02242_w
crossref_primary_10_3390_s22155690
crossref_primary_10_7717_peerj_cs_2333
crossref_primary_10_3390_jcp5010003
crossref_primary_10_3390_electronics12041044
crossref_primary_10_1016_j_cose_2024_103820
crossref_primary_10_3390_s25010216
crossref_primary_10_1080_19393555_2024_2362813
crossref_primary_10_1016_j_cose_2025_104510
crossref_primary_10_1109_COMST_2023_3288942
crossref_primary_10_1016_j_jpdc_2024_104976
crossref_primary_10_55452_1998_6688_2024_21_3_48_57
crossref_primary_10_1186_s42400_024_00296_8
crossref_primary_10_3390_computers14070281
crossref_primary_10_1007_s10489_022_04039_5
crossref_primary_10_1007_s11227_023_05829_5
crossref_primary_10_1016_j_engappai_2025_111471
crossref_primary_10_1155_2022_4553502
crossref_primary_10_3390_s25123812
crossref_primary_10_1016_j_engappai_2025_110546
crossref_primary_10_1007_s12083_024_01720_z
crossref_primary_10_1016_j_aei_2025_103142
crossref_primary_10_1109_ACCESS_2024_3350197
crossref_primary_10_1007_s10791_025_09688_x
crossref_primary_10_1016_j_cose_2025_104462
crossref_primary_10_1109_TIFS_2025_3530702
crossref_primary_10_1109_ACCESS_2023_3296444
crossref_primary_10_3390_app14166995
crossref_primary_10_1109_TNSM_2022_3193099
crossref_primary_10_1109_ACCESS_2025_3575236
crossref_primary_10_3390_math11092048
crossref_primary_10_1109_ACCESS_2025_3564031
crossref_primary_10_3390_app15147915
crossref_primary_10_1038_s41598_025_08905_3
crossref_primary_10_1109_ACCESS_2025_3581354
crossref_primary_10_1109_ACCESS_2025_3589872
crossref_primary_10_1016_j_iot_2025_101536
crossref_primary_10_1007_s12083_025_01944_7
crossref_primary_10_3390_technologies13030102
crossref_primary_10_3390_fi16120482
crossref_primary_10_3390_s23167191
crossref_primary_10_1007_s10586_025_05215_1
crossref_primary_10_3390_computers13010025
crossref_primary_10_1016_j_eswa_2024_123439
crossref_primary_10_3390_make5030046
crossref_primary_10_3390_fi16120481
crossref_primary_10_1016_j_procs_2024_11_109
crossref_primary_10_1109_TIFS_2025_3602226
crossref_primary_10_1016_j_engappai_2025_110046
crossref_primary_10_1109_ACCESS_2023_3283567
crossref_primary_10_1007_s10586_024_05075_1
crossref_primary_10_1007_s11277_022_10100_w
crossref_primary_10_1007_s12243_022_00926_7
crossref_primary_10_3390_a16020075
crossref_primary_10_1016_j_jpdc_2024_105010
crossref_primary_10_3390_electronics14173483
crossref_primary_10_3390_a18020069
crossref_primary_10_1007_s10115_024_02068_9
crossref_primary_10_1007_s41870_024_02219_9
crossref_primary_10_1016_j_dib_2025_111487
crossref_primary_10_1109_ACCESS_2023_3238664
crossref_primary_10_1016_j_comcom_2025_108072
crossref_primary_10_1016_j_cose_2025_104562
crossref_primary_10_33187_jmsm_1484997
crossref_primary_10_1109_ACCESS_2023_3275789
crossref_primary_10_32604_cmc_2023_030831
crossref_primary_10_3390_ai6080168
crossref_primary_10_1016_j_engappai_2025_110851
crossref_primary_10_1007_s40860_025_00248_0
crossref_primary_10_3389_fdata_2025_1526480
crossref_primary_10_1016_j_micpro_2025_105172
crossref_primary_10_3390_electronics14183729
Cites_doi 10.1109/ICCCNT.2012.6396086
10.1007/978-3-030-72802-1_9
10.1016/j.future.2019.05.041
10.5220/0006639801080116
10.1016/j.cose.2011.12.012
10.1109/access.2019.2929487
10.1016/j.cose.2008.08.003
10.1109/ACCESS.2020.3022862
10.1109/IAdCC.2014.6779523
10.1016/j.cose.2019.06.005
10.1016/j.jnca.2012.12.020
10.1109/sp.2010.25
10.17487/rfc3954
10.1109/milcis.2015.7348942
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11036-021-01843-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8153
EndPage 370
ExternalDocumentID 10_1007_s11036_021_01843_0
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-fc6a8472b4d47511e3d2ea2ab7a714610e7700c6d2f73750e5ffb9dc9660df593
IEDL.DBID K7-
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716371500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-469X
IngestDate Wed Nov 12 05:01:13 EST 2025
Sat Nov 29 03:18:15 EST 2025
Tue Nov 18 22:24:59 EST 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NetFlow
Network intrusion detection system
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fc6a8472b4d47511e3d2ea2ab7a714610e7700c6d2f73750e5ffb9dc9660df593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2642624446
PQPubID 26070
PageCount 14
ParticipantIDs proquest_journals_2642624446
crossref_citationtrail_10_1007_s11036_021_01843_0
crossref_primary_10_1007_s11036_021_01843_0
springer_journals_10_1007_s11036_021_01843_0
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing
PublicationTitle Mobile networks and applications
PublicationTitleAbbrev Mobile Netw Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Springer, Bebis, Hadi Gunes (CR8) 2013; 36
CR2
CR4
CR3
CR6
Shiravi, Shiravi, Tavallaee, Ghorbani (CR17) 2012; 31
CR7
CR18
CR9
CR16
CR15
CR14
Alsaedi, Moustafa, Tari, Mahmood, Anwar (CR1) 2020; 8
CR13
CR11
CR10
Garcia-Teodoro, Diaz-Verdejo, Maciá-Fernández, Vázquez (CR5) 2009; 28
Ring, Wunderlich, Scheuring, Landes, Hotho (CR12) 2019; 86
1843_CR4
1843_CR7
1843_CR6
1843_CR3
1843_CR2
B Li (1843_CR8) 2013; 36
1843_CR10
1843_CR11
M Ring (1843_CR12) 2019; 86
1843_CR13
P Garcia-Teodoro (1843_CR5) 2009; 28
1843_CR14
1843_CR15
1843_CR16
1843_CR18
A Shiravi (1843_CR17) 2012; 31
A Alsaedi (1843_CR1) 2020; 8
1843_CR9
References_xml – ident: CR18
– volume: 36
  start-page: 567
  issue: 2
  year: 2013
  end-page: 581
  ident: CR8
  article-title: A survey of network flow applications
  publication-title: J Netw Comput Appl
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR16
– ident: CR13
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 86
  start-page: 147
  year: 2019
  end-page: 167
  ident: CR12
  article-title: A survey of network-based intrusion detection data sets
  publication-title: Comput Secur
– ident: CR6
– volume: 8
  start-page: 165130
  year: 2020
  end-page: 165150
  ident: CR1
  article-title: Ton_iot telemetry dataset: A new generation dataset of iot and iiot for data-driven intrusion detection systems
  publication-title: IEEE Access
– volume: 28
  start-page: 18
  issue: 1-2
  year: 2009
  end-page: 28
  ident: CR5
  article-title: Anomaly-based network intrusion detection: Techniques, systems and challenges
  publication-title: Comput Secur
– ident: CR7
– volume: 31
  start-page: 357
  issue: 3
  year: 2012
  end-page: 374
  ident: CR17
  article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection
  publication-title: Comput Secur
– ident: 1843_CR9
  doi: 10.1109/ICCCNT.2012.6396086
– ident: 1843_CR3
– ident: 1843_CR15
  doi: 10.1007/978-3-030-72802-1_9
– ident: 1843_CR7
  doi: 10.1016/j.future.2019.05.041
– ident: 1843_CR16
  doi: 10.5220/0006639801080116
– volume: 31
  start-page: 357
  issue: 3
  year: 2012
  ident: 1843_CR17
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2011.12.012
– ident: 1843_CR2
  doi: 10.1109/access.2019.2929487
– ident: 1843_CR14
– volume: 28
  start-page: 18
  issue: 1-2
  year: 2009
  ident: 1843_CR5
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2008.08.003
– volume: 8
  start-page: 165130
  year: 2020
  ident: 1843_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022862
– ident: 1843_CR11
– ident: 1843_CR13
  doi: 10.1109/IAdCC.2014.6779523
– volume: 86
  start-page: 147
  year: 2019
  ident: 1843_CR12
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.06.005
– volume: 36
  start-page: 567
  issue: 2
  year: 2013
  ident: 1843_CR8
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.12.020
– ident: 1843_CR18
  doi: 10.1109/sp.2010.25
– ident: 1843_CR6
– ident: 1843_CR4
  doi: 10.17487/rfc3954
– ident: 1843_CR10
  doi: 10.1109/milcis.2015.7348942
SSID ssj0005584
Score 2.6824205
Snippet Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 357
SubjectTerms Classification
Classifiers
Communications Engineering
Communications traffic
Computer Communication Networks
Computer networks
Cybersecurity
Datasets
Electrical Engineering
Engineering
Intrusion detection systems
IT in Business
Machine learning
Networks
Proprietary
SummonAdditionalLinks – databaseName: Springer LINK Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2yetCD3-LqKjl400CbfqQ9iqsoSBF3lb2VNJmAIFW21d_vJG2tigp6bhrKTJJ507x5Q8gRYgAji8IwwPTDJiiKSd-TTIE2geY6kuDU9a9FliWzWXrTFoVVHdu9u5J0J3Vf7OZb8VxLKfBskxKGifoihrvEbsfbyX1P7IiSppVtEjBM_mZtqcz3c3wORz3G_HIt6qLNxdr_vnOdrLbokp42y2GDLEC5SVY-aA5ukWzqiLIVlXTS_kagFge-zIFOoKYIYmnWcMPpVWlLMtBzdAy142yVtJE4p2NZY_yrq21yd3E-PbtkbVMFpnC31cyoWGJE4kWoQ4FoC9AjILkshBS2x7cHQnieijU3IkA4AZExRaqVVfHUJkqDHTIon0rYJVTqQBklAuCJDgOIU6mlNjyC0BdeEaVD4ne2zVWrOG4bXzzmvVaytVWOtsqdrXJvSI7f33lu9DZ-HT3qXJa3e6_KEeLxGFFLGA_JSeei_vHPs-39bfg-Wea2FsJRuEdkgB6BA7KkXuuHan7o1uQbR93acg
  priority: 102
  providerName: Springer Nature
Title Towards a Standard Feature Set for Network Intrusion Detection System Datasets
URI https://link.springer.com/article/10.1007/s11036-021-01843-0
https://www.proquest.com/docview/2642624446
Volume 27
WOSCitedRecordID wos000716371500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005584
  issn: 1383-469X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7aOg7sMDZgWrdS-cBtWDjODzcnNNZOm4CoagsULpHjH9KkKeuajL-f58QlgLRddvElPxTls_2e7e99H8BbzAGsLApLDS4_3AJFURkwSZXRNtRcx9I06vqfRZaNlst06jfcKk-r3MyJzUStb5XbI3-PgZsnGIui5MPqjjrXKHe66i00tmEn4Dxw_fyToB3FIx61prajkOIycOmLZtrSucBJ8TqCAnOWJ5T9G5i6bPO_A9Im7ly8eOoX78OezzjJWdtFDmDLlC9h9y8dwleQLRrybEUkmfutBeJyw_u1IXNTE0xsSdbyxclV6co0EE0yNnXD4ypJK3tOxrLGmFhXr-HrxWRxfkm90QJVOAJralUiMUrxItKRwAzMIEpGclkIKZzvNzNCMKYSza0IMcUwsbVFqpVT9tQ2TsND6JW3pTkCInWorBKh4SMdhSZJpZba8thEgWBFnPYh2PzlXHkVcmeGcZN3-skOmRyRyRtkctaH0z_PrFoNjkfvHmzgyP14rPIOiz682wDaXX74bcePv-0EnnNXD9HQuAfQQwTMG3imftXX1XoI2-L7jyHsfJxk09mw6ZvYfmHn2E7jn9jO5t9-A1ML6e0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpVLhwKNQsVDABzgVC6_z8O4BIdRt1VWXCKlbaW_BsccSEkpLE1rxp_iNzORBAKm99dBzEivJfJ4Z2998A_CacoBgiyJIpOUHL1CctGNlpUMfIq99YrFR11-YLJusVtPPa_Crr4VhWmXvExtH7U8d75G_o8CtU4pFcfrh7LvkrlF8utq30GhhcYQ_L2nJVr2fz8i-b7Q-2F_uHcquq4B0BLdaBpdacsm6iH1sKN1AeiW02hbGGm5yrdAYpVzqdTARxVNMQiim3rGMpQ8Jiy-Ry78TxzQdmCqo9gZKSTJpm-hOIknLzlVXpNOW6o1Z-pcJEYpbrEj1byAcstv_DmSbOHfw4Lb9oYdwv8uoxcd2CjyCNSy34N5fOouPIVs25OBKWHHcbZ0Izn1_nKM4xlpQ4i6ylg8v5iWXoRBaxQzrhqdWilbWXcxsTTG_rp7AyY180Dasl6clPgVhfeSCMxHqiY8jTKfWWx90gvHYqCKZjmDcWzV3nco6N_v4lg_60IyEnJCQN0jI1Qh2_zxz1mqMXHv3Tm_-vPM3VT7YfgRvewANl68e7dn1o72CzcPlp0W-mGdHz-Gu5tqPhrK-A-tkDXwBG-6i_lqdv2xmgoAvNw2s38ODQSc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWlXtgRYo6gItPsCptcg6D-8eqqrqsupqUYQElfYWHHssIVVZStJW_Wv9dczk0QAS3Dj0nMRK4s_zsL_5BmCfYgBv8txLpPSDExQrzTAw0qLzoVMuNlir6x_rNB0tFuOTFfjb1cIwrbKzibWhdkvLe-SH5LhVQr4oSg59S4s4mUw_Xf6Q3EGKT1q7dhoNROb45zelb-XH2YTm-kCp6dHZl6-y7TAgLUGvkt4mhsyzyiMXaQo9kF4PjTK5NpobXgeodRDYxCmvQ_KtGHufj51lSUvnYxZiIvP_hLxwzGtsrmVPL4lHTUPdUSgpBV20BTtN2d6QZYCZHBFwuxUZ3HaKfaR753C29nnTl__z33oFa22kLT43S2MdVrDYgBc39Bc3IT2rScOlMOK03VIRHBP_vEJxipWggF6kDU9ezAouTyEUiwlWNX-tEI3cu5iYimKBqnwN3x7lg7ZgtVgW-AaEcaH1VoeoRi4KMRkbZ5xXMUZDHeTxeADDboYz26qvcxOQ71mvG82oyAgVWY2KLBjA-3_PXDbaIw_evdtBIWvtUJn1OBjAhw5M_eX7R9t-eLQ9eEZ4yo5n6XwHnisuCamZ7LuwSpOBb-Gp_VVdlFfv6kUh4PyxcXUNSmVJzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Standard+Feature+Set+for+Network+Intrusion+Detection+System+Datasets&rft.jtitle=Mobile+networks+and+applications&rft.au=Sarhan+Mohanad&rft.au=Layeghy+Siamak&rft.au=Portmann+Marius&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=27&rft.issue=1&rft.spage=357&rft.epage=370&rft_id=info:doi/10.1007%2Fs11036-021-01843-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon