A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems
With the gradual transformation of energy industries around the world, the trend of industrial reform led by clean energy has become increasingly apparent. As a critical link in the new energy industry chain, lithium-ion (Li-ion) battery energy storage system plays an irreplaceable role. Accurate es...
Uloženo v:
| Vydáno v: | Ionics Ročník 30; číslo 10; s. 5903 - 5927 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0947-7047, 1862-0760 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With the gradual transformation of energy industries around the world, the trend of industrial reform led by clean energy has become increasingly apparent. As a critical link in the new energy industry chain, lithium-ion (Li-ion) battery energy storage system plays an irreplaceable role. Accurate estimation of Li-ion battery states, especially state of charge (SOC) and state of health (SOH), is the core to realize the safe and efficient utilization of energy storage systems. This paper presents a systematic and comprehensive evaluation and summary of the most advanced Li-ion battery state estimation methods proposed in the past 3 years, focusing on analyzing data-driven state estimation algorithms. At the same time, the latest Li-ion battery data sets and data selection methods are analyzed, and future research trends and possible challenges are proposed. This review will provide a valuable reference for future academic research in Li-ion battery state estimation. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0947-7047 1862-0760 |
| DOI: | 10.1007/s11581-024-05686-z |