Quantum Machine Learning for Computational Methods in Engineering: A Systematic Review
Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Th...
Uloženo v:
| Vydáno v: | Archives of computational methods in engineering Ročník 31; číslo 3; s. 1555 - 1577 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.04.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1134-3060, 1886-1784 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Therefore, a highly essential exploration is needed to extract scientific breakthrough paths. The proposed work supports the concept by providing a scientometric analysis of QML scientific literature for the period 2003–2023, gathered from the Web of Science database. The study explores the powerful machine learning techniques in the quantum realm. The scientometric implication of the article provides deep insights into the publication and citation pattern, geographical distribution analysis, document co-citation, and keyword co-occurrence network analysis. The research findings highlight the predominant use of algorithms such as quantum support vector machines, quantum neural networks, and Q-learning. Notably active research hotspots in this field include drug design and discovery, quantum control, optimization, error-correction, and quantum state tomography. Additionally, collaborative efforts are evident in the domains of quantum unsupervised and reinforcement machine learning. The overall inference of QML literature portrays insightful recommendations and research directions for the academic community. |
|---|---|
| AbstractList | Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Therefore, a highly essential exploration is needed to extract scientific breakthrough paths. The proposed work supports the concept by providing a scientometric analysis of QML scientific literature for the period 2003–2023, gathered from the Web of Science database. The study explores the powerful machine learning techniques in the quantum realm. The scientometric implication of the article provides deep insights into the publication and citation pattern, geographical distribution analysis, document co-citation, and keyword co-occurrence network analysis. The research findings highlight the predominant use of algorithms such as quantum support vector machines, quantum neural networks, and Q-learning. Notably active research hotspots in this field include drug design and discovery, quantum control, optimization, error-correction, and quantum state tomography. Additionally, collaborative efforts are evident in the domains of quantum unsupervised and reinforcement machine learning. The overall inference of QML literature portrays insightful recommendations and research directions for the academic community. |
| Author | Sood, Sandeep Kumar Agrewal, Monika |
| Author_xml | – sequence: 1 givenname: Sandeep Kumar surname: Sood fullname: Sood, Sandeep Kumar organization: Department of Computer Applications, National Institute of Technology Kurukshetra – sequence: 2 givenname: Monika orcidid: 0000-0001-9310-8288 surname: Agrewal fullname: Agrewal, Monika email: monikaagrewal@gmail.com organization: Department of Computer Applications, National Institute of Technology Kurukshetra |
| BookMark | eNp9kF1rwyAUQGV0sLbbH9iTsOdsGlM1eyul-4CWsc9XMUbblEYzTVb672eXwWAPffIK51wuZwQG1lkNwCVG1xghdhMw5gQnKCVJ_Kcs2Z2AIeacJpjxbBBnTLKEIIrOwCiEDUKTLM_TIfh47qRtuxoupVpXVsOFlt5WdgWN83Dm6qZrZVs5K7dwqdu1KwOsLJzbVYS1j-AtnMLXfWh1HTkFX_RXpXfn4NTIbdAXv-8YvN_N32YPyeLp_nE2XSSK4LxNTJFlhWIqQ1rKktE81RMVZyNlTinNmMGyRIyUvGBlaahkGhNpuCaGFRkxZAyu-r2Nd5-dDq3YuM7HY4Mg6YRSnuaIRirtKeVdCF4b0fiqln4vMBKHfqLvJ2I_8dNP7KLE_0mq6lO0Xlbb4yrp1dAcCmn_d9UR6xvf8Yju |
| CitedBy_id | crossref_primary_10_1007_s12076_024_00374_y crossref_primary_10_1007_s10515_025_00493_w crossref_primary_10_1109_TSMC_2024_3428707 crossref_primary_10_1049_qtc2_12102 crossref_primary_10_1109_JIOT_2025_3575476 crossref_primary_10_1007_s11081_024_09934_z crossref_primary_10_1007_s11831_024_10183_7 crossref_primary_10_1007_s41060_025_00872_2 crossref_primary_10_1016_j_iot_2025_101652 crossref_primary_10_1109_JSEN_2025_3529135 crossref_primary_10_1016_j_engappai_2024_109258 crossref_primary_10_3390_math13060958 crossref_primary_10_1007_s11831_024_10079_6 |
| Cites_doi | 10.1088/2632-2153/abffe7 10.1021/je049732n 10.1103/PhysRevA.101.032308 10.1016/j.eswa.2022.116512 10.1016/j.neucom.2023.01.049 10.1016/j.physa.2022.127936 10.1016/j.chempr.2020.07.008 10.1103/PhysRevA.102.032420 10.1109/ACCESS.2020.3010470 10.1080/23746149.2023.2165452 10.1103/PhysRevB.97.205110 10.1007/s12652-020-02494-x 10.1080/10798587.2012.10643228 10.1088/2058-9565/ab04fc 10.1109/TEM.2021.3134128 10.1103/PhysRevX.8.031084 10.1017/S0263574705002596 10.1103/PhysRevLett.108.058301 10.1039/CS9952400279 10.1007/s11831-023-09973-2 10.1088/1367-2630/18/2/023023 10.1016/j.micpro.2019.102929 10.1080/00107514.2014.964942 10.1016/j.compeleceng.2022.107948 10.1103/PhysRevA.94.022308 10.1038/s41534-019-0201-8 10.1080/0194262X.2020.1776193 10.1109/TEM.2023.3284689 10.1007/s11831-021-09599-2 10.1002/qua.27148 10.1038/s41567-019-0648-8 10.1038/s41567-018-0048-5 10.1021/acs.jcim.1c00166 10.1016/j.physrep.2022.08.003 10.1016/j.procs.2023.01.235 10.1109/TSMCB.2008.926603 10.1038/ncomms13890 10.3390/e25020287 10.1016/j.compind.2019.06.002 10.1126/science.aag2302 10.1109/TITS.2021.3132161 10.1021/ct800468h 10.1109/ACCESS.2020.3041719 10.1002/cem.1056 10.1002/aic.10116 10.22331/q-2018-08-06-79 10.1103/PhysRevA.105.062403 10.1126/science.1127647 10.1109/TNN.2006.880583 10.1109/JIOT.2020.2979887 10.1016/j.tele.2022.101796 10.1007/s11831-022-09809-5 10.1038/s41586-019-0980-2 10.1038/nature23474 10.1007/s11135-020-01061-y 10.1103/PhysRevB.94.165134 10.1007/s00894-005-0086-7 10.1109/TEM.2020.2972288 10.1038/s41570-020-0189-9 10.1145/3564783 10.1103/PhysRevA.97.042315 10.1007/s11831-018-9269-0 10.1109/ACCESS.2019.2909490 10.1039/C6SC05720A 10.1038/s43588-022-00311-3 10.1109/MECO55406.2022.9797184 10.1038/s41598-020-64078-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1007/s11831-023-10027-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 1577 |
| ExternalDocumentID | 10_1007_s11831_023_10027_w |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB 7XB 8AL 8FK JQ2 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-fb44bc7c40eaad7692e5c0eafaa966647f1ad073d8b7ddf6a7e13af8e3f7b43f3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114656400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Sun Nov 30 04:08:54 EST 2025 Tue Nov 18 21:57:32 EST 2025 Sat Nov 29 06:21:50 EST 2025 Fri Feb 21 02:40:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-fb44bc7c40eaad7692e5c0eafaa966647f1ad073d8b7ddf6a7e13af8e3f7b43f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9310-8288 |
| PQID | 3256682906 |
| PQPubID | 1486352 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3256682906 crossref_primary_10_1007_s11831_023_10027_w crossref_citationtrail_10_1007_s11831_023_10027_w springer_journals_10_1007_s11831_023_10027_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 2024-04-00 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Sood, Rawat, Kumar (CR29) 2023; 22 Zhang, Wei, Asad, Yang, Wang (CR71) 2019; 5 Bhatia, Sood, Sood (CR21) 2020 Deng, Li, Sarma (CR70) 2017; 7 Giralt, Espinosa, Arenas, Ferre-Gine, Amat, Girones, Carbó-Dorca, Cohen (CR50) 2004; 50 Cong, Choi, Lukin (CR61) 2019; 15 Smith, Isayev, Roitberg (CR69) 2017; 8 Cooper (CR57) 2021; 23 Al-Rabadi (CR37) 2012; 18 Liu, Rebentrost (CR26) 2018; 97 Chen, Yang, Qi, Chen, Ma, Goan (CR52) 2020; 8 Schuld, Bocharov, Svore, Wiebe (CR62) 2020; 101 Benedetti, Realpe-Gómez, Biswas, Perdomo-Ortiz (CR65) 2016; 94 CR32 von Lilienfeld, Müller, Tkatchenko (CR54) 2020; 4 Bhatia, Sood, Kaur (CR16) 2019; 111 Carleo, Troyer (CR45) 2017; 355 Cerezo, Verdon, Huang, Cincio, Coles (CR2) 2022; 2 Torlai, Melko (CR64) 2016; 94 Zeguendry, Jarir, Quafafou (CR18) 2023; 25 Gao, Wang, Li, Yu, Wang (CR38) 2006; 12 Rawat, Sood (CR33) 2021; 55 Sanches, Weinberg, Ide, Kamiya (CR55) 2022; 105 Paparo, Dunjko, Makmal, Martin-Delgado, Briegel (CR68) 2014; 4 Fösel, Tighineanu, Weiss, Marquardt (CR51) 2018; 8 Houssein, Abohashima, Elhoseny, Mohamed (CR13) 2022; 194 Havlíček, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta (CR60) 2019; 567 Dhawan, Gupta, Mamdapur (CR7) 2021; 11 Batra, Zorn, Foil, Minerali, Gawriljuk, Lane, Ekins (CR25) 2021; 61 Buttingsrud, King, Alsberg (CR49) 2007; 21 Singh, Bhangu (CR20) 2023; 30 Sood, Chauhan (CR8) 2023 Flamini, Spagnolo, Sciarrino (CR43) 2019; 4 Dong, Chen, Zhang, Chen (CR53) 2006; 24 Rupp, Tkatchenko, Müller, von Lilienfeld (CR34) 2012; 108 Guo, Liu, Li, Li, Gao, Qin, Wen (CR42) 2022; 604 Liang, Huang, Saratchandran, Sundararajan (CR40) 2006; 17 Schuld, Sinayskiy, Petruccione (CR3) 2015; 56 Preskill (CR67) 2018; 2 Wei, Liu, Xu, Shi, Shan, Zhao, Gao (CR15) 2023; 525 CR19 Handley, Popelier (CR47) 2009; 5 CR17 Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd (CR22) 2017; 549 Katritzky, Lobanov, Karelson (CR35) 1995; 24 Wang, Xu, Zhang (CR6) 2022; 29 Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo (CR66) 2018; 14 Tilly, Chen, Cao, Picozzi, Setia, Li, Grant, Wossnig, Rungger, Booth (CR46) 2022; 986 Pande, Mulay (CR4) 2020; 39 Verma, Sood, Kaur (CR14) 2020; 72 Mahmoud (CR44) 2023; 13 Sood, Rawat, Kumar (CR31) 2022; 101 Yoshioka, Akagi, Katsura (CR39) 2018; 97 McClean, Romero, Babbush, Aspuru-Guzik (CR59) 2016; 18 Melnikov, Kordzanganeh, Alodjants, Lee (CR11) 2023; 8 Hinton, Salakhutdinov (CR63) 2006; 313 Ayanzadeh, Halem, Finin (CR73) 2020; 10 Jadhav, Rasool, Gyanchandani (CR9) 2023; 218 Bhatia, Sood (CR1) 2020; 7 LaRose, Coyle (CR72) 2020; 102 Käming, Dawid, Kottmann, Lewenstein, Sengstock, Dauphin, Weitenberg (CR41) 2021; 2 Jeswal, Chakraverty (CR5) 2019; 26 CR23 Sood, Chauhan (CR28) 2023; 123 Khan, Robles-Kelly (CR12) 2020; 8 Sood, Rawat, Sharma (CR27) 2022 Dong, Chen, Tarn, Pechen, Rabitz (CR56) 2008; 38 Nawaz, Sharma, Wyne, Patwary, Asaduzzaman (CR24) 2019; 7 Staikova, Messih, Lei, Wania, Donaldson (CR36) 2005; 50 Funes-Ardoiz, Schoenebeck (CR48) 2020; 6 Neelam, Sood (CR30) 2020; 68 Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (CR58) 2017; 8 Zhang, Ni (CR10) 2020; 2 NY Liang (10027_CR40) 2006; 17 V Sood (10027_CR8) 2023 AN Al-Rabadi (10027_CR37) 2012; 18 CM Handley (10027_CR47) 2009; 5 M Bhatia (10027_CR16) 2019; 111 SK Sood (10027_CR31) 2022; 101 G Torlai (10027_CR64) 2016; 94 GE Hinton (10027_CR63) 2006; 313 N Käming (10027_CR41) 2021; 2 J Tilly (10027_CR46) 2022; 986 J Preskill (10027_CR67) 2018; 2 Y Zhang (10027_CR10) 2020; 2 JS Smith (10027_CR69) 2017; 8 HAH Mahmoud (10027_CR44) 2023; 13 M Guo (10027_CR42) 2022; 604 P Verma (10027_CR14) 2020; 72 B Buttingsrud (10027_CR49) 2007; 21 F Sanches (10027_CR55) 2022; 105 I Cong (10027_CR61) 2019; 15 R Ayanzadeh (10027_CR73) 2020; 10 EH Houssein (10027_CR13) 2022; 194 Z Wang (10027_CR6) 2022; 29 SJ Nawaz (10027_CR24) 2019; 7 CH Cooper (10027_CR57) 2021; 23 I Funes-Ardoiz (10027_CR48) 2020; 6 M Schuld (10027_CR3) 2015; 56 10027_CR17 D Dong (10027_CR53) 2006; 24 OA von Lilienfeld (10027_CR54) 2020; 4 L Wei (10027_CR15) 2023; 525 V Sood (10027_CR28) 2023; 123 A Jadhav (10027_CR9) 2023; 218 G Torlai (10027_CR66) 2018; 14 XM Zhang (10027_CR71) 2019; 5 S Jeswal (10027_CR5) 2019; 26 JR McClean (10027_CR59) 2016; 18 M Staikova (10027_CR36) 2005; 50 F Flamini (10027_CR43) 2019; 4 10027_CR19 SYC Chen (10027_CR52) 2020; 8 M Bhatia (10027_CR1) 2020; 7 10027_CR23 R LaRose (10027_CR72) 2020; 102 M Benedetti (10027_CR65) 2016; 94 J Singh (10027_CR20) 2023; 30 A Melnikov (10027_CR11) 2023; 8 TM Khan (10027_CR12) 2020; 8 M Pande (10027_CR4) 2020; 39 KT Schütt (10027_CR58) 2017; 8 G Carleo (10027_CR45) 2017; 355 AR Katritzky (10027_CR35) 1995; 24 K Batra (10027_CR25) 2021; 61 M Cerezo (10027_CR2) 2022; 2 S Dhawan (10027_CR7) 2021; 11 KS Rawat (10027_CR33) 2021; 55 D Dong (10027_CR56) 2008; 38 A Zeguendry (10027_CR18) 2023; 25 J Gao (10027_CR38) 2006; 12 M Schuld (10027_CR62) 2020; 101 M Rupp (10027_CR34) 2012; 108 S Neelam (10027_CR30) 2020; 68 J Biamonte (10027_CR22) 2017; 549 T Fösel (10027_CR51) 2018; 8 DL Deng (10027_CR70) 2017; 7 GD Paparo (10027_CR68) 2014; 4 N Liu (10027_CR26) 2018; 97 V Havlíček (10027_CR60) 2019; 567 M Bhatia (10027_CR21) 2020 F Giralt (10027_CR50) 2004; 50 N Yoshioka (10027_CR39) 2018; 97 SK Sood (10027_CR27) 2022 SK Sood (10027_CR29) 2023; 22 10027_CR32 |
| References_xml | – volume: 2 start-page: 035037 issue: 3 year: 2021 ident: CR41 article-title: Unsupervised machine learning of topological phase transitions from experimental data publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abffe7 – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 11 ident: CR73 article-title: Reinforcement quantum annealing: a hybrid quantum learning automata publication-title: Sci Rep – volume: 111 start-page: 51 year: 2019 end-page: 67 ident: CR16 article-title: Quantum-based predictive fog scheduler for IoT applications publication-title: Comput Ind – volume: 7 start-page: 021021 issue: 2 year: 2017 ident: CR70 article-title: Quantum entanglement in neural network states publication-title: Phys Rev X – volume: 50 start-page: 438 issue: 2 year: 2005 end-page: 443 ident: CR36 article-title: Prediction of subcooled vapor pressures of nonpolar organic compounds using a one-parameter QSPR publication-title: J Chem Eng Data doi: 10.1021/je049732n – volume: 12 start-page: 513 year: 2006 end-page: 520 ident: CR38 article-title: Prediction of polyamide properties using quantum-chemical methods and BP artificial neural networks publication-title: J Mol Model – volume: 94 start-page: 022308 issue: 2 year: 2016 ident: CR65 article-title: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning publication-title: Phys Rev A – volume: 218 start-page: 2612 year: 2023 end-page: 2625 ident: CR9 article-title: Quantum machine learning: scope for real-world problems publication-title: Procedia Comput Sci – volume: 123 start-page: e27148 issue: 18 year: 2023 ident: CR28 article-title: Towards quantum state preparation with materials science: an analytical review publication-title: Int J Quantum Chem – volume: 101 start-page: 032308 year: 2020 ident: CR62 article-title: Circuit-centric quantum classifiers publication-title: Phys Rev A doi: 10.1103/PhysRevA.101.032308 – volume: 5 start-page: 1474 issue: 6 year: 2009 end-page: 1489 ident: CR47 article-title: Dynamically polarizable water potential based on multipole moments trained by machine learning publication-title: J Chem Theory Comput – volume: 194 start-page: 116512 year: 2022 ident: CR13 article-title: Machine learning in the quantum realm: the state-of-the-art, challenges, and future vision publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116512 – ident: CR19 – volume: 39 start-page: 369 issue: 4 year: 2020 end-page: 382 ident: CR4 article-title: Bibliometric survey of quantum machine learning publication-title: Sci Technol Libr – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR63 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 55 start-page: 1371 year: 2021 end-page: 1396 ident: CR33 article-title: Emerging trends and global scope of big data analytics: a scientometric analysis publication-title: Qual Quant – volume: 29 start-page: 737 issue: 2 year: 2022 end-page: 761 ident: CR6 article-title: Review of quantum image processing publication-title: Arch Comput Methods Eng – volume: 72 start-page: 102929 year: 2020 ident: CR14 article-title: A fog-cloud based cyber physical system for ulcerative colitis diagnosis and stage classification and management publication-title: Microprocess Microsyst – volume: 56 start-page: 172 issue: 2 year: 2015 end-page: 185 ident: CR3 article-title: An introduction to quantum machine learning publication-title: Contemp Phys – volume: 525 start-page: 42 year: 2023 end-page: 53 ident: CR15 article-title: Quantum machine learning in medical image analysis: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.049 – ident: CR32 – volume: 2 start-page: 567 issue: 9 year: 2022 end-page: 576 ident: CR2 article-title: Challenges and opportunities in quantum machine learning publication-title: Nat Comput Sci – volume: 604 start-page: 127936 year: 2022 ident: CR42 article-title: Quantum algorithms for anomaly detection using amplitude estimation publication-title: Physica A doi: 10.1016/j.physa.2022.127936 – volume: 7 start-page: 5590 issue: 6 year: 2020 end-page: 5598 ident: CR1 article-title: Quantum computing-inspired network optimization for IoT applications publication-title: IEEE Internet Things J – volume: 101 start-page: 107948 year: 2022 ident: CR31 article-title: A visual review of artificial intelligence and industry 4.0 in healthcare publication-title: Comput Electr Eng – volume: 94 start-page: 165134 issue: 16 year: 2016 ident: CR64 article-title: Learning thermodynamics with Boltzmann machines publication-title: Phys Rev B – volume: 6 start-page: 1904 issue: 8 year: 2020 end-page: 1913 ident: CR48 article-title: Established and emerging computational tools to study homogeneous catalysis—from quantum mechanics to machine learning publication-title: Chem doi: 10.1016/j.chempr.2020.07.008 – volume: 15 start-page: 1273 issue: 12 year: 2019 end-page: 1278 ident: CR61 article-title: Quantum convolutional neural networks publication-title: Nat Phys – volume: 102 start-page: 032420 year: 2020 ident: CR72 article-title: Robust data encodings for quantum classifiers publication-title: Phys Rev A doi: 10.1103/PhysRevA.102.032420 – volume: 26 start-page: 793 year: 2019 end-page: 807 ident: CR5 article-title: Recent developments and applications in quantum neural network: a review publication-title: Arch Comput Methods Eng – volume: 8 start-page: 141007 year: 2020 end-page: 141024 ident: CR52 article-title: Variational quantum circuits for deep reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010470 – volume: 8 start-page: 2165452 issue: 1 year: 2023 ident: CR11 article-title: Quantum machine learning: from physics to software engineering publication-title: Adv Phys X doi: 10.1080/23746149.2023.2165452 – volume: 8 start-page: 3192 issue: 4 year: 2017 end-page: 3203 ident: CR69 article-title: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost publication-title: Chem Sci – volume: 17 start-page: 1411 issue: 6 year: 2006 end-page: 1423 ident: CR40 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans Neural Netw – volume: 97 start-page: 205110 year: 2018 ident: CR39 article-title: Learning disordered topological phases by statistical recovery of symmetry publication-title: Phys Rev B doi: 10.1103/PhysRevB.97.205110 – year: 2020 ident: CR21 article-title: A novel quantum-inspired solution for high-performance energy-efficient data acquisition from IoT networks publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-020-02494-x – volume: 2 start-page: 79 year: 2018 ident: CR67 article-title: Quantum computing in the NISQ era and beyond publication-title: Quantum – volume: 105 start-page: 062403 issue: 6 year: 2022 ident: CR55 article-title: Short quantum circuits in reinforcement learning policies for the vehicle routing problem publication-title: Phys Rev A – volume: 18 start-page: 75 issue: 1 year: 2012 end-page: 95 ident: CR37 article-title: Soft computation using artificial neural estimation and linear matrix inequality transmutation for controlling singularly-perturbed closed time-independent quantum computation systems, part A: basics and approach publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2012.10643228 – volume: 13 start-page: 87 issue: 1 year: 2023 ident: CR44 article-title: Transfer learning in inorganic compounds’ crystal structure classification publication-title: Curr Comput Aided Drug Des – volume: 23 start-page: 14712 issue: 9 year: 2021 end-page: 14720 ident: CR57 article-title: Exploring potential applications of quantum computing in transportation modelling publication-title: IEEE Trans Intell Transp Syst – volume: 4 start-page: 024008 issue: 2 year: 2019 ident: CR43 article-title: Visual assessment of multi-photon interference publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ab04fc – volume: 986 start-page: 1 year: 2022 end-page: 128 ident: CR46 article-title: The variational quantum eigensolver: a review of methods and best practices publication-title: Phys Rep – volume: 549 start-page: 195 issue: 7671 year: 2017 end-page: 202 ident: CR22 article-title: Quantum machine learning publication-title: Nature – volume: 50 start-page: 1315 issue: 6 year: 2004 end-page: 1343 ident: CR50 article-title: Estimation of infinite dilution activity coefficients of organic compounds in water with neural classifiers publication-title: AIChE J – volume: 4 start-page: 347 issue: 7 year: 2020 end-page: 358 ident: CR54 article-title: Exploring chemical compound space with quantum-based machine learning publication-title: Nat Rev Chem – volume: 355 start-page: 602 issue: 6325 year: 2017 end-page: 606 ident: CR45 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science – year: 2022 ident: CR27 article-title: 3-D printing technologies from infancy to recent times: a scientometric review publication-title: IEEE Trans Eng Manag doi: 10.1109/TEM.2021.3134128 – ident: CR23 – volume: 8 start-page: 219275 year: 2020 end-page: 219294 ident: CR12 article-title: Machine learning: quantum vs classical publication-title: IEEE Access – volume: 8 year: 2018 ident: CR51 article-title: Reinforcement learning with neural networks for quantum feedback publication-title: Phys Rev X doi: 10.1103/PhysRevX.8.031084 – volume: 8 start-page: 13890 issue: 1 year: 2017 ident: CR58 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat Commun – volume: 97 start-page: 042315 issue: 4 year: 2018 ident: CR26 article-title: Quantum machine learning for quantum anomaly detection publication-title: Phys Rev A – volume: 567 start-page: 209 issue: 7747 year: 2019 end-page: 212 ident: CR60 article-title: Supervised learning with quantum-enhanced feature spaces publication-title: Nature – volume: 30 start-page: 615 issue: 1 year: 2023 end-page: 638 ident: CR20 article-title: Contemporary quantum computing use cases: taxonomy, review and challenges publication-title: Arch Comput Methods Eng – volume: 22 start-page: 1 issue: 4 year: 2023 end-page: 18 ident: CR29 article-title: Emerging trends of ICT in airborne disease prevention publication-title: ACM Trans Internet Technol – volume: 14 start-page: 447 issue: 5 year: 2018 end-page: 450 ident: CR66 article-title: Neural-network quantum state tomography publication-title: Nat Phys – volume: 38 start-page: 957 issue: 4 year: 2008 end-page: 962 ident: CR56 article-title: Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning publication-title: IEEE Trans Syst Man Cybern B (Cybern) – volume: 2 start-page: e34 issue: 1 year: 2020 ident: CR10 article-title: Recent advances in quantum machine learning publication-title: Quantum Eng – ident: CR17 – volume: 68 start-page: 317 issue: 1 year: 2020 end-page: 329 ident: CR30 article-title: A scientometric review of global research on smart disaster management publication-title: IEEE Trans Eng Manag – volume: 11 start-page: 29 issue: 3 year: 2021 ident: CR7 article-title: Quantum machine learning: a scientometric assessment of global publications during 1999–2020 publication-title: Int J Knowl Content Dev Technol – volume: 4 start-page: 031002 issue: 3 year: 2014 ident: CR68 article-title: Quantum speedup for active learning agents publication-title: Phys Rev X – volume: 24 start-page: 513 issue: 4 year: 2006 end-page: 521 ident: CR53 article-title: Quantum robot: structure, algorithms and applications publication-title: Robotica doi: 10.1017/S0263574705002596 – volume: 108 start-page: 058301 year: 2012 ident: CR34 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.058301 – volume: 24 start-page: 279 year: 1995 end-page: 287 ident: CR35 article-title: QSPR: the correlation and quantitative prediction of chemical and physical properties from structure publication-title: Chem Soc Rev doi: 10.1039/CS9952400279 – year: 2023 ident: CR8 article-title: Archives of quantum computing: research progress and challenges publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09973-2 – volume: 7 start-page: 46317 year: 2019 end-page: 46350 ident: CR24 article-title: Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future publication-title: IEEE Access – volume: 5 start-page: 85 issue: 1 year: 2019 ident: CR71 article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation publication-title: npj Quantum Inf – volume: 18 start-page: 023023 issue: 2 year: 2016 ident: CR59 article-title: The theory of variational hybrid quantum-classical algorithms publication-title: New J Phys doi: 10.1088/1367-2630/18/2/023023 – volume: 61 start-page: 2641 issue: 6 year: 2021 end-page: 2647 ident: CR25 article-title: Quantum machine learning algorithms for drug discovery applications publication-title: J Chem Inf Model – volume: 21 start-page: 509 issue: 12 year: 2007 end-page: 519 ident: CR49 article-title: An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming publication-title: J Chemom A – volume: 25 start-page: 287 issue: 2 year: 2023 ident: CR18 article-title: Quantum machine learning: a review and case studies publication-title: Entropy – volume: 4 start-page: 031002 issue: 3 year: 2014 ident: 10027_CR68 publication-title: Phys Rev X – volume: 72 start-page: 102929 year: 2020 ident: 10027_CR14 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2019.102929 – volume: 56 start-page: 172 issue: 2 year: 2015 ident: 10027_CR3 publication-title: Contemp Phys doi: 10.1080/00107514.2014.964942 – volume: 101 start-page: 107948 year: 2022 ident: 10027_CR31 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107948 – volume: 94 start-page: 022308 issue: 2 year: 2016 ident: 10027_CR65 publication-title: Phys Rev A doi: 10.1103/PhysRevA.94.022308 – volume: 11 start-page: 29 issue: 3 year: 2021 ident: 10027_CR7 publication-title: Int J Knowl Content Dev Technol – volume: 5 start-page: 85 issue: 1 year: 2019 ident: 10027_CR71 publication-title: npj Quantum Inf doi: 10.1038/s41534-019-0201-8 – volume: 2 start-page: 035037 issue: 3 year: 2021 ident: 10027_CR41 publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abffe7 – volume: 39 start-page: 369 issue: 4 year: 2020 ident: 10027_CR4 publication-title: Sci Technol Libr doi: 10.1080/0194262X.2020.1776193 – ident: 10027_CR19 doi: 10.1109/TEM.2023.3284689 – volume: 29 start-page: 737 issue: 2 year: 2022 ident: 10027_CR6 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-021-09599-2 – volume: 525 start-page: 42 year: 2023 ident: 10027_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.049 – volume: 24 start-page: 513 issue: 4 year: 2006 ident: 10027_CR53 publication-title: Robotica doi: 10.1017/S0263574705002596 – volume: 123 start-page: e27148 issue: 18 year: 2023 ident: 10027_CR28 publication-title: Int J Quantum Chem doi: 10.1002/qua.27148 – volume: 15 start-page: 1273 issue: 12 year: 2019 ident: 10027_CR61 publication-title: Nat Phys doi: 10.1038/s41567-019-0648-8 – year: 2020 ident: 10027_CR21 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-020-02494-x – volume: 604 start-page: 127936 year: 2022 ident: 10027_CR42 publication-title: Physica A doi: 10.1016/j.physa.2022.127936 – volume: 14 start-page: 447 issue: 5 year: 2018 ident: 10027_CR66 publication-title: Nat Phys doi: 10.1038/s41567-018-0048-5 – volume: 61 start-page: 2641 issue: 6 year: 2021 ident: 10027_CR25 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00166 – volume: 986 start-page: 1 year: 2022 ident: 10027_CR46 publication-title: Phys Rep doi: 10.1016/j.physrep.2022.08.003 – volume: 218 start-page: 2612 year: 2023 ident: 10027_CR9 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2023.01.235 – volume: 38 start-page: 957 issue: 4 year: 2008 ident: 10027_CR56 publication-title: IEEE Trans Syst Man Cybern B (Cybern) doi: 10.1109/TSMCB.2008.926603 – volume: 8 start-page: 13890 issue: 1 year: 2017 ident: 10027_CR58 publication-title: Nat Commun doi: 10.1038/ncomms13890 – volume: 25 start-page: 287 issue: 2 year: 2023 ident: 10027_CR18 publication-title: Entropy doi: 10.3390/e25020287 – volume: 111 start-page: 51 year: 2019 ident: 10027_CR16 publication-title: Comput Ind doi: 10.1016/j.compind.2019.06.002 – volume: 355 start-page: 602 issue: 6325 year: 2017 ident: 10027_CR45 publication-title: Science doi: 10.1126/science.aag2302 – volume: 97 start-page: 205110 year: 2018 ident: 10027_CR39 publication-title: Phys Rev B doi: 10.1103/PhysRevB.97.205110 – volume: 23 start-page: 14712 issue: 9 year: 2021 ident: 10027_CR57 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3132161 – year: 2022 ident: 10027_CR27 publication-title: IEEE Trans Eng Manag doi: 10.1109/TEM.2021.3134128 – volume: 5 start-page: 1474 issue: 6 year: 2009 ident: 10027_CR47 publication-title: J Chem Theory Comput doi: 10.1021/ct800468h – volume: 102 start-page: 032420 year: 2020 ident: 10027_CR72 publication-title: Phys Rev A doi: 10.1103/PhysRevA.102.032420 – volume: 18 start-page: 75 issue: 1 year: 2012 ident: 10027_CR37 publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2012.10643228 – volume: 8 start-page: 219275 year: 2020 ident: 10027_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041719 – volume: 21 start-page: 509 issue: 12 year: 2007 ident: 10027_CR49 publication-title: J Chemom A doi: 10.1002/cem.1056 – volume: 24 start-page: 279 year: 1995 ident: 10027_CR35 publication-title: Chem Soc Rev doi: 10.1039/CS9952400279 – volume: 50 start-page: 1315 issue: 6 year: 2004 ident: 10027_CR50 publication-title: AIChE J doi: 10.1002/aic.10116 – volume: 2 start-page: 79 year: 2018 ident: 10027_CR67 publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 105 start-page: 062403 issue: 6 year: 2022 ident: 10027_CR55 publication-title: Phys Rev A doi: 10.1103/PhysRevA.105.062403 – volume: 8 start-page: 2165452 issue: 1 year: 2023 ident: 10027_CR11 publication-title: Adv Phys X doi: 10.1080/23746149.2023.2165452 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10027_CR63 publication-title: Science doi: 10.1126/science.1127647 – volume: 18 start-page: 023023 issue: 2 year: 2016 ident: 10027_CR59 publication-title: New J Phys doi: 10.1088/1367-2630/18/2/023023 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 10027_CR40 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – year: 2023 ident: 10027_CR8 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09973-2 – volume: 7 start-page: 5590 issue: 6 year: 2020 ident: 10027_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2979887 – ident: 10027_CR32 doi: 10.1016/j.tele.2022.101796 – volume: 2 start-page: e34 issue: 1 year: 2020 ident: 10027_CR10 publication-title: Quantum Eng – volume: 108 start-page: 058301 year: 2012 ident: 10027_CR34 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.058301 – volume: 13 start-page: 87 issue: 1 year: 2023 ident: 10027_CR44 publication-title: Curr Comput Aided Drug Des – volume: 30 start-page: 615 issue: 1 year: 2023 ident: 10027_CR20 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09809-5 – volume: 8 start-page: 141007 year: 2020 ident: 10027_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010470 – volume: 567 start-page: 209 issue: 7747 year: 2019 ident: 10027_CR60 publication-title: Nature doi: 10.1038/s41586-019-0980-2 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 10027_CR22 publication-title: Nature doi: 10.1038/nature23474 – volume: 4 start-page: 024008 issue: 2 year: 2019 ident: 10027_CR43 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ab04fc – volume: 101 start-page: 032308 year: 2020 ident: 10027_CR62 publication-title: Phys Rev A doi: 10.1103/PhysRevA.101.032308 – volume: 55 start-page: 1371 year: 2021 ident: 10027_CR33 publication-title: Qual Quant doi: 10.1007/s11135-020-01061-y – volume: 94 start-page: 165134 issue: 16 year: 2016 ident: 10027_CR64 publication-title: Phys Rev B doi: 10.1103/PhysRevB.94.165134 – volume: 12 start-page: 513 year: 2006 ident: 10027_CR38 publication-title: J Mol Model doi: 10.1007/s00894-005-0086-7 – volume: 50 start-page: 438 issue: 2 year: 2005 ident: 10027_CR36 publication-title: J Chem Eng Data doi: 10.1021/je049732n – volume: 68 start-page: 317 issue: 1 year: 2020 ident: 10027_CR30 publication-title: IEEE Trans Eng Manag doi: 10.1109/TEM.2020.2972288 – volume: 8 year: 2018 ident: 10027_CR51 publication-title: Phys Rev X doi: 10.1103/PhysRevX.8.031084 – volume: 194 start-page: 116512 year: 2022 ident: 10027_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116512 – volume: 4 start-page: 347 issue: 7 year: 2020 ident: 10027_CR54 publication-title: Nat Rev Chem doi: 10.1038/s41570-020-0189-9 – volume: 22 start-page: 1 issue: 4 year: 2023 ident: 10027_CR29 publication-title: ACM Trans Internet Technol doi: 10.1145/3564783 – volume: 97 start-page: 042315 issue: 4 year: 2018 ident: 10027_CR26 publication-title: Phys Rev A doi: 10.1103/PhysRevA.97.042315 – volume: 26 start-page: 793 year: 2019 ident: 10027_CR5 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-018-9269-0 – volume: 7 start-page: 021021 issue: 2 year: 2017 ident: 10027_CR70 publication-title: Phys Rev X – volume: 7 start-page: 46317 year: 2019 ident: 10027_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909490 – volume: 8 start-page: 3192 issue: 4 year: 2017 ident: 10027_CR69 publication-title: Chem Sci doi: 10.1039/C6SC05720A – volume: 2 start-page: 567 issue: 9 year: 2022 ident: 10027_CR2 publication-title: Nat Comput Sci doi: 10.1038/s43588-022-00311-3 – ident: 10027_CR17 doi: 10.1109/MECO55406.2022.9797184 – ident: 10027_CR23 – volume: 6 start-page: 1904 issue: 8 year: 2020 ident: 10027_CR48 publication-title: Chem doi: 10.1016/j.chempr.2020.07.008 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10027_CR73 publication-title: Sci Rep doi: 10.1038/s41598-020-64078-1 |
| SSID | ssj0054992 |
| Score | 2.4327753 |
| SecondaryResourceType | review_article |
| Snippet | Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1555 |
| SubjectTerms | Algorithms Bibliometrics Computers Engineering Error correction Geographical distribution Information processing Machine learning Mathematical and Computational Engineering Network analysis Neural networks Pattern analysis Quantum computing Quantum physics Review Article Scientometrics Support vector machines Systematic review Taxonomy |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgcIADgwFiMFAO3KBSP0LTcpsQE5dNwGDarUrTBE2CgtaN_X2cNN0GAiS4VWoaVXZiP8fOM8Bppt0k02R4PpcYoKAuEMd5jkiVmyqBAF1R02yC9XrRcBjf2kthRVXtXqUkjaVeXHbD1Yehr69rqTCYcmarsIbuLtING-77g8r-6oDH5Di9QJ_5h669KvP9HJ_d0QJjfkmLGm_Tqf_vP7dhy6JL0i6Xww6syLwBdYs0id3HRQM2l2gId2FwN0X5Tl9I11RWSmJJV58IIlpS9n2wZ4akazpOF2SUk6U5Lkmb9Oec0KRMOOzBY-f64erGsf0WHIEbceKolNJUMEFdyXnGwtiXFwKfFecYFIWUKY9naBKyKGVZpkLOpBdwFclAsZQGKtiHWv6aywMgKUWzqXxFM4QPgR_E0mVc0ihM_VhhDNkErxJ7IiwZue6J8ZwsaJS1GBMUY2LEmMyacDb_5q2k4vh1dKvSZmK3ZZEECPBCnToOm3BeaW_x-ufZDv82_Ag2fAQ_ZYVPC2qT8VQew7p4n4yK8YlZrh80OOTz priority: 102 providerName: Springer Nature |
| Title | Quantum Machine Learning for Computational Methods in Engineering: A Systematic Review |
| URI | https://link.springer.com/article/10.1007/s11831-023-10027-w https://www.proquest.com/docview/3256682906 |
| Volume | 31 |
| WOSCitedRecordID | wos001114656400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: M0C dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: 7WY dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8eDFbyOKpAdvuriPuoIXgwRiYiAIih-XpetaY6KADvTf97XrQE3k4qXZsq1Z-trX3_vo7wEcJnqbZJoMz-cSDRSUBeI4zxGxcmMlEKAraopNsHa7cn9f7ViHW2rTKnOdaBR1MhTaR34S4N4c6qhfeD56c3TVKB1dtSU0FqGgWRI8k7rXyzWxNn1MtNMLtPc_dO2hmezoHM5lNKR9nZmFppnz-XNjmqHNXwFSs-801_77x-uwahEnqWVTZAMW5GAT1iz6JHZtp1vQv57gKE9eScvkV0piqVefCOJaklV_sJ5D0jJ1p1PyPCDfCA3PSI30pszQJAs7bMNts3FTv3Rs1QVH4HIcOyqmNBZMUFdynrCw6stTgdeKczSNQsqUxxNUDEklZkmiQs6kF3BVkYFiMQ1UsANLg-FA7gKJKSpP5SuaIIgI_KAqXcYlrYSxX1VoSRbBy4c8EpaSXFfGeIlmZMpaTBGKKTJiij6LcDT9ZpQRcsx9u5TLJrKLM41mginCcS7d2eO_e9ub39s-rPgIebK8nhIsjd8n8gCWxcf4OX0vwyK7eyhD4aLR7nTx7oo52LbcetlMWmw7p4_Ydnv9Lype8Eo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZgIMGFN2I8c4ATVKxJaDokhBAPgcYmEA9xK2maoEkwYN2Y-FP8Rpw2ZYAENw7cKrWN1Pqz_Tl2bIDVxLpJYZvhUakxQEFZII_zPRWbSmwUEnTDs2ETotEIb26qZwPwVpyFsWWVhU3MDHXyqOwe-SZD3xzYrF-w-_Ts2alRNrtajNDIYVHTrz0M2dKdkwOU7xqlR4eX-8eemyrgKYRbxzMx57ESile0lIkIqlRvKbw2UiL1D7gwvkwQ-EkYiyQxgRTaZ9KEmhkRc2YYrjsIQ5yFwupVTXiF5behVpZd9ZnNNgQVd0gnP6qHuoOBO7WVYBgKer2vjrDPbr8lZDM_dzT-3_7QBIw5Rk32chWYhAHdmoJxx66Js13pNFyfdxFF3QdSz-pHNXGtZe8I8naST7dwO6Okns3VTkmzRT41bNwme-Tio_M1ydMqM3D1J183C6XWY0vPAYk5OgdDDU-QJDHKqroipOZhENOqwUi5DH4h4ki5lut28sd91G8WbWERISyiDBZRrwzrH-885Q1Hfn16scBC5IxPGvWBUIaNAk392z-vNv_7aiswcnxZP41OTxq1BRilSO_yGqZFKHXaXb0Ew-ql00zby5laELj9a5S9A_DLStQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoefNOytonN5ttQh6Ibk-nYW0nbRAZax7q5f99Lm25TVBDfCk1Dubsk3-XuvgM4ifQxyTUZniskOiioC8RxjhUGyg5UiABdsbTZBG-1qr1erT1XxZ9mu-chyaymQbM0xaPKIFKVWeEbWiK6wa7Oq0LHyposwhLTifTaX-90871YOz9pvNOh-v7fs03ZzPdzfD6aZnjzS4g0PXkaG___501YN6iT1DMz2YIFGRdhwyBQYtZ3UoS1OXrCbeg-jFHu41fSTDMuJTFkrM8EkS7J-kGYu0TSTDtRJ6Qfk7k5LkiddKZc0SQLROzAU-P68fLGMn0YrBAX6MhSAWNByENmSyEi7tVceR7isxICnSWPceWICLeKqBrwKFKe4NKhQlUlVTxgVNFdKMRvsdwDEjDcTpWrWISwgrq0Jm0uJKt6gVtT6FuWwMlV4IeGpFz3ynjxZ_TKWow-itFPxehPSnA6_WaQUXT8Orqca9Y3yzXxKQI_T4eUvRKc5Zqcvf55tv2_DT-GlfZVw7-_bd0dwKqL-ChLAipDYTQcy0NYDt9H_WR4lFrxBw6E8Ls |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Machine+Learning+for+Computational+Methods+in+Engineering%3A+A+Systematic+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Sood%2C+Sandeep+Kumar&rft.au=Agrewal%2C+Monika&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=31&rft.issue=3&rft.spage=1555&rft.epage=1577&rft_id=info:doi/10.1007%2Fs11831-023-10027-w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |