Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC
The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by...
Uloženo v:
| Vydáno v: | Nonlinear dynamics Ročník 96; číslo 2; s. 1115 - 1131 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.04.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the
X
-
X
r
method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method. |
|---|---|
| AbstractList | The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the X-Xr method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method. The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the X - X r method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method. |
| Author | D’Souza, Kiran Tien, Meng-Hsuan |
| Author_xml | – sequence: 1 givenname: Meng-Hsuan orcidid: 0000-0002-1844-0093 surname: Tien fullname: Tien, Meng-Hsuan organization: Department of Mechanical and Aerospace Engineering, The Ohio State University – sequence: 2 givenname: Kiran orcidid: 0000-0002-1144-2432 surname: D’Souza fullname: D’Souza, Kiran email: dsouza.60@osu.edu organization: Department of Mechanical and Aerospace Engineering, The Ohio State University |
| BookMark | eNp9kM1KAzEURoNUsK2-gKuA69H8zSRZSlErFF1YobuQZjI1dZoZkwxSn96pIwguurqL-53L_c4EjHzjLQCXGF1jhPhNxBhxnCEsM8QEYxk_AWOcc5qRQq5GYIwkYRmSaHUGJjFuEUKUIDEGZhm0j876BMu91ztnoPa63kcXYVNBE7R5tyWMKXQmdcFG-OnSG9x1dXJtbaFpfNImwVa7EGEXnd_AjfU26Np99eD85Wl2Dk4rXUd78Tun4PX-bjmbZ4vnh8fZ7SIzFMuUVcJoWqDCUkHLQuesMoiKqhScr20uaEVJsdakJJIVlcyFJtQI0--oNabglE7B1XC3Dc1HZ2NS26YLfZuoiKCC5blkvE-JIWVCE2OwlTIu6eT6IkG7WmGkDkrVoFT1StWPUnVAyT-0DW6nw_44RAco9mG_seHvqyPUN3UkjOU |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2023_110765 crossref_primary_10_2514_1_J058190 crossref_primary_10_1007_s11071_023_08958_x crossref_primary_10_1371_journal_pone_0330909 |
| Cites_doi | 10.1016/j.jsv.2010.04.008 10.2172/249299 10.1016/j.ymssp.2015.01.021 10.1177/1475921710361324 10.1177/058310249803000201 10.1007/s13349-011-0009-5 10.1115/1.4042520 10.1017/S026357470600316X 10.1115/1.4039296 10.1016/j.jsv.2008.02.018 10.1371/journal.pone.0137779 10.1016/j.cma.2017.06.007 10.1016/j.jsv.2011.01.028 10.1016/0771-050X(80)90013-3 10.2514/3.2874 10.2514/3.3027 10.1007/s11071-011-0119-y 10.1115/1.1401075 10.1016/j.cma.2014.05.002 10.1007/s11071-017-3385-5 10.2514/6.2019-0489 10.2514/3.4741 10.1115/1.2375141 10.1016/0013-7944(94)00175-8 10.1115/1.4003940 10.1016/j.ymssp.2011.02.003 10.1016/j.ijnonlinmec.2009.01.006 10.1007/BF00927673 10.1016/j.ijnonlinmec.2009.07.002 10.1006/mssp.1995.0026 10.1016/j.jsv.2014.01.029 10.1115/1.3007908 10.1137/S1064827594276424 10.1115/1.2889743 10.1137/S1064827502400650 10.1177/1077546316689214 10.1115/1.4038613 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 Springer Nature B.V. 2019. |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Springer Nature B.V. 2019. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s11071-019-04844-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Databases ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 1131 |
| ExternalDocumentID | 10_1007_s11071_019_04844_7 |
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAK LLZTM M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ARCEE ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG SCV T16 TEORI UZXMN VFIZW DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-f8ca3606e383d6a54fc038fd877be583f326ba2d2946f958a23c8c7be3ecc6733 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465633400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Wed Nov 05 02:05:55 EST 2025 Sat Nov 29 03:06:23 EST 2025 Tue Nov 18 22:25:34 EST 2025 Fri Feb 21 02:32:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Cracked structure Hybrid symbolic–numeric computation Reduced-order modeling Piecewise-linear nonlinearity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f8ca3606e383d6a54fc038fd877be583f326ba2d2946f958a23c8c7be3ecc6733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1144-2432 0000-0002-1844-0093 |
| PQID | 2838455947 |
| PQPubID | 2043746 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2838455947 crossref_citationtrail_10_1007_s11071_019_04844_7 crossref_primary_10_1007_s11071_019_04844_7 springer_journals_10_1007_s11071_019_04844_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20190401 2019-4-00 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 4 year: 2019 text: 20190401 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2019 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | KimJGParkYJLeeGHKimDNA general model reduction with primal assembly in structural dynamicsComput. Methods Appl. Mech. Eng.2017324128368274610.1016/j.cma.2017.06.007 JaumouillVSinouJJPetitjeanBAn adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems–application to bolted structuresJ. Sound Vib.2010329194048406710.1016/j.jsv.2010.04.008 GuyanRJReduction of stiffness and mass matricesAIAA J.19653238010.2514/3.2874 EwinsDJModal Testing: Theory and Practice1984TauntonResearch Studies Press SaitoACastanierMPPierreCPoudouOEfficient nonlinear vibration analysis of the forced response of rotating cracked bladesJ. Comput. Nonlinear Dyn. Trans. ASME200941011,00510.1115/1.3007908 DellaCNShuDVibration of delaminated composite laminates: a reviewAppl. Mech. Rev.200760112010.1115/1.2375141 HeinHFeklistovaLComputationally efficient delamination detection in composite beams using Haar waveletsMech. Syst. Signal Process.20112562257227010.1016/j.ymssp.2011.02.003 JungCD’SouzaKEpureanuBINonlinear amplitude approximation for bilinear systemsJ. Sound Vib.20143331329091910.1016/j.jsv.2014.01.029 MATLAB: version: R2017b. The MathWorks Inc., Natick, Massachusetts (2017) BurlayenkoVNSadowskiTInfluence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich platesInt. J. Non-Linear Mech.20094595996810.1016/j.ijnonlinmec.2009.07.002 BovsunovskyASuraceCNon-linearities in the vibrations of elastic structures with a closing crack: a state of the art reviewMech. Syst. Signal Process.201562–6312914810.1016/j.ymssp.2015.01.021 KurstakED’SouzaKMultistage blisk and large mistuning modeling using fourier constraint modes and PRIMEJ. Eng. Gas Turbines Power Trans. ASME2018140707250510.1115/1.4038613 CraigRRBamptonMCCCoupling of substructures for dynamic analysesAIAA J.1968671313131910.2514/3.47410159.56202 Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems. Ph.D. thesis, The University of Michigan (2007) ShampineLFReicheltMWThe matlab ode suiteSIAM J. Sci. Comput.1997181122143337410.1137/S10648275942764240868.65040 ZuccaSEpureanuBIReduced order models for nonlinear dynamic analysis of structures with intermittent contactsJ. Vib. Control2018241225912604380077310.1177/1077546316689214 ShiiryayevOVSlaterJCDetection of fatigue cracks using random decrement signaturesStruct. Health Monit.20109434736010.1177/1475921710361324 Tien, M.H., Hu, T., D’Souza, K.: Generalized bilinear amplitude approximation and X-Xr for modeling cyclically symmetric structures with cracks. Journal of Vibration and Acoustics 140(4), 041,012–041,012–10 (2018). https://doi.org/10.1115/1.4039296 BrownjohnJMWDe StefanoAXuYLWenzelHAktanAEVibration-based monitoring of civil infrastructure: challenges and successesJ. Civ. Struct. Health Monit.201113799510.1007/s13349-011-0009-5 ZhouTXuJSunZDynamic analysis and diagnosis of a cracked rotorJ. Vib. Acoust. Trans. ASME200112353453910.1115/1.1401075 CastanierMPÓttarssonGPierreCA reduced order modeling technique for mistuned bladed disksJ. Vib. Acoust.1997119343944710.1115/1.2889743 HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705 KimJGLeePSAn accurate error estimator for guyan reductionComput. Methods Appl. Mech. Eng.2014278119323184610.1016/j.cma.2014.05.00206928115 IronsBStructural eigenvalue problems: elimination of unwanted variablesAIAA J.19653596196210.2514/3.3027 Tien, M.H., Hu, T., D’Souza, K.: Efficient analysis of cyclic symmetric structures with mistuning and cracks. In: AIAA Scitech 2019 Forum, pp. AIAA 2019–0489 (2019). https://doi.org/10.2514/6.2019-0489 Allemang, R.: Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques. Ph.D .Thesis, University of Cincinnati, Mechanical Engineering Department (1980) Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. In: Los Alamos National Laboratory Report LA-13070-MS. Los Alamos, NM (1996) MarinescuOEpureanuBBanuMReduced order models of mistuned cracked bladed disksJ. Vib. Acoust.20111335051,01410.1115/1.4003940 NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech.195985EM36794 ZuccaSFirroneCMGolaMMNumerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loadsNonlinear Dyn.201267319431955287742910.1007/s11071-011-0119-y DoeblingSWFarrarCRPrimeMBA summary review of vibration-based damage identification methodsShock Vib. Dig.19983029110510.1177/058310249803000201 D’SouzaKEpureanuBIMultiple augmentations of nonlinear systems and generalized minimum rank perturbations for damage detectionJ. Sound Vib.20083161–510112110.1016/j.jsv.2008.02.018 FriswellMIPennyJETGarveySDUsing linear model reduction to investigate the dynamics of structures with local non-linearitiesMech. Syst. Signal Process.19959331732810.1006/mssp.1995.0026 MaOWangJModel order reduction for impact-contact dynamics simulations of flexible manipulatorsRobotica2007250439740710.1017/S026357470600316X TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-Linear Mech.200944437138210.1016/j.ijnonlinmec.2009.01.0061203.74141 TienMHD’SouzaKA generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestressNonlinear Dyn.20178842403241610.1007/s11071-017-3385-5 DimarogonasADVibration of cracked structures: a state of the art reviewEng. Fract. Mech.199655583185710.1016/0013-7944(94)00175-8 BrakeMA hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraintsJ. Sound Vib.2011330133196322110.1016/j.jsv.2011.01.028 TienMHD’SouzaKAnalyzing bilinear systems using a new hybrid symbolic-numeric computational methodJ. Vibr. Acoust.2019141303100810.1115/1.4042520 BennighofJKLehoucqRBAn automated multilevel substructuring method for eigenspace computation in linear elastodynamicsSIAM J. Sci. Comput.200425620842106208683210.1137/S10648275024006501133.65304 DormandJPrincePA family of embedded Runge–Kutta formulaeJ. Comput. Appl. Math.198061192656859910.1016/0771-050X(80)90013-30448.65045 D’SouzaKEpureanuBIPascualMForecasting bifurcations from large perturbation recoveries in feedback ecosystemsPLOS ONE2015109119 SW Doebling (4844_CR11) 1998; 30 T Zhou (4844_CR40) 2001; 123 RJ Guyan (4844_CR18) 1965; 3 V Jaumouill (4844_CR22) 2010; 329 NM Newmark (4844_CR30) 1959; 85 K D’Souza (4844_CR14) 2008; 316 H Hein (4844_CR19) 2011; 25 E Kurstak (4844_CR26) 2018; 140 JK Bennighof (4844_CR2) 2004; 25 K D’Souza (4844_CR15) 2015; 10 MH Tien (4844_CR36) 2017; 88 MP Castanier (4844_CR7) 1997; 119 4844_CR29 LF Shampine (4844_CR33) 1997; 18 B Irons (4844_CR21) 1965; 3 JG Kim (4844_CR24) 2014; 278 S Zucca (4844_CR41) 2018; 24 O Ma (4844_CR27) 2007; 25 C Jung (4844_CR23) 2014; 333 MH Tien (4844_CR37) 2019; 141 S Zucca (4844_CR42) 2012; 67 C Theodosiou (4844_CR35) 2009; 44 CN Della (4844_CR9) 2007; 60 AD Dimarogonas (4844_CR10) 1996; 55 4844_CR12 JG Kim (4844_CR25) 2017; 324 4844_CR31 JMW Brownjohn (4844_CR5) 2011; 1 VN Burlayenko (4844_CR6) 2009; 45 DJ Ewins (4844_CR16) 1984 4844_CR38 A Bovsunovsky (4844_CR3) 2015; 62–63 OV Shiiryayev (4844_CR34) 2010; 9 4844_CR39 J Dormand (4844_CR13) 1980; 6 MR Hestenes (4844_CR20) 1969; 4 4844_CR1 MI Friswell (4844_CR17) 1995; 9 O Marinescu (4844_CR28) 2011; 133 M Brake (4844_CR4) 2011; 330 A Saito (4844_CR32) 2009; 4 RR Craig (4844_CR8) 1968; 6 |
| References_xml | – reference: Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. In: Los Alamos National Laboratory Report LA-13070-MS. Los Alamos, NM (1996) – reference: HeinHFeklistovaLComputationally efficient delamination detection in composite beams using Haar waveletsMech. Syst. Signal Process.20112562257227010.1016/j.ymssp.2011.02.003 – reference: ShiiryayevOVSlaterJCDetection of fatigue cracks using random decrement signaturesStruct. Health Monit.20109434736010.1177/1475921710361324 – reference: D’SouzaKEpureanuBIMultiple augmentations of nonlinear systems and generalized minimum rank perturbations for damage detectionJ. Sound Vib.20083161–510112110.1016/j.jsv.2008.02.018 – reference: HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705 – reference: ShampineLFReicheltMWThe matlab ode suiteSIAM J. Sci. Comput.1997181122143337410.1137/S10648275942764240868.65040 – reference: BennighofJKLehoucqRBAn automated multilevel substructuring method for eigenspace computation in linear elastodynamicsSIAM J. Sci. Comput.200425620842106208683210.1137/S10648275024006501133.65304 – reference: NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech.195985EM36794 – reference: DellaCNShuDVibration of delaminated composite laminates: a reviewAppl. Mech. Rev.200760112010.1115/1.2375141 – reference: KurstakED’SouzaKMultistage blisk and large mistuning modeling using fourier constraint modes and PRIMEJ. Eng. Gas Turbines Power Trans. ASME2018140707250510.1115/1.4038613 – reference: TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-Linear Mech.200944437138210.1016/j.ijnonlinmec.2009.01.0061203.74141 – reference: Tien, M.H., Hu, T., D’Souza, K.: Generalized bilinear amplitude approximation and X-Xr for modeling cyclically symmetric structures with cracks. Journal of Vibration and Acoustics 140(4), 041,012–041,012–10 (2018). https://doi.org/10.1115/1.4039296 – reference: Tien, M.H., Hu, T., D’Souza, K.: Efficient analysis of cyclic symmetric structures with mistuning and cracks. In: AIAA Scitech 2019 Forum, pp. AIAA 2019–0489 (2019). https://doi.org/10.2514/6.2019-0489 – reference: JungCD’SouzaKEpureanuBINonlinear amplitude approximation for bilinear systemsJ. Sound Vib.20143331329091910.1016/j.jsv.2014.01.029 – reference: MATLAB: version: R2017b. The MathWorks Inc., Natick, Massachusetts (2017) – reference: Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems. Ph.D. thesis, The University of Michigan (2007) – reference: SaitoACastanierMPPierreCPoudouOEfficient nonlinear vibration analysis of the forced response of rotating cracked bladesJ. Comput. Nonlinear Dyn. Trans. ASME200941011,00510.1115/1.3007908 – reference: Allemang, R.: Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques. Ph.D .Thesis, University of Cincinnati, Mechanical Engineering Department (1980) – reference: DoeblingSWFarrarCRPrimeMBA summary review of vibration-based damage identification methodsShock Vib. Dig.19983029110510.1177/058310249803000201 – reference: JaumouillVSinouJJPetitjeanBAn adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems–application to bolted structuresJ. Sound Vib.2010329194048406710.1016/j.jsv.2010.04.008 – reference: MarinescuOEpureanuBBanuMReduced order models of mistuned cracked bladed disksJ. Vib. Acoust.20111335051,01410.1115/1.4003940 – reference: IronsBStructural eigenvalue problems: elimination of unwanted variablesAIAA J.19653596196210.2514/3.3027 – reference: MaOWangJModel order reduction for impact-contact dynamics simulations of flexible manipulatorsRobotica2007250439740710.1017/S026357470600316X – reference: EwinsDJModal Testing: Theory and Practice1984TauntonResearch Studies Press – reference: ZhouTXuJSunZDynamic analysis and diagnosis of a cracked rotorJ. Vib. Acoust. Trans. ASME200112353453910.1115/1.1401075 – reference: BovsunovskyASuraceCNon-linearities in the vibrations of elastic structures with a closing crack: a state of the art reviewMech. Syst. Signal Process.201562–6312914810.1016/j.ymssp.2015.01.021 – reference: D’SouzaKEpureanuBIPascualMForecasting bifurcations from large perturbation recoveries in feedback ecosystemsPLOS ONE2015109119 – reference: KimJGParkYJLeeGHKimDNA general model reduction with primal assembly in structural dynamicsComput. Methods Appl. Mech. Eng.2017324128368274610.1016/j.cma.2017.06.007 – reference: TienMHD’SouzaKA generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestressNonlinear Dyn.20178842403241610.1007/s11071-017-3385-5 – reference: ZuccaSFirroneCMGolaMMNumerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loadsNonlinear Dyn.201267319431955287742910.1007/s11071-011-0119-y – reference: BrownjohnJMWDe StefanoAXuYLWenzelHAktanAEVibration-based monitoring of civil infrastructure: challenges and successesJ. Civ. Struct. Health Monit.201113799510.1007/s13349-011-0009-5 – reference: ZuccaSEpureanuBIReduced order models for nonlinear dynamic analysis of structures with intermittent contactsJ. Vib. Control2018241225912604380077310.1177/1077546316689214 – reference: FriswellMIPennyJETGarveySDUsing linear model reduction to investigate the dynamics of structures with local non-linearitiesMech. Syst. Signal Process.19959331732810.1006/mssp.1995.0026 – reference: GuyanRJReduction of stiffness and mass matricesAIAA J.19653238010.2514/3.2874 – reference: KimJGLeePSAn accurate error estimator for guyan reductionComput. Methods Appl. Mech. Eng.2014278119323184610.1016/j.cma.2014.05.00206928115 – reference: BrakeMA hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraintsJ. Sound Vib.2011330133196322110.1016/j.jsv.2011.01.028 – reference: CraigRRBamptonMCCCoupling of substructures for dynamic analysesAIAA J.1968671313131910.2514/3.47410159.56202 – reference: BurlayenkoVNSadowskiTInfluence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich platesInt. J. Non-Linear Mech.20094595996810.1016/j.ijnonlinmec.2009.07.002 – reference: DimarogonasADVibration of cracked structures: a state of the art reviewEng. Fract. Mech.199655583185710.1016/0013-7944(94)00175-8 – reference: TienMHD’SouzaKAnalyzing bilinear systems using a new hybrid symbolic-numeric computational methodJ. Vibr. Acoust.2019141303100810.1115/1.4042520 – reference: CastanierMPÓttarssonGPierreCA reduced order modeling technique for mistuned bladed disksJ. Vib. Acoust.1997119343944710.1115/1.2889743 – reference: DormandJPrincePA family of embedded Runge–Kutta formulaeJ. Comput. Appl. Math.198061192656859910.1016/0771-050X(80)90013-30448.65045 – volume: 329 start-page: 4048 issue: 19 year: 2010 ident: 4844_CR22 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.04.008 – volume-title: Modal Testing: Theory and Practice year: 1984 ident: 4844_CR16 – ident: 4844_CR12 doi: 10.2172/249299 – volume: 62–63 start-page: 129 year: 2015 ident: 4844_CR3 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.01.021 – ident: 4844_CR29 – volume: 9 start-page: 347 issue: 4 year: 2010 ident: 4844_CR34 publication-title: Struct. Health Monit. doi: 10.1177/1475921710361324 – volume: 30 start-page: 91 issue: 2 year: 1998 ident: 4844_CR11 publication-title: Shock Vib. Dig. doi: 10.1177/058310249803000201 – volume: 1 start-page: 79 issue: 3 year: 2011 ident: 4844_CR5 publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-011-0009-5 – volume: 141 start-page: 031008 issue: 3 year: 2019 ident: 4844_CR37 publication-title: J. Vibr. Acoust. doi: 10.1115/1.4042520 – volume: 25 start-page: 397 issue: 04 year: 2007 ident: 4844_CR27 publication-title: Robotica doi: 10.1017/S026357470600316X – ident: 4844_CR38 doi: 10.1115/1.4039296 – volume: 316 start-page: 101 issue: 1–5 year: 2008 ident: 4844_CR14 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.02.018 – volume: 10 start-page: 1 issue: 9 year: 2015 ident: 4844_CR15 publication-title: PLOS ONE doi: 10.1371/journal.pone.0137779 – volume: 324 start-page: 1 year: 2017 ident: 4844_CR25 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.06.007 – volume: 330 start-page: 3196 issue: 13 year: 2011 ident: 4844_CR4 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.01.028 – volume: 6 start-page: 19 issue: 1 year: 1980 ident: 4844_CR13 publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(80)90013-3 – volume: 3 start-page: 380 issue: 2 year: 1965 ident: 4844_CR18 publication-title: AIAA J. doi: 10.2514/3.2874 – ident: 4844_CR31 – volume: 3 start-page: 961 issue: 5 year: 1965 ident: 4844_CR21 publication-title: AIAA J. doi: 10.2514/3.3027 – volume: 67 start-page: 1943 issue: 3 year: 2012 ident: 4844_CR42 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-011-0119-y – volume: 123 start-page: 534 year: 2001 ident: 4844_CR40 publication-title: J. Vib. Acoust. Trans. ASME doi: 10.1115/1.1401075 – volume: 278 start-page: 1 year: 2014 ident: 4844_CR24 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.05.002 – volume: 85 start-page: 67 issue: EM3 year: 1959 ident: 4844_CR30 publication-title: J. Eng. Mech. – volume: 88 start-page: 2403 issue: 4 year: 2017 ident: 4844_CR36 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3385-5 – ident: 4844_CR39 doi: 10.2514/6.2019-0489 – volume: 6 start-page: 1313 issue: 7 year: 1968 ident: 4844_CR8 publication-title: AIAA J. doi: 10.2514/3.4741 – volume: 60 start-page: 1 issue: 1 year: 2007 ident: 4844_CR9 publication-title: Appl. Mech. Rev. doi: 10.1115/1.2375141 – volume: 55 start-page: 831 issue: 5 year: 1996 ident: 4844_CR10 publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(94)00175-8 – volume: 133 start-page: 051,014 issue: 5 year: 2011 ident: 4844_CR28 publication-title: J. Vib. Acoust. doi: 10.1115/1.4003940 – volume: 25 start-page: 2257 issue: 6 year: 2011 ident: 4844_CR19 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.02.003 – volume: 44 start-page: 371 issue: 4 year: 2009 ident: 4844_CR35 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2009.01.006 – volume: 4 start-page: 303 year: 1969 ident: 4844_CR20 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00927673 – volume: 45 start-page: 959 year: 2009 ident: 4844_CR6 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2009.07.002 – volume: 9 start-page: 317 issue: 3 year: 1995 ident: 4844_CR17 publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.1995.0026 – volume: 333 start-page: 2909 issue: 13 year: 2014 ident: 4844_CR23 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.01.029 – volume: 4 start-page: 011,005 issue: 1 year: 2009 ident: 4844_CR32 publication-title: J. Comput. Nonlinear Dyn. Trans. ASME doi: 10.1115/1.3007908 – volume: 18 start-page: 1 issue: 1 year: 1997 ident: 4844_CR33 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594276424 – ident: 4844_CR1 – volume: 119 start-page: 439 issue: 3 year: 1997 ident: 4844_CR7 publication-title: J. Vib. Acoust. doi: 10.1115/1.2889743 – volume: 25 start-page: 2084 issue: 6 year: 2004 ident: 4844_CR2 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502400650 – volume: 24 start-page: 2591 issue: 12 year: 2018 ident: 4844_CR41 publication-title: J. Vib. Control doi: 10.1177/1077546316689214 – volume: 140 start-page: 072505 issue: 7 year: 2018 ident: 4844_CR26 publication-title: J. Eng. Gas Turbines Power Trans. ASME doi: 10.1115/1.4038613 |
| SSID | ssj0003208 |
| Score | 2.3103034 |
| Snippet | The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1115 |
| SubjectTerms | Aerospace engineering Algorithms Automotive Engineering Cantilever beams Classical Mechanics Computational efficiency Control Cracks Dynamical Systems Engineering Initial conditions Mass-spring systems Mathematical models Mechanical Engineering Nonlinear response Nonlinear systems Nonlinearity Numerical integration Numerical methods Optimization Original Paper Reduced order models Search process Steady state Switches Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8KAHUdSIounBmy6OtVu7k1EC4bQQPxJuS9ethMQAMvTgX-_r1oGayMVzt6bJ7_V99_cArhT3RMK57yjqcYd1mHYSppVDmWBMSzdjQTlsgkeRGI3CoU245batstKJhaJOZ8rkyG_RDAqG7i_jd_M3x0yNMtVVO0JjG-qGqQzlvP7Qi4aPK11MvWImnYtRhslIjOyzmfLxHEY-JpQ2xQE8mMN_mqa1v_mrRFpYnn7jv2c-gH3rc5L7UkgOYSubNqFh_U9ib3fehL1v5IRHoAozZp5LkrQcW0-kZTAhM03UQqICSElJQPuOUTsxOV1SdSgS0wQv1ZLMTcWImP76MRmXJNeTT_xx8BR1j-Gl33vuDhw7kgGx7IRLRwslKcY8GQa2aSB9hNWlQqeC8yTzBdXoDSbSS72QBTr0hfSoEgrXKIpKwCk9gdp0Ns1OgaSJz3Uo_FDSkIXalxIjw0xQV0tDmei2oFOhESvLV27GZrzGa6Zlg2CMCMYFgjFvwfXqn3nJ1rHx63YFW2xvbh6vMWvBTQX8evnv3c4273YOu14payhybaghONkF7KiP5SRfXFq5_QKmofNV priority: 102 providerName: ProQuest |
| Title | Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC |
| URI | https://link.springer.com/article/10.1007/s11071-019-04844-7 https://www.proquest.com/docview/2838455947 |
| Volume | 96 |
| WOSCitedRecordID | wos000465633400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-269X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-269X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5R8KAHUdSIIunBmy4Za7d2RyUYToSIGm5L162ExABh6MG_3tetY2rURM_9kabvvfZ97XvfA7hU3BMx576jqMcd1mXaiZlWDmWCMS3dlAVFsQk-HIrJJBzZpLCsjHYvvyTzk7pKdkOkYqCveczHiRy-DXXfsM0YjD5-2py_1Mvr0LmILMwrxMSmynw_x-frqPIxv3yL5rfNXeN_6zyAfetdkptCHQ5hK503oWE9TWLtOGvC3gcawiNQ-YVlEiNJUhSoJ9JylZCFJmol0dQTUlDNviA-J-b1lpSxiMSEu0u1JkvzN0RMJP2UTAs669kbDhyMh71jeLzrP_QGji2-gFLrhmtHCyUpopsUIWwSSB8F6FKhE8F5nPqCavT7YuklXsgCHfpCelQJhW0UlSLglJ5Abb6Yp6dAktjnOhR-KGnIQu1LiRgwFdTV0pAjui3oljKIlGUmNwUynqOKU9nsaYR7GuV7GvEWXG3GLAtejl97t0vRRtZGswgdK8EQUDFsvi5FWTX_PNvZ37qfw65XaAMqRRtqKKz0AnbU63qWrTpQv-0PR_cdE3Q67uSa_A6XRep3 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hpVLpAcpLXUqLD-VUIrK2EzuHqmopaBE0QgWkvQXHsVcrtbvLZgHRH9Xf2HHisLQS3DhwdmL58XkeHs83AB-0oDIXIgo0oyLgHW6DnFsdMC45tyo0PK6LTYg0lb1ecjIHf5pcGPesspGJlaAuRtrdke-iGpQczV8uPo8vA1c1ykVXmxIaNSyOzO0Numzlp8NvuL_blB7sn-11A19VAIfTSaaBlVoxNNsN-mZFrCIcWcikLaQQuYkks2jQ5IoWNOGxTSKpKNNSYxvD2cbCXYCiyJ_njMdRC-a_7qcnP-5kP6NVDbwQvRp3A9LzaTp1sh56Ws51d8EIXIhA_KsKZ_btfyHZStMdLD23NXoNi96mJl_qQ7AMc2a4AkveviZeepUr8Ooe-eIq6EpNu3RQUtwO1a-BJsoztJCRJXqiUMAVpCbYvZqYkrg7a9K8wCTukb_SUzJ2ETHi8gf6pF-TeA9-44_d03RvDc6fZOLr0BqOhuYNkCKPhE1klCiW8MRGSqHnayQLrXKUkGEbOs3uZ9rzsbuyID-zGZO0Q0yGiMkqxGSiDR_v_hnXbCSPfr3ZwCTzkqnMZhhpw04DtFnzw71tPN7bFrzsnn0_zo4P06O3sEBrnCPcN6GFG2XewQt9PR2Uk_f-zBC4eGoI_gUsT1Dh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbgTTcs2y7tHg1KMJoNETXcNt3ulpAYIIAe_PVO98GiURPjta80nWk7XzvzDcC54o4IOXctRR1usQbTVsi0sigTjGlpx6yZJpvgvi_6fa-7FMWfeLvnX5JpTINhaRrN65NI14vAN0QtBgabh30c1OKrsMawzDh1PfSeF2cxdZKcdDaiDPMi0c_CZr4f4_PVVNibX75Ik5unXf7_nHdgO7M6yVWqJruwEo8qUM4sUJLt71kFtpboCfdAJReZCZgkUZq4nsiMw4SMNVFTiUdARFIK2lfE7cS86pLcR5GY-Uk1JxPzZ0SMh_2ADFKa6-E7duz0_NY-PLVvHlsdK0vKgNJseHNLCyUpop4YoW3UlC4K1qZCR4LzMHYF1WgPhtKJHI81tecK6VAlFNZRVJYmp_QASqPxKD4EEoUu155wPUk95mlXSsSGsaC2loY00a5CI5dHoDLGcpM44yUouJbNmga4pkGypgGvwsWizyTl6_i1dS0Xc5Dt3VmABpdgCLQYVl_mYi2qfx7t6G_Nz2Cje90O7m_9u2PYdFLFQP2oQQnlFp_AunqbD2fT00SlPwBHE_Ot |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+dynamic+analysis+of+cracked+structures+with+multiple+contact+pairs+using+generalized+HSNC&rft.jtitle=Nonlinear+dynamics&rft.au=Tien%2C+Meng-Hsuan&rft.au=D%E2%80%99Souza%2C+Kiran&rft.date=2019-04-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=96&rft.issue=2&rft.spage=1115&rft.epage=1131&rft_id=info:doi/10.1007%2Fs11071-019-04844-7&rft.externalDocID=10_1007_s11071_019_04844_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |