DCAVN: Cervical cancer prediction and classification using deep convolutional and variational autoencoder network

Early detection, early diagnosis and classification of the cancer type facilitates faster disease management of patients. Cervical cancer is fourth most pervasive cancer type which affects life of many people worldwide. The intent of this study is to automate cancer diagnosis and classification thro...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 80; no. 20; pp. 30399 - 30415
Main Authors: Khamparia, Aditya, Gupta, Deepak, Rodrigues, Joel J. P. C., de Albuquerque, Victor Hugo C.
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2021
Springer Nature B.V
Subjects:
ISSN:1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Early detection, early diagnosis and classification of the cancer type facilitates faster disease management of patients. Cervical cancer is fourth most pervasive cancer type which affects life of many people worldwide. The intent of this study is to automate cancer diagnosis and classification through deep learning techniques to ensure patients health condition progress timely. For this research, Herlev dataset was utilized which contains 917 benchmarked pap smear cells of cervical with 26 attributes and two target variables for training and testing phase. We have adopted combination of convolutional network with variational autoencoder for data classification. The usage of variational autoencoder reduces the dimensionality of data for further processing with involvement of softmax layer for training. The results have been obtained over 917 cancerous image type pap smear cells, where 70% (642) allocated for training and remaining 30% (275) considered for test data set. The proposed architecture achieved variational accuracy of 99.2% with 2*2 filter size and 99.4% with 3*3 filter size using different epochs. The proposed hybrid variational convolutional autoencoder approach applied first time for cervical cancer diagnosis and performed better than traditional machine learning methods.
AbstractList Early detection, early diagnosis and classification of the cancer type facilitates faster disease management of patients. Cervical cancer is fourth most pervasive cancer type which affects life of many people worldwide. The intent of this study is to automate cancer diagnosis and classification through deep learning techniques to ensure patients health condition progress timely. For this research, Herlev dataset was utilized which contains 917 benchmarked pap smear cells of cervical with 26 attributes and two target variables for training and testing phase. We have adopted combination of convolutional network with variational autoencoder for data classification. The usage of variational autoencoder reduces the dimensionality of data for further processing with involvement of softmax layer for training. The results have been obtained over 917 cancerous image type pap smear cells, where 70% (642) allocated for training and remaining 30% (275) considered for test data set. The proposed architecture achieved variational accuracy of 99.2% with 2*2 filter size and 99.4% with 3*3 filter size using different epochs. The proposed hybrid variational convolutional autoencoder approach applied first time for cervical cancer diagnosis and performed better than traditional machine learning methods.
Author de Albuquerque, Victor Hugo C.
Khamparia, Aditya
Gupta, Deepak
Rodrigues, Joel J. P. C.
Author_xml – sequence: 1
  givenname: Aditya
  surname: Khamparia
  fullname: Khamparia, Aditya
  email: aditya.khamparia88@gmail.com
  organization: School of Computer Science and Engineering, Lovely Professional University
– sequence: 2
  givenname: Deepak
  surname: Gupta
  fullname: Gupta, Deepak
  organization: Maharaja Agrasen Institute of Technology
– sequence: 3
  givenname: Joel J. P. C.
  surname: Rodrigues
  fullname: Rodrigues, Joel J. P. C.
  organization: Federal University of Piaui, Instituto de Telecommunicações
– sequence: 4
  givenname: Victor Hugo C.
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  organization: Graduate Program in Applied Informatics, University of Fortaleza
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDpgO3GdsKvKU6pgA2wtZzKpXILd2kkr_p6kASGxYDUP3TOPOyEj6ywScs7oJaNUXgXGaMpjymlM8xmV8f6IjJmQSSwlZ6MuTzIaS0HZCZmEsKaUzQRPx2R7s5i_PV1HC_Q7A7qOQFtAH208lgYa42ykbRlBrUMwVac4tNpg7CoqETcROLtzddu3O7rX7rQ3-qduG4cWXNmNtNjsnX8_JceVrgOefccpeb27fVk8xMvn-8fFfBlDwvImrooKcxSgZ5ynQHmmuRYgaaHTLEOd5MiLUsAMCwDK0oRVXJa5KPMKUiG4SKbkYpi78W7bYmjU2rW-OyooLiSXCeNZr-KDCrwLwWOlNt58aP-pGFW9tWqwVnXWqoO1at9B2R8ITHN4ufHa1P-jyYCGbo9dof-96h_qC5AIkwI
CitedBy_id crossref_primary_10_3233_JIFS_220511
crossref_primary_10_1007_s00521_024_09706_x
crossref_primary_10_1111_exsy_12701
crossref_primary_10_3233_JIFS_220296
crossref_primary_10_3389_fmedt_2025_1531817
crossref_primary_10_1109_ACCESS_2024_3469869
crossref_primary_10_3233_JIFS_212873
crossref_primary_10_1016_j_bspc_2025_107620
crossref_primary_10_1007_s10462_024_10872_6
crossref_primary_10_1002_widm_1550
crossref_primary_10_32604_cmc_2024_047874
crossref_primary_10_1007_s11517_022_02745_3
crossref_primary_10_1007_s10462_023_10588_z
crossref_primary_10_1007_s11042_024_18608_y
crossref_primary_10_1177_20552076241295440
crossref_primary_10_1109_ACCESS_2025_3603458
crossref_primary_10_1007_s11042_024_20016_1
crossref_primary_10_1007_s13198_024_02487_5
crossref_primary_10_1016_j_iswa_2022_200133
crossref_primary_10_1016_j_micron_2023_103520
crossref_primary_10_32604_or_2022_025897
crossref_primary_10_32604_cmc_2023_032794
crossref_primary_10_1109_TAI_2025_3551669
crossref_primary_10_1038_s41598_024_80260_1
crossref_primary_10_1111_jcmm_18144
crossref_primary_10_1007_s42979_024_03040_8
crossref_primary_10_1109_JIOT_2021_3114373
crossref_primary_10_1007_s10115_024_02169_5
crossref_primary_10_1007_s10278_023_00911_z
crossref_primary_10_1007_s11042_023_17499_9
crossref_primary_10_1007_s00521_025_11126_4
crossref_primary_10_1016_j_neucom_2024_128630
crossref_primary_10_3389_fpubh_2021_788376
crossref_primary_10_1177_09287329251330081
crossref_primary_10_32604_cmes_2021_016728
Cites_doi 10.1016/j.procs.2017.09.044
10.1016/j.eswa.2003.12.005
10.1016/j.eswa.2018.08.050
10.31557/APJCP.2018.19.12.3571
10.1016/j.eswa.2018.03.053
10.1109/ACCESS.2017.2763984
10.1007/s11517-013-1108-8
10.1002/sam.11261
10.1016/S1098-3597(00)90019-X
10.1109/TNN.2011.2130540
10.3390/rs10010110
10.1109/JBHI.2017.2705583
10.1016/j.mefs.2016.09.002
10.4249/scholarpedia.1717
10.23919/FRUCT.2017.8071332
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-09607-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30415
ExternalDocumentID 10_1007_s11042_020_09607_w
GrantInformation_xml – fundername: Instituto Nacional de Ciência e Tecnologia de Informação Quântica
  grantid: CNPq, Grant# 304315/2017-6 and #430274/2018-1
  funderid: http://dx.doi.org/10.13039/501100010755
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-fbfe9e5ca6224c028a2a5c70ba488ea39e2bd5c6ebcc01431f27d95d9fc455253
IEDL.DBID M0C
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000570032900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 02:54:57 EST 2025
Sat Nov 29 06:20:06 EST 2025
Tue Nov 18 22:24:17 EST 2025
Fri Feb 21 02:48:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Deep learning
Variational
Convolution
Autoencoder
Cervical
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fbfe9e5ca6224c028a2a5c70ba488ea39e2bd5c6ebcc01431f27d95d9fc455253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2572731285
PQPubID 54626
PageCount 17
ParticipantIDs proquest_journals_2572731285
crossref_primary_10_1007_s11042_020_09607_w
crossref_citationtrail_10_1007_s11042_020_09607_w
springer_journals_10_1007_s11042_020_09607_w
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Gou, Wang, Li, Jiao (CR3) 2018; 10
Shao, Zhang, Wang, Deng (CR15) 2011; 22
CR6
Zhang, Lu, Nogues, Summers, Liu, Yao, Deeppap (CR20) 2017; 21
Ho, Jee, Lee, Park (CR8) 2004; 27
CR9
Ferlay, Soerjomataram, Ervik, Forman, Bray, Dixit (CR5) 2012
CR13
Wu, Zhou (CR18) 2017; 5
Kusy, Obrzut, Kluska (CR12) 2013; 51
Almubarak, Stanley, Long, Antani, Thoma, Zuna, Frazier (CR2) 2017; 114
CR11
CR10
Richhariya, Tanveer (CR14) 2018; 15
Elayaraja, Suganthi (CR4) 2018; 19
Goodman (CR7) 2000; 3
Verma, Verma, Vashist, Attri, Singhal (CR17) 2017; 22
Adem, Kilicarslan, Cömert (CR1) 2019; 115
Yamal, Guillaud, Atkinson, Follen, MacAulay, Cantor, Cox (CR19) 2015; 8
Sun, Li, Cao, Lang (CR16) 2017; 13
9607_CR9
YH Shao (9607_CR15) 2011; 22
W Chen (9607_CR3) 2018; 10
9607_CR6
B Richhariya (9607_CR14) 2018; 15
J Ferlay (9607_CR5) 2012
A Verma (9607_CR17) 2017; 22
W Wu (9607_CR18) 2017; 5
P Elayaraja (9607_CR4) 2018; 19
SH Ho (9607_CR8) 2004; 27
HA Almubarak (9607_CR2) 2017; 114
9607_CR13
G Sun (9607_CR16) 2017; 13
L Zhang (9607_CR20) 2017; 21
9607_CR10
9607_CR11
M Kusy (9607_CR12) 2013; 51
K Adem (9607_CR1) 2019; 115
A Goodman (9607_CR7) 2000; 3
JM Yamal (9607_CR19) 2015; 8
References_xml – volume: 114
  start-page: 281
  year: 2017
  end-page: 287
  ident: CR2
  article-title: Convolutional neural network based localized classification of uterine cervical cancer digital histology images
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.09.044
– volume: 27
  start-page: 97
  issue: 1
  year: 2004
  end-page: 105
  ident: CR8
  article-title: Analysis on risk factors for cervical cancer using induction technique
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2003.12.005
– volume: 13
  start-page: 446
  year: 2017
  end-page: 457
  ident: CR16
  article-title: Cervical cancer diagnosis based on random forest
  publication-title: Int J Performabil Eng
– volume: 115
  start-page: 557
  year: 2019
  end-page: 564
  ident: CR1
  article-title: Classification and diagnosis of cervical cancer with softmax classification with stacked autoencoder
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.050
– volume: 19
  start-page: 3571
  issue: 12
  year: 2018
  ident: CR4
  article-title: Automatic approach for cervical cancer detection and segmentation using neural network classifier
  publication-title: Asian Pac J Cancer Prev: APJCP
  doi: 10.31557/APJCP.2018.19.12.3571
– ident: CR13
– ident: CR10
– ident: CR11
– volume: 15
  start-page: 169
  year: 2018
  end-page: 182
  ident: CR14
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.053
– volume: 5
  start-page: 25189
  year: 2017
  end-page: 25195
  ident: CR18
  article-title: Data-driven diagnosis of cervical cancer with support vector machine-based approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2763984
– ident: CR9
– volume: 51
  start-page: 1357
  issue: 12
  year: 2013
  end-page: 1365
  ident: CR12
  article-title: Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1108-8
– volume: 8
  start-page: 65
  issue: 2
  year: 2015
  end-page: 74
  ident: CR19
  article-title: Prediction using hierarchical data: Applications for automated detection of cervical cancer
  publication-title: Stat Anal Data Mining: ASA Data Sci J
  doi: 10.1002/sam.11261
– year: 2012
  ident: CR5
  publication-title: GLOBOCAN 2012, Cancer Incidence and Mortality Worldwide in 2012
– ident: CR6
– volume: 3
  start-page: 25
  issue: 1
  year: 2000
  end-page: 35
  ident: CR7
  article-title: Abnormal genital tract bleeding
  publication-title: Clin Cornerstone
  doi: 10.1016/S1098-3597(00)90019-X
– volume: 22
  start-page: 962
  issue: 6
  year: 2011
  end-page: 8
  ident: CR15
  article-title: Improvements on twin support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2130540
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  end-page: 17
  ident: CR3
  article-title: Classification of PolSAR images using multilayer autoencoders and a self-paced learning approach
  publication-title: Remote Sens
  doi: 10.3390/rs10010110
– volume: 21
  start-page: 1633
  issue: 6
  year: 2017
  end-page: 1643
  ident: CR20
  article-title: Deep convolutional networks for cervical cell classification
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2705583
– volume: 22
  start-page: 39
  issue: 1
  year: 2017
  end-page: 42
  ident: CR17
  article-title: A study on cervical cancer screening in symptomatic women using Pap smear in a tertiary care hospital in rural area of Himachal Pradesh, India
  publication-title: Middle East Fertil Soc J
  doi: 10.1016/j.mefs.2016.09.002
– volume: 21
  start-page: 1633
  issue: 6
  year: 2017
  ident: 9607_CR20
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2705583
– volume: 15
  start-page: 169
  year: 2018
  ident: 9607_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.053
– volume-title: GLOBOCAN 2012, Cancer Incidence and Mortality Worldwide in 2012
  year: 2012
  ident: 9607_CR5
– volume: 8
  start-page: 65
  issue: 2
  year: 2015
  ident: 9607_CR19
  publication-title: Stat Anal Data Mining: ASA Data Sci J
  doi: 10.1002/sam.11261
– volume: 3
  start-page: 25
  issue: 1
  year: 2000
  ident: 9607_CR7
  publication-title: Clin Cornerstone
  doi: 10.1016/S1098-3597(00)90019-X
– volume: 22
  start-page: 962
  issue: 6
  year: 2011
  ident: 9607_CR15
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2130540
– ident: 9607_CR6
  doi: 10.4249/scholarpedia.1717
– volume: 5
  start-page: 25189
  year: 2017
  ident: 9607_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2763984
– volume: 22
  start-page: 39
  issue: 1
  year: 2017
  ident: 9607_CR17
  publication-title: Middle East Fertil Soc J
  doi: 10.1016/j.mefs.2016.09.002
– volume: 51
  start-page: 1357
  issue: 12
  year: 2013
  ident: 9607_CR12
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1108-8
– volume: 13
  start-page: 446
  year: 2017
  ident: 9607_CR16
  publication-title: Int J Performabil Eng
– volume: 27
  start-page: 97
  issue: 1
  year: 2004
  ident: 9607_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2003.12.005
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 9607_CR3
  publication-title: Remote Sens
  doi: 10.3390/rs10010110
– ident: 9607_CR9
– volume: 114
  start-page: 281
  year: 2017
  ident: 9607_CR2
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.09.044
– volume: 19
  start-page: 3571
  issue: 12
  year: 2018
  ident: 9607_CR4
  publication-title: Asian Pac J Cancer Prev: APJCP
  doi: 10.31557/APJCP.2018.19.12.3571
– ident: 9607_CR11
– volume: 115
  start-page: 557
  year: 2019
  ident: 9607_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.050
– ident: 9607_CR10
– ident: 9607_CR13
  doi: 10.23919/FRUCT.2017.8071332
SSID ssj0016524
Score 2.4416835
Snippet Early detection, early diagnosis and classification of the cancer type facilitates faster disease management of patients. Cervical cancer is fourth most...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30399
SubjectTerms Cancer
Cervical cancer
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Diagnosis
Machine learning
Medical diagnosis
Multimedia Information Systems
Pap smear
Special Purpose and Application-Based Systems
Training
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgY1VcX-TgTQN9pQ9vsioeZBEfy95KmiYiSHftVv37znRTq6KCHtsmoWQmM1-Yb2YADjIndzNHa54pFfPAGMllIB0e48tIK-OHdQW-wWXU78fDYXJlk8ImDdu9CUnWlrpNdnMplYSuOwS7I_46C_Po7mJq2HB9M3iPHYTCtrKNHY7-0LWpMt-v8dkdtRjzS1i09jbnK__7z1VYtuiSnUzVYQ1mdNGBlaZzA7MHuQNLH8oQrsPTae9k0D9mvdpu4HxFqlCycUlRHJIck0XOFAFtYhbVwmTEmL9nudZjRtR1q8I4m8a-4BVcNs_P1YjKZea4ZDFlnW_A3fnZbe-C21YMXOEZrbjJjE60UDJEl68Qk0hPChU5mUQDoKWfaC_LhQo1ipwqBrrGi_JE5IlRgRCe8DdhrhgVeguYCbLYjfzIkUkWBDpIYpEHiPoiIz0_1KoLbiORVNk65dQu4zFtKyzTDqe4w2m9w-lrFw7f54ynVTp-Hb3bCDq1J3aSoulCJIfeWnThqBFs-_nn1bb_NnwHFj2ixdQcwl2Yq8pnvQcL6qV6mJT7tSa_ARgS8FE
  priority: 102
  providerName: Springer Nature
Title DCAVN: Cervical cancer prediction and classification using deep convolutional and variational autoencoder network
URI https://link.springer.com/article/10.1007/s11042-020-09607-w
https://www.proquest.com/docview/2572731285
Volume 80
WOSCitedRecordID wos000570032900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx4EeoFCqLtCVD9xaq3k5TrggWECVgGUF7Zb2Ejl-VEgo-wT-PjNZhy1I5dKLJSe2Fekbz0w8n2cAdsvAhGVgLS-1znjinOIqUQHP8KG02sVpnYGvfya73ez6Ou_5A7eJp1U2OrFW1Gag6Yz8K4oWWlrUpmJ_OOJUNYqiq76ExgIskWdDlL7zoPMURUiFL2qbBRwtY-gvzcyuzoV0MYV-nsiJl_zhuWGae5svAqS13TlZ-98vfger3uNkBzMRWYc3ttqAtaaaA_ObewPe_pWa8D2MjjoH_e4e69S6BOdrEo8xG44pskNoMlUZpsn5JrZRDTAjFv0fZqwdMqKze7HG2TT2Hn_LVdO_mw4ohabBJasZE30Tfpwcf-984748A9e4b6fclc7mVmiVohug0U9RkRJaBqVCpWBVnNuoNEKnFsWAsgiGLpImFyZ3OhEiEvEHWKwGlf0IzCVlFspYBiovk8QmeSZMgp6gdCqKU6tbEDbYFNrnLqcSGrfFPOsy4VkgnkWNZ_HQgs9Pc4azzB2vjt5pQCz8Lp4UcwRb8KURg_nrf6-29fpq27ASETWm5hHuwOJ0fGc_wbK-n95Mxm1YkD9_tWHp8Ljbu8TeqeTtWq6pjS6w7Ynf2F5e9R8BRpkACg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4QMFEOIKhxEaQPetIO8-ieniEhhCwSyK4bD0i4DT39MCRmdpld2Pin_I1WzYNVE7lx8Dgz3Z1Jz1dVXVOPD-BdEdiwCJzjhTEpF95rroUOeIo3lTM-TuoOfBdDNRqll5fZlyX42dXCUFplpxNrRW3Hhv6R7yG00NKiNpWHkxtOrFEUXe0oNBpYDNyPObps04OzY_y-76Po5NN5_5S3rALcINxm3BfeZU4anaD1MmhedaSlUUGhEctOx5mLCitN4vDtqfld6CNlM2kzb4SUEbFEoMpfEXGqSK4Git9HLRLZkuimAUdLHLZFOk2pXkiFMOSskdOg-PxPQ7g43f4VkK3t3Mn6_7ZDz2GtPVGzo0YENmDJlZuw3rFVsFZ5bcLqb60XX8DNcf_oYrTP-rWuxPmG4F-xSUWRK0Ir06VlhpwLyqaqAcyoSuAbs85NGKXrt2KLs2nsna6udXd9OxtTi1CLS5ZNpv1L-Poo2_AKlstx6V4D86JIQxWrQGeFEE5kqbQCT7rK6yhOnOlB2GEhN21vdqII-Z4vukoTfnLET17jJ5_34MP9nEnTmeTB0dsdaPJWS03zBWJ68LGD3eLxv1fbeni1XXh6ev55mA_PRoM38CyiNKA6Z3IblmfVrduBJ-Zudj2t3tbyw-DqseH4C51aWD8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB0hiqpyKJS2aoDSPbSndoXteL02EqpQQlQEinJoEerFXe9HhVQ5wQlE_DV-HTP2mrRI5caBo-3dlbx-M7PjeTMD8LEITFgE1vJC65THzimuYhXwFG9Kq103qSvwnZ7I4TA9O8tGS3DT5sIQrbLVibWiNmNN_8h3EVpoaVGbil3naRGj_uDr5IJTBymKtLbtNBqIHNvrObpv0_2jPn7rT1E0OPze-8Z9hwGuEXoz7gpnMyu0StCSaTS1KlJCy6BQiGurupmNCiN0YvFNqBBe6CJpMmEyp2MhIuoYger_mUQfk-iEI_HzLoKRCN9QNw04WuXQJ-w0aXshJcWQ40YOhOTzf43i4qR7Lzhb27zB2lPerXV46U_a7KARjVewZMsNWGu7WDCv1DZg9a-SjK_hot87OB3usV6tQ3G-JrGo2KSiiBahmKnSME1OB7GsamAzyh74zYy1E0Y0fi_OOJvGXqnqXLXXl7MxlQ41uGTZMPDfwI9H2Ya3sFyOS_sOmIuLNJRdGaisiGMbZ6kwMZ6ApVNRN7G6A2GLi1z7mu3UOuRPvqg2TVjKEUt5jaV83oHPd3MmTcWSB0dvtwDKvfaa5gv0dOBLC8HF4_-vtvnwah_gOaIwPzkaHm_Bi4jYQTWVchuWZ9WlfQ8r-mp2Pq12alFi8Oux0XgLAFdhYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCAVN%3A+Cervical+cancer+prediction+and+classification+using+deep+convolutional+and+variational+autoencoder+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Khamparia%2C+Aditya&rft.au=Gupta%2C+Deepak&rft.au=Rodrigues%2C+Joel+J.+P.+C.&rft.au=de+Albuquerque%2C+Victor+Hugo+C.&rft.date=2021-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=20&rft.spage=30399&rft.epage=30415&rft_id=info:doi/10.1007%2Fs11042-020-09607-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09607_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon