Quantum Machine Learning for Computational Methods in Engineering: A Systematic Review

Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archives of computational methods in engineering Ročník 31; číslo 3; s. 1555 - 1577
Hlavní autoři: Sood, Sandeep Kumar, Agrewal, Monika
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.04.2024
Springer Nature B.V
Témata:
ISSN:1134-3060, 1886-1784
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Therefore, a highly essential exploration is needed to extract scientific breakthrough paths. The proposed work supports the concept by providing a scientometric analysis of QML scientific literature for the period 2003–2023, gathered from the Web of Science database. The study explores the powerful machine learning techniques in the quantum realm. The scientometric implication of the article provides deep insights into the publication and citation pattern, geographical distribution analysis, document co-citation, and keyword co-occurrence network analysis. The research findings highlight the predominant use of algorithms such as quantum support vector machines, quantum neural networks, and Q-learning. Notably active research hotspots in this field include drug design and discovery, quantum control, optimization, error-correction, and quantum state tomography. Additionally, collaborative efforts are evident in the domains of quantum unsupervised and reinforcement machine learning. The overall inference of QML literature portrays insightful recommendations and research directions for the academic community.
AbstractList Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems (unsolvable using classical computational methodologies). The revolutionary paradigms potential has spurred scientific research and progress. Therefore, a highly essential exploration is needed to extract scientific breakthrough paths. The proposed work supports the concept by providing a scientometric analysis of QML scientific literature for the period 2003–2023, gathered from the Web of Science database. The study explores the powerful machine learning techniques in the quantum realm. The scientometric implication of the article provides deep insights into the publication and citation pattern, geographical distribution analysis, document co-citation, and keyword co-occurrence network analysis. The research findings highlight the predominant use of algorithms such as quantum support vector machines, quantum neural networks, and Q-learning. Notably active research hotspots in this field include drug design and discovery, quantum control, optimization, error-correction, and quantum state tomography. Additionally, collaborative efforts are evident in the domains of quantum unsupervised and reinforcement machine learning. The overall inference of QML literature portrays insightful recommendations and research directions for the academic community.
Author Sood, Sandeep Kumar
Agrewal, Monika
Author_xml – sequence: 1
  givenname: Sandeep Kumar
  surname: Sood
  fullname: Sood, Sandeep Kumar
  organization: Department of Computer Applications, National Institute of Technology Kurukshetra
– sequence: 2
  givenname: Monika
  orcidid: 0000-0001-9310-8288
  surname: Agrewal
  fullname: Agrewal, Monika
  email: monikaagrewal@gmail.com
  organization: Department of Computer Applications, National Institute of Technology Kurukshetra
BookMark eNp9kF1rwyAUQGV0sLbbH9iTsOdsGlM1eyul-4CWsc9XMUbblEYzTVb672eXwWAPffIK51wuZwQG1lkNwCVG1xghdhMw5gQnKCVJ_Kcs2Z2AIeacJpjxbBBnTLKEIIrOwCiEDUKTLM_TIfh47qRtuxoupVpXVsOFlt5WdgWN83Dm6qZrZVs5K7dwqdu1KwOsLJzbVYS1j-AtnMLXfWh1HTkFX_RXpXfn4NTIbdAXv-8YvN_N32YPyeLp_nE2XSSK4LxNTJFlhWIqQ1rKktE81RMVZyNlTinNmMGyRIyUvGBlaahkGhNpuCaGFRkxZAyu-r2Nd5-dDq3YuM7HY4Mg6YRSnuaIRirtKeVdCF4b0fiqln4vMBKHfqLvJ2I_8dNP7KLE_0mq6lO0Xlbb4yrp1dAcCmn_d9UR6xvf8Yju
CitedBy_id crossref_primary_10_1007_s12076_024_00374_y
crossref_primary_10_1007_s10515_025_00493_w
crossref_primary_10_1109_TSMC_2024_3428707
crossref_primary_10_1049_qtc2_12102
crossref_primary_10_1109_JIOT_2025_3575476
crossref_primary_10_1007_s11081_024_09934_z
crossref_primary_10_1007_s11831_024_10183_7
crossref_primary_10_1007_s41060_025_00872_2
crossref_primary_10_1016_j_iot_2025_101652
crossref_primary_10_1109_JSEN_2025_3529135
crossref_primary_10_1016_j_engappai_2024_109258
crossref_primary_10_3390_math13060958
crossref_primary_10_1007_s11831_024_10079_6
Cites_doi 10.1088/2632-2153/abffe7
10.1021/je049732n
10.1103/PhysRevA.101.032308
10.1016/j.eswa.2022.116512
10.1016/j.neucom.2023.01.049
10.1016/j.physa.2022.127936
10.1016/j.chempr.2020.07.008
10.1103/PhysRevA.102.032420
10.1109/ACCESS.2020.3010470
10.1080/23746149.2023.2165452
10.1103/PhysRevB.97.205110
10.1007/s12652-020-02494-x
10.1080/10798587.2012.10643228
10.1088/2058-9565/ab04fc
10.1109/TEM.2021.3134128
10.1103/PhysRevX.8.031084
10.1017/S0263574705002596
10.1103/PhysRevLett.108.058301
10.1039/CS9952400279
10.1007/s11831-023-09973-2
10.1088/1367-2630/18/2/023023
10.1016/j.micpro.2019.102929
10.1080/00107514.2014.964942
10.1016/j.compeleceng.2022.107948
10.1103/PhysRevA.94.022308
10.1038/s41534-019-0201-8
10.1080/0194262X.2020.1776193
10.1109/TEM.2023.3284689
10.1007/s11831-021-09599-2
10.1002/qua.27148
10.1038/s41567-019-0648-8
10.1038/s41567-018-0048-5
10.1021/acs.jcim.1c00166
10.1016/j.physrep.2022.08.003
10.1016/j.procs.2023.01.235
10.1109/TSMCB.2008.926603
10.1038/ncomms13890
10.3390/e25020287
10.1016/j.compind.2019.06.002
10.1126/science.aag2302
10.1109/TITS.2021.3132161
10.1021/ct800468h
10.1109/ACCESS.2020.3041719
10.1002/cem.1056
10.1002/aic.10116
10.22331/q-2018-08-06-79
10.1103/PhysRevA.105.062403
10.1126/science.1127647
10.1109/TNN.2006.880583
10.1109/JIOT.2020.2979887
10.1016/j.tele.2022.101796
10.1007/s11831-022-09809-5
10.1038/s41586-019-0980-2
10.1038/nature23474
10.1007/s11135-020-01061-y
10.1103/PhysRevB.94.165134
10.1007/s00894-005-0086-7
10.1109/TEM.2020.2972288
10.1038/s41570-020-0189-9
10.1145/3564783
10.1103/PhysRevA.97.042315
10.1007/s11831-018-9269-0
10.1109/ACCESS.2019.2909490
10.1039/C6SC05720A
10.1038/s43588-022-00311-3
10.1109/MECO55406.2022.9797184
10.1038/s41598-020-64078-1
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s11831-023-10027-w
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 1577
ExternalDocumentID 10_1007_s11831_023_10027_w
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-fb44bc7c40eaad7692e5c0eafaa966647f1ad073d8b7ddf6a7e13af8e3f7b43f3
IEDL.DBID M7S
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114656400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
IngestDate Sun Nov 30 04:08:54 EST 2025
Tue Nov 18 21:57:32 EST 2025
Sat Nov 29 06:21:50 EST 2025
Fri Feb 21 02:40:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fb44bc7c40eaad7692e5c0eafaa966647f1ad073d8b7ddf6a7e13af8e3f7b43f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9310-8288
PQID 3256682906
PQPubID 1486352
PageCount 23
ParticipantIDs proquest_journals_3256682906
crossref_primary_10_1007_s11831_023_10027_w
crossref_citationtrail_10_1007_s11831_023_10027_w
springer_journals_10_1007_s11831_023_10027_w
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Sood, Rawat, Kumar (CR29) 2023; 22
Zhang, Wei, Asad, Yang, Wang (CR71) 2019; 5
Bhatia, Sood, Sood (CR21) 2020
Deng, Li, Sarma (CR70) 2017; 7
Giralt, Espinosa, Arenas, Ferre-Gine, Amat, Girones, Carbó-Dorca, Cohen (CR50) 2004; 50
Cong, Choi, Lukin (CR61) 2019; 15
Smith, Isayev, Roitberg (CR69) 2017; 8
Cooper (CR57) 2021; 23
Al-Rabadi (CR37) 2012; 18
Liu, Rebentrost (CR26) 2018; 97
Chen, Yang, Qi, Chen, Ma, Goan (CR52) 2020; 8
Schuld, Bocharov, Svore, Wiebe (CR62) 2020; 101
Benedetti, Realpe-Gómez, Biswas, Perdomo-Ortiz (CR65) 2016; 94
CR32
von Lilienfeld, Müller, Tkatchenko (CR54) 2020; 4
Bhatia, Sood, Kaur (CR16) 2019; 111
Carleo, Troyer (CR45) 2017; 355
Cerezo, Verdon, Huang, Cincio, Coles (CR2) 2022; 2
Torlai, Melko (CR64) 2016; 94
Zeguendry, Jarir, Quafafou (CR18) 2023; 25
Gao, Wang, Li, Yu, Wang (CR38) 2006; 12
Rawat, Sood (CR33) 2021; 55
Sanches, Weinberg, Ide, Kamiya (CR55) 2022; 105
Paparo, Dunjko, Makmal, Martin-Delgado, Briegel (CR68) 2014; 4
Fösel, Tighineanu, Weiss, Marquardt (CR51) 2018; 8
Houssein, Abohashima, Elhoseny, Mohamed (CR13) 2022; 194
Havlíček, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta (CR60) 2019; 567
Dhawan, Gupta, Mamdapur (CR7) 2021; 11
Batra, Zorn, Foil, Minerali, Gawriljuk, Lane, Ekins (CR25) 2021; 61
Buttingsrud, King, Alsberg (CR49) 2007; 21
Singh, Bhangu (CR20) 2023; 30
Sood, Chauhan (CR8) 2023
Flamini, Spagnolo, Sciarrino (CR43) 2019; 4
Dong, Chen, Zhang, Chen (CR53) 2006; 24
Rupp, Tkatchenko, Müller, von Lilienfeld (CR34) 2012; 108
Guo, Liu, Li, Li, Gao, Qin, Wen (CR42) 2022; 604
Liang, Huang, Saratchandran, Sundararajan (CR40) 2006; 17
Schuld, Sinayskiy, Petruccione (CR3) 2015; 56
Preskill (CR67) 2018; 2
Wei, Liu, Xu, Shi, Shan, Zhao, Gao (CR15) 2023; 525
CR19
Handley, Popelier (CR47) 2009; 5
CR17
Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd (CR22) 2017; 549
Katritzky, Lobanov, Karelson (CR35) 1995; 24
Wang, Xu, Zhang (CR6) 2022; 29
Torlai, Mazzola, Carrasquilla, Troyer, Melko, Carleo (CR66) 2018; 14
Tilly, Chen, Cao, Picozzi, Setia, Li, Grant, Wossnig, Rungger, Booth (CR46) 2022; 986
Pande, Mulay (CR4) 2020; 39
Verma, Sood, Kaur (CR14) 2020; 72
Mahmoud (CR44) 2023; 13
Sood, Rawat, Kumar (CR31) 2022; 101
Yoshioka, Akagi, Katsura (CR39) 2018; 97
McClean, Romero, Babbush, Aspuru-Guzik (CR59) 2016; 18
Melnikov, Kordzanganeh, Alodjants, Lee (CR11) 2023; 8
Hinton, Salakhutdinov (CR63) 2006; 313
Ayanzadeh, Halem, Finin (CR73) 2020; 10
Jadhav, Rasool, Gyanchandani (CR9) 2023; 218
Bhatia, Sood (CR1) 2020; 7
LaRose, Coyle (CR72) 2020; 102
Käming, Dawid, Kottmann, Lewenstein, Sengstock, Dauphin, Weitenberg (CR41) 2021; 2
Jeswal, Chakraverty (CR5) 2019; 26
CR23
Sood, Chauhan (CR28) 2023; 123
Khan, Robles-Kelly (CR12) 2020; 8
Sood, Rawat, Sharma (CR27) 2022
Dong, Chen, Tarn, Pechen, Rabitz (CR56) 2008; 38
Nawaz, Sharma, Wyne, Patwary, Asaduzzaman (CR24) 2019; 7
Staikova, Messih, Lei, Wania, Donaldson (CR36) 2005; 50
Funes-Ardoiz, Schoenebeck (CR48) 2020; 6
Neelam, Sood (CR30) 2020; 68
Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (CR58) 2017; 8
Zhang, Ni (CR10) 2020; 2
NY Liang (10027_CR40) 2006; 17
V Sood (10027_CR8) 2023
AN Al-Rabadi (10027_CR37) 2012; 18
CM Handley (10027_CR47) 2009; 5
M Bhatia (10027_CR16) 2019; 111
SK Sood (10027_CR31) 2022; 101
G Torlai (10027_CR64) 2016; 94
GE Hinton (10027_CR63) 2006; 313
N Käming (10027_CR41) 2021; 2
J Tilly (10027_CR46) 2022; 986
J Preskill (10027_CR67) 2018; 2
Y Zhang (10027_CR10) 2020; 2
JS Smith (10027_CR69) 2017; 8
HAH Mahmoud (10027_CR44) 2023; 13
M Guo (10027_CR42) 2022; 604
P Verma (10027_CR14) 2020; 72
B Buttingsrud (10027_CR49) 2007; 21
F Sanches (10027_CR55) 2022; 105
I Cong (10027_CR61) 2019; 15
R Ayanzadeh (10027_CR73) 2020; 10
EH Houssein (10027_CR13) 2022; 194
Z Wang (10027_CR6) 2022; 29
SJ Nawaz (10027_CR24) 2019; 7
CH Cooper (10027_CR57) 2021; 23
I Funes-Ardoiz (10027_CR48) 2020; 6
M Schuld (10027_CR3) 2015; 56
10027_CR17
D Dong (10027_CR53) 2006; 24
OA von Lilienfeld (10027_CR54) 2020; 4
L Wei (10027_CR15) 2023; 525
V Sood (10027_CR28) 2023; 123
A Jadhav (10027_CR9) 2023; 218
G Torlai (10027_CR66) 2018; 14
XM Zhang (10027_CR71) 2019; 5
S Jeswal (10027_CR5) 2019; 26
JR McClean (10027_CR59) 2016; 18
M Staikova (10027_CR36) 2005; 50
F Flamini (10027_CR43) 2019; 4
10027_CR19
SYC Chen (10027_CR52) 2020; 8
M Bhatia (10027_CR1) 2020; 7
10027_CR23
R LaRose (10027_CR72) 2020; 102
M Benedetti (10027_CR65) 2016; 94
J Singh (10027_CR20) 2023; 30
A Melnikov (10027_CR11) 2023; 8
TM Khan (10027_CR12) 2020; 8
M Pande (10027_CR4) 2020; 39
KT Schütt (10027_CR58) 2017; 8
G Carleo (10027_CR45) 2017; 355
AR Katritzky (10027_CR35) 1995; 24
K Batra (10027_CR25) 2021; 61
M Cerezo (10027_CR2) 2022; 2
S Dhawan (10027_CR7) 2021; 11
KS Rawat (10027_CR33) 2021; 55
D Dong (10027_CR56) 2008; 38
A Zeguendry (10027_CR18) 2023; 25
J Gao (10027_CR38) 2006; 12
M Schuld (10027_CR62) 2020; 101
M Rupp (10027_CR34) 2012; 108
S Neelam (10027_CR30) 2020; 68
J Biamonte (10027_CR22) 2017; 549
T Fösel (10027_CR51) 2018; 8
DL Deng (10027_CR70) 2017; 7
GD Paparo (10027_CR68) 2014; 4
N Liu (10027_CR26) 2018; 97
V Havlíček (10027_CR60) 2019; 567
M Bhatia (10027_CR21) 2020
F Giralt (10027_CR50) 2004; 50
N Yoshioka (10027_CR39) 2018; 97
SK Sood (10027_CR27) 2022
SK Sood (10027_CR29) 2023; 22
10027_CR32
References_xml – volume: 2
  start-page: 035037
  issue: 3
  year: 2021
  ident: CR41
  article-title: Unsupervised machine learning of topological phase transitions from experimental data
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abffe7
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  ident: CR73
  article-title: Reinforcement quantum annealing: a hybrid quantum learning automata
  publication-title: Sci Rep
– volume: 111
  start-page: 51
  year: 2019
  end-page: 67
  ident: CR16
  article-title: Quantum-based predictive fog scheduler for IoT applications
  publication-title: Comput Ind
– volume: 7
  start-page: 021021
  issue: 2
  year: 2017
  ident: CR70
  article-title: Quantum entanglement in neural network states
  publication-title: Phys Rev X
– volume: 50
  start-page: 438
  issue: 2
  year: 2005
  end-page: 443
  ident: CR36
  article-title: Prediction of subcooled vapor pressures of nonpolar organic compounds using a one-parameter QSPR
  publication-title: J Chem Eng Data
  doi: 10.1021/je049732n
– volume: 12
  start-page: 513
  year: 2006
  end-page: 520
  ident: CR38
  article-title: Prediction of polyamide properties using quantum-chemical methods and BP artificial neural networks
  publication-title: J Mol Model
– volume: 94
  start-page: 022308
  issue: 2
  year: 2016
  ident: CR65
  article-title: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning
  publication-title: Phys Rev A
– volume: 218
  start-page: 2612
  year: 2023
  end-page: 2625
  ident: CR9
  article-title: Quantum machine learning: scope for real-world problems
  publication-title: Procedia Comput Sci
– volume: 123
  start-page: e27148
  issue: 18
  year: 2023
  ident: CR28
  article-title: Towards quantum state preparation with materials science: an analytical review
  publication-title: Int J Quantum Chem
– volume: 101
  start-page: 032308
  year: 2020
  ident: CR62
  article-title: Circuit-centric quantum classifiers
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.101.032308
– volume: 5
  start-page: 1474
  issue: 6
  year: 2009
  end-page: 1489
  ident: CR47
  article-title: Dynamically polarizable water potential based on multipole moments trained by machine learning
  publication-title: J Chem Theory Comput
– volume: 194
  start-page: 116512
  year: 2022
  ident: CR13
  article-title: Machine learning in the quantum realm: the state-of-the-art, challenges, and future vision
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116512
– ident: CR19
– volume: 39
  start-page: 369
  issue: 4
  year: 2020
  end-page: 382
  ident: CR4
  article-title: Bibliometric survey of quantum machine learning
  publication-title: Sci Technol Libr
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR63
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 55
  start-page: 1371
  year: 2021
  end-page: 1396
  ident: CR33
  article-title: Emerging trends and global scope of big data analytics: a scientometric analysis
  publication-title: Qual Quant
– volume: 29
  start-page: 737
  issue: 2
  year: 2022
  end-page: 761
  ident: CR6
  article-title: Review of quantum image processing
  publication-title: Arch Comput Methods Eng
– volume: 72
  start-page: 102929
  year: 2020
  ident: CR14
  article-title: A fog-cloud based cyber physical system for ulcerative colitis diagnosis and stage classification and management
  publication-title: Microprocess Microsyst
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  end-page: 185
  ident: CR3
  article-title: An introduction to quantum machine learning
  publication-title: Contemp Phys
– volume: 525
  start-page: 42
  year: 2023
  end-page: 53
  ident: CR15
  article-title: Quantum machine learning in medical image analysis: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.01.049
– ident: CR32
– volume: 2
  start-page: 567
  issue: 9
  year: 2022
  end-page: 576
  ident: CR2
  article-title: Challenges and opportunities in quantum machine learning
  publication-title: Nat Comput Sci
– volume: 604
  start-page: 127936
  year: 2022
  ident: CR42
  article-title: Quantum algorithms for anomaly detection using amplitude estimation
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.127936
– volume: 7
  start-page: 5590
  issue: 6
  year: 2020
  end-page: 5598
  ident: CR1
  article-title: Quantum computing-inspired network optimization for IoT applications
  publication-title: IEEE Internet Things J
– volume: 101
  start-page: 107948
  year: 2022
  ident: CR31
  article-title: A visual review of artificial intelligence and industry 4.0 in healthcare
  publication-title: Comput Electr Eng
– volume: 94
  start-page: 165134
  issue: 16
  year: 2016
  ident: CR64
  article-title: Learning thermodynamics with Boltzmann machines
  publication-title: Phys Rev B
– volume: 6
  start-page: 1904
  issue: 8
  year: 2020
  end-page: 1913
  ident: CR48
  article-title: Established and emerging computational tools to study homogeneous catalysis—from quantum mechanics to machine learning
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.008
– volume: 15
  start-page: 1273
  issue: 12
  year: 2019
  end-page: 1278
  ident: CR61
  article-title: Quantum convolutional neural networks
  publication-title: Nat Phys
– volume: 102
  start-page: 032420
  year: 2020
  ident: CR72
  article-title: Robust data encodings for quantum classifiers
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.032420
– volume: 26
  start-page: 793
  year: 2019
  end-page: 807
  ident: CR5
  article-title: Recent developments and applications in quantum neural network: a review
  publication-title: Arch Comput Methods Eng
– volume: 8
  start-page: 141007
  year: 2020
  end-page: 141024
  ident: CR52
  article-title: Variational quantum circuits for deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010470
– volume: 8
  start-page: 2165452
  issue: 1
  year: 2023
  ident: CR11
  article-title: Quantum machine learning: from physics to software engineering
  publication-title: Adv Phys X
  doi: 10.1080/23746149.2023.2165452
– volume: 8
  start-page: 3192
  issue: 4
  year: 2017
  end-page: 3203
  ident: CR69
  article-title: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem Sci
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  end-page: 1423
  ident: CR40
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans Neural Netw
– volume: 97
  start-page: 205110
  year: 2018
  ident: CR39
  article-title: Learning disordered topological phases by statistical recovery of symmetry
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.97.205110
– year: 2020
  ident: CR21
  article-title: A novel quantum-inspired solution for high-performance energy-efficient data acquisition from IoT networks
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-020-02494-x
– volume: 2
  start-page: 79
  year: 2018
  ident: CR67
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
– volume: 105
  start-page: 062403
  issue: 6
  year: 2022
  ident: CR55
  article-title: Short quantum circuits in reinforcement learning policies for the vehicle routing problem
  publication-title: Phys Rev A
– volume: 18
  start-page: 75
  issue: 1
  year: 2012
  end-page: 95
  ident: CR37
  article-title: Soft computation using artificial neural estimation and linear matrix inequality transmutation for controlling singularly-perturbed closed time-independent quantum computation systems, part A: basics and approach
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2012.10643228
– volume: 13
  start-page: 87
  issue: 1
  year: 2023
  ident: CR44
  article-title: Transfer learning in inorganic compounds’ crystal structure classification
  publication-title: Curr Comput Aided Drug Des
– volume: 23
  start-page: 14712
  issue: 9
  year: 2021
  end-page: 14720
  ident: CR57
  article-title: Exploring potential applications of quantum computing in transportation modelling
  publication-title: IEEE Trans Intell Transp Syst
– volume: 4
  start-page: 024008
  issue: 2
  year: 2019
  ident: CR43
  article-title: Visual assessment of multi-photon interference
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/ab04fc
– volume: 986
  start-page: 1
  year: 2022
  end-page: 128
  ident: CR46
  article-title: The variational quantum eigensolver: a review of methods and best practices
  publication-title: Phys Rep
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  end-page: 202
  ident: CR22
  article-title: Quantum machine learning
  publication-title: Nature
– volume: 50
  start-page: 1315
  issue: 6
  year: 2004
  end-page: 1343
  ident: CR50
  article-title: Estimation of infinite dilution activity coefficients of organic compounds in water with neural classifiers
  publication-title: AIChE J
– volume: 4
  start-page: 347
  issue: 7
  year: 2020
  end-page: 358
  ident: CR54
  article-title: Exploring chemical compound space with quantum-based machine learning
  publication-title: Nat Rev Chem
– volume: 355
  start-page: 602
  issue: 6325
  year: 2017
  end-page: 606
  ident: CR45
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
– year: 2022
  ident: CR27
  article-title: 3-D printing technologies from infancy to recent times: a scientometric review
  publication-title: IEEE Trans Eng Manag
  doi: 10.1109/TEM.2021.3134128
– ident: CR23
– volume: 8
  start-page: 219275
  year: 2020
  end-page: 219294
  ident: CR12
  article-title: Machine learning: quantum vs classical
  publication-title: IEEE Access
– volume: 8
  year: 2018
  ident: CR51
  article-title: Reinforcement learning with neural networks for quantum feedback
  publication-title: Phys Rev X
  doi: 10.1103/PhysRevX.8.031084
– volume: 8
  start-page: 13890
  issue: 1
  year: 2017
  ident: CR58
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat Commun
– volume: 97
  start-page: 042315
  issue: 4
  year: 2018
  ident: CR26
  article-title: Quantum machine learning for quantum anomaly detection
  publication-title: Phys Rev A
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  end-page: 212
  ident: CR60
  article-title: Supervised learning with quantum-enhanced feature spaces
  publication-title: Nature
– volume: 30
  start-page: 615
  issue: 1
  year: 2023
  end-page: 638
  ident: CR20
  article-title: Contemporary quantum computing use cases: taxonomy, review and challenges
  publication-title: Arch Comput Methods Eng
– volume: 22
  start-page: 1
  issue: 4
  year: 2023
  end-page: 18
  ident: CR29
  article-title: Emerging trends of ICT in airborne disease prevention
  publication-title: ACM Trans Internet Technol
– volume: 14
  start-page: 447
  issue: 5
  year: 2018
  end-page: 450
  ident: CR66
  article-title: Neural-network quantum state tomography
  publication-title: Nat Phys
– volume: 38
  start-page: 957
  issue: 4
  year: 2008
  end-page: 962
  ident: CR56
  article-title: Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning
  publication-title: IEEE Trans Syst Man Cybern B (Cybern)
– volume: 2
  start-page: e34
  issue: 1
  year: 2020
  ident: CR10
  article-title: Recent advances in quantum machine learning
  publication-title: Quantum Eng
– ident: CR17
– volume: 68
  start-page: 317
  issue: 1
  year: 2020
  end-page: 329
  ident: CR30
  article-title: A scientometric review of global research on smart disaster management
  publication-title: IEEE Trans Eng Manag
– volume: 11
  start-page: 29
  issue: 3
  year: 2021
  ident: CR7
  article-title: Quantum machine learning: a scientometric assessment of global publications during 1999–2020
  publication-title: Int J Knowl Content Dev Technol
– volume: 4
  start-page: 031002
  issue: 3
  year: 2014
  ident: CR68
  article-title: Quantum speedup for active learning agents
  publication-title: Phys Rev X
– volume: 24
  start-page: 513
  issue: 4
  year: 2006
  end-page: 521
  ident: CR53
  article-title: Quantum robot: structure, algorithms and applications
  publication-title: Robotica
  doi: 10.1017/S0263574705002596
– volume: 108
  start-page: 058301
  year: 2012
  ident: CR34
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.058301
– volume: 24
  start-page: 279
  year: 1995
  end-page: 287
  ident: CR35
  article-title: QSPR: the correlation and quantitative prediction of chemical and physical properties from structure
  publication-title: Chem Soc Rev
  doi: 10.1039/CS9952400279
– year: 2023
  ident: CR8
  article-title: Archives of quantum computing: research progress and challenges
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-09973-2
– volume: 7
  start-page: 46317
  year: 2019
  end-page: 46350
  ident: CR24
  article-title: Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future
  publication-title: IEEE Access
– volume: 5
  start-page: 85
  issue: 1
  year: 2019
  ident: CR71
  article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation
  publication-title: npj Quantum Inf
– volume: 18
  start-page: 023023
  issue: 2
  year: 2016
  ident: CR59
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J Phys
  doi: 10.1088/1367-2630/18/2/023023
– volume: 61
  start-page: 2641
  issue: 6
  year: 2021
  end-page: 2647
  ident: CR25
  article-title: Quantum machine learning algorithms for drug discovery applications
  publication-title: J Chem Inf Model
– volume: 21
  start-page: 509
  issue: 12
  year: 2007
  end-page: 519
  ident: CR49
  article-title: An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming
  publication-title: J Chemom A
– volume: 25
  start-page: 287
  issue: 2
  year: 2023
  ident: CR18
  article-title: Quantum machine learning: a review and case studies
  publication-title: Entropy
– volume: 4
  start-page: 031002
  issue: 3
  year: 2014
  ident: 10027_CR68
  publication-title: Phys Rev X
– volume: 72
  start-page: 102929
  year: 2020
  ident: 10027_CR14
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2019.102929
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  ident: 10027_CR3
  publication-title: Contemp Phys
  doi: 10.1080/00107514.2014.964942
– volume: 101
  start-page: 107948
  year: 2022
  ident: 10027_CR31
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107948
– volume: 94
  start-page: 022308
  issue: 2
  year: 2016
  ident: 10027_CR65
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.94.022308
– volume: 11
  start-page: 29
  issue: 3
  year: 2021
  ident: 10027_CR7
  publication-title: Int J Knowl Content Dev Technol
– volume: 5
  start-page: 85
  issue: 1
  year: 2019
  ident: 10027_CR71
  publication-title: npj Quantum Inf
  doi: 10.1038/s41534-019-0201-8
– volume: 2
  start-page: 035037
  issue: 3
  year: 2021
  ident: 10027_CR41
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abffe7
– volume: 39
  start-page: 369
  issue: 4
  year: 2020
  ident: 10027_CR4
  publication-title: Sci Technol Libr
  doi: 10.1080/0194262X.2020.1776193
– ident: 10027_CR19
  doi: 10.1109/TEM.2023.3284689
– volume: 29
  start-page: 737
  issue: 2
  year: 2022
  ident: 10027_CR6
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-021-09599-2
– volume: 525
  start-page: 42
  year: 2023
  ident: 10027_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.01.049
– volume: 24
  start-page: 513
  issue: 4
  year: 2006
  ident: 10027_CR53
  publication-title: Robotica
  doi: 10.1017/S0263574705002596
– volume: 123
  start-page: e27148
  issue: 18
  year: 2023
  ident: 10027_CR28
  publication-title: Int J Quantum Chem
  doi: 10.1002/qua.27148
– volume: 15
  start-page: 1273
  issue: 12
  year: 2019
  ident: 10027_CR61
  publication-title: Nat Phys
  doi: 10.1038/s41567-019-0648-8
– year: 2020
  ident: 10027_CR21
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-020-02494-x
– volume: 604
  start-page: 127936
  year: 2022
  ident: 10027_CR42
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.127936
– volume: 14
  start-page: 447
  issue: 5
  year: 2018
  ident: 10027_CR66
  publication-title: Nat Phys
  doi: 10.1038/s41567-018-0048-5
– volume: 61
  start-page: 2641
  issue: 6
  year: 2021
  ident: 10027_CR25
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00166
– volume: 986
  start-page: 1
  year: 2022
  ident: 10027_CR46
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2022.08.003
– volume: 218
  start-page: 2612
  year: 2023
  ident: 10027_CR9
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2023.01.235
– volume: 38
  start-page: 957
  issue: 4
  year: 2008
  ident: 10027_CR56
  publication-title: IEEE Trans Syst Man Cybern B (Cybern)
  doi: 10.1109/TSMCB.2008.926603
– volume: 8
  start-page: 13890
  issue: 1
  year: 2017
  ident: 10027_CR58
  publication-title: Nat Commun
  doi: 10.1038/ncomms13890
– volume: 25
  start-page: 287
  issue: 2
  year: 2023
  ident: 10027_CR18
  publication-title: Entropy
  doi: 10.3390/e25020287
– volume: 111
  start-page: 51
  year: 2019
  ident: 10027_CR16
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.06.002
– volume: 355
  start-page: 602
  issue: 6325
  year: 2017
  ident: 10027_CR45
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 97
  start-page: 205110
  year: 2018
  ident: 10027_CR39
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.97.205110
– volume: 23
  start-page: 14712
  issue: 9
  year: 2021
  ident: 10027_CR57
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3132161
– year: 2022
  ident: 10027_CR27
  publication-title: IEEE Trans Eng Manag
  doi: 10.1109/TEM.2021.3134128
– volume: 5
  start-page: 1474
  issue: 6
  year: 2009
  ident: 10027_CR47
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct800468h
– volume: 102
  start-page: 032420
  year: 2020
  ident: 10027_CR72
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.032420
– volume: 18
  start-page: 75
  issue: 1
  year: 2012
  ident: 10027_CR37
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2012.10643228
– volume: 8
  start-page: 219275
  year: 2020
  ident: 10027_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041719
– volume: 21
  start-page: 509
  issue: 12
  year: 2007
  ident: 10027_CR49
  publication-title: J Chemom A
  doi: 10.1002/cem.1056
– volume: 24
  start-page: 279
  year: 1995
  ident: 10027_CR35
  publication-title: Chem Soc Rev
  doi: 10.1039/CS9952400279
– volume: 50
  start-page: 1315
  issue: 6
  year: 2004
  ident: 10027_CR50
  publication-title: AIChE J
  doi: 10.1002/aic.10116
– volume: 2
  start-page: 79
  year: 2018
  ident: 10027_CR67
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 105
  start-page: 062403
  issue: 6
  year: 2022
  ident: 10027_CR55
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.105.062403
– volume: 8
  start-page: 2165452
  issue: 1
  year: 2023
  ident: 10027_CR11
  publication-title: Adv Phys X
  doi: 10.1080/23746149.2023.2165452
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10027_CR63
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 18
  start-page: 023023
  issue: 2
  year: 2016
  ident: 10027_CR59
  publication-title: New J Phys
  doi: 10.1088/1367-2630/18/2/023023
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10027_CR40
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– year: 2023
  ident: 10027_CR8
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-09973-2
– volume: 7
  start-page: 5590
  issue: 6
  year: 2020
  ident: 10027_CR1
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2979887
– ident: 10027_CR32
  doi: 10.1016/j.tele.2022.101796
– volume: 2
  start-page: e34
  issue: 1
  year: 2020
  ident: 10027_CR10
  publication-title: Quantum Eng
– volume: 108
  start-page: 058301
  year: 2012
  ident: 10027_CR34
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.058301
– volume: 13
  start-page: 87
  issue: 1
  year: 2023
  ident: 10027_CR44
  publication-title: Curr Comput Aided Drug Des
– volume: 30
  start-page: 615
  issue: 1
  year: 2023
  ident: 10027_CR20
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09809-5
– volume: 8
  start-page: 141007
  year: 2020
  ident: 10027_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010470
– volume: 567
  start-page: 209
  issue: 7747
  year: 2019
  ident: 10027_CR60
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 10027_CR22
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 4
  start-page: 024008
  issue: 2
  year: 2019
  ident: 10027_CR43
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/ab04fc
– volume: 101
  start-page: 032308
  year: 2020
  ident: 10027_CR62
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.101.032308
– volume: 55
  start-page: 1371
  year: 2021
  ident: 10027_CR33
  publication-title: Qual Quant
  doi: 10.1007/s11135-020-01061-y
– volume: 94
  start-page: 165134
  issue: 16
  year: 2016
  ident: 10027_CR64
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.94.165134
– volume: 12
  start-page: 513
  year: 2006
  ident: 10027_CR38
  publication-title: J Mol Model
  doi: 10.1007/s00894-005-0086-7
– volume: 50
  start-page: 438
  issue: 2
  year: 2005
  ident: 10027_CR36
  publication-title: J Chem Eng Data
  doi: 10.1021/je049732n
– volume: 68
  start-page: 317
  issue: 1
  year: 2020
  ident: 10027_CR30
  publication-title: IEEE Trans Eng Manag
  doi: 10.1109/TEM.2020.2972288
– volume: 8
  year: 2018
  ident: 10027_CR51
  publication-title: Phys Rev X
  doi: 10.1103/PhysRevX.8.031084
– volume: 194
  start-page: 116512
  year: 2022
  ident: 10027_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116512
– volume: 4
  start-page: 347
  issue: 7
  year: 2020
  ident: 10027_CR54
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-020-0189-9
– volume: 22
  start-page: 1
  issue: 4
  year: 2023
  ident: 10027_CR29
  publication-title: ACM Trans Internet Technol
  doi: 10.1145/3564783
– volume: 97
  start-page: 042315
  issue: 4
  year: 2018
  ident: 10027_CR26
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.97.042315
– volume: 26
  start-page: 793
  year: 2019
  ident: 10027_CR5
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-018-9269-0
– volume: 7
  start-page: 021021
  issue: 2
  year: 2017
  ident: 10027_CR70
  publication-title: Phys Rev X
– volume: 7
  start-page: 46317
  year: 2019
  ident: 10027_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909490
– volume: 8
  start-page: 3192
  issue: 4
  year: 2017
  ident: 10027_CR69
  publication-title: Chem Sci
  doi: 10.1039/C6SC05720A
– volume: 2
  start-page: 567
  issue: 9
  year: 2022
  ident: 10027_CR2
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-022-00311-3
– ident: 10027_CR17
  doi: 10.1109/MECO55406.2022.9797184
– ident: 10027_CR23
– volume: 6
  start-page: 1904
  issue: 8
  year: 2020
  ident: 10027_CR48
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.008
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10027_CR73
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64078-1
SSID ssj0054992
Score 2.4327753
SecondaryResourceType review_article
Snippet Quantum Machine Learning (QML) has emerged as a unique computing area. The utilization of quantum technology in machine learning can solve complex problems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1555
SubjectTerms Algorithms
Bibliometrics
Computers
Engineering
Error correction
Geographical distribution
Information processing
Machine learning
Mathematical and Computational Engineering
Network analysis
Neural networks
Pattern analysis
Quantum computing
Quantum physics
Review Article
Scientometrics
Support vector machines
Systematic review
Taxonomy
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgcIADgwFiMFAO3KBSP0LTcpsQE5dNwGDarUrTBE2CgtaN_X2cNN0GAiS4VWoaVXZiP8fOM8Bppt0k02R4PpcYoKAuEMd5jkiVmyqBAF1R02yC9XrRcBjf2kthRVXtXqUkjaVeXHbD1Yehr69rqTCYcmarsIbuLtING-77g8r-6oDH5Di9QJ_5h669KvP9HJ_d0QJjfkmLGm_Tqf_vP7dhy6JL0i6Xww6syLwBdYs0id3HRQM2l2gId2FwN0X5Tl9I11RWSmJJV58IIlpS9n2wZ4akazpOF2SUk6U5Lkmb9Oec0KRMOOzBY-f64erGsf0WHIEbceKolNJUMEFdyXnGwtiXFwKfFecYFIWUKY9naBKyKGVZpkLOpBdwFclAsZQGKtiHWv6aywMgKUWzqXxFM4QPgR_E0mVc0ihM_VhhDNkErxJ7IiwZue6J8ZwsaJS1GBMUY2LEmMyacDb_5q2k4vh1dKvSZmK3ZZEECPBCnToOm3BeaW_x-ufZDv82_Ag2fAQ_ZYVPC2qT8VQew7p4n4yK8YlZrh80OOTz
  priority: 102
  providerName: Springer Nature
Title Quantum Machine Learning for Computational Methods in Engineering: A Systematic Review
URI https://link.springer.com/article/10.1007/s11831-023-10027-w
https://www.proquest.com/docview/3256682906
Volume 31
WOSCitedRecordID wos001114656400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M0C
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: 7WY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8eDFbyOKpAdvuriPuoIXgwRiYiAIih-XpetaY6KADvTf97XrQE3k4qXZsq1Z-trX3_vo7wEcJnqbZJoMz-cSDRSUBeI4zxGxcmMlEKAraopNsHa7cn9f7ViHW2rTKnOdaBR1MhTaR34S4N4c6qhfeD56c3TVKB1dtSU0FqGgWRI8k7rXyzWxNn1MtNMLtPc_dO2hmezoHM5lNKR9nZmFppnz-XNjmqHNXwFSs-801_77x-uwahEnqWVTZAMW5GAT1iz6JHZtp1vQv57gKE9eScvkV0piqVefCOJaklV_sJ5D0jJ1p1PyPCDfCA3PSI30pszQJAs7bMNts3FTv3Rs1QVH4HIcOyqmNBZMUFdynrCw6stTgdeKczSNQsqUxxNUDEklZkmiQs6kF3BVkYFiMQ1UsANLg-FA7gKJKSpP5SuaIIgI_KAqXcYlrYSxX1VoSRbBy4c8EpaSXFfGeIlmZMpaTBGKKTJiij6LcDT9ZpQRcsx9u5TLJrKLM41mginCcS7d2eO_e9ub39s-rPgIebK8nhIsjd8n8gCWxcf4OX0vwyK7eyhD4aLR7nTx7oo52LbcetlMWmw7p4_Ydnv9Lype8Eo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZgIMGFN2I8c4ATVKxJaDokhBAPgcYmEA9xK2maoEkwYN2Y-FP8Rpw2ZYAENw7cKrWN1Pqz_Tl2bIDVxLpJYZvhUakxQEFZII_zPRWbSmwUEnTDs2ETotEIb26qZwPwVpyFsWWVhU3MDHXyqOwe-SZD3xzYrF-w-_Ts2alRNrtajNDIYVHTrz0M2dKdkwOU7xqlR4eX-8eemyrgKYRbxzMx57ESile0lIkIqlRvKbw2UiL1D7gwvkwQ-EkYiyQxgRTaZ9KEmhkRc2YYrjsIQ5yFwupVTXiF5behVpZd9ZnNNgQVd0gnP6qHuoOBO7WVYBgKer2vjrDPbr8lZDM_dzT-3_7QBIw5Rk32chWYhAHdmoJxx66Js13pNFyfdxFF3QdSz-pHNXGtZe8I8naST7dwO6Okns3VTkmzRT41bNwme-Tio_M1ydMqM3D1J183C6XWY0vPAYk5OgdDDU-QJDHKqroipOZhENOqwUi5DH4h4ki5lut28sd91G8WbWERISyiDBZRrwzrH-885Q1Hfn16scBC5IxPGvWBUIaNAk392z-vNv_7aiswcnxZP41OTxq1BRilSO_yGqZFKHXaXb0Ew-ql00zby5laELj9a5S9A_DLStQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6bidGoefNOytonN5ttQh6Ibk-nYW0nbRAZax7q5f99Lm25TVBDfCk1Dubsk3-XuvgM4ifQxyTUZniskOiioC8RxjhUGyg5UiABdsbTZBG-1qr1erT1XxZ9mu-chyaymQbM0xaPKIFKVWeEbWiK6wa7Oq0LHyposwhLTifTaX-90871YOz9pvNOh-v7fs03ZzPdzfD6aZnjzS4g0PXkaG___501YN6iT1DMz2YIFGRdhwyBQYtZ3UoS1OXrCbeg-jFHu41fSTDMuJTFkrM8EkS7J-kGYu0TSTDtRJ6Qfk7k5LkiddKZc0SQLROzAU-P68fLGMn0YrBAX6MhSAWNByENmSyEi7tVceR7isxICnSWPceWICLeKqBrwKFKe4NKhQlUlVTxgVNFdKMRvsdwDEjDcTpWrWISwgrq0Jm0uJKt6gVtT6FuWwMlV4IeGpFz3ynjxZ_TKWow-itFPxehPSnA6_WaQUXT8Orqca9Y3yzXxKQI_T4eUvRKc5Zqcvf55tv2_DT-GlfZVw7-_bd0dwKqL-ChLAipDYTQcy0NYDt9H_WR4lFrxBw6E8Ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Machine+Learning+for+Computational+Methods+in+Engineering%3A+A+Systematic+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Sood%2C+Sandeep+Kumar&rft.au=Agrewal%2C+Monika&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=31&rft.issue=3&rft.spage=1555&rft.epage=1577&rft_id=info:doi/10.1007%2Fs11831-023-10027-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon