Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC

The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 96; číslo 2; s. 1115 - 1131
Hlavní autoři: Tien, Meng-Hsuan, D’Souza, Kiran
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.04.2019
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the X - X r method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method.
AbstractList The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the X-Xr method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method.
The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the X - X r method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method.
Author D’Souza, Kiran
Tien, Meng-Hsuan
Author_xml – sequence: 1
  givenname: Meng-Hsuan
  orcidid: 0000-0002-1844-0093
  surname: Tien
  fullname: Tien, Meng-Hsuan
  organization: Department of Mechanical and Aerospace Engineering, The Ohio State University
– sequence: 2
  givenname: Kiran
  orcidid: 0000-0002-1144-2432
  surname: D’Souza
  fullname: D’Souza, Kiran
  email: dsouza.60@osu.edu
  organization: Department of Mechanical and Aerospace Engineering, The Ohio State University
BookMark eNp9kM1KAzEURoNUsK2-gKuA69H8zSRZSlErFF1YobuQZjI1dZoZkwxSn96pIwguurqL-53L_c4EjHzjLQCXGF1jhPhNxBhxnCEsM8QEYxk_AWOcc5qRQq5GYIwkYRmSaHUGJjFuEUKUIDEGZhm0j876BMu91ztnoPa63kcXYVNBE7R5tyWMKXQmdcFG-OnSG9x1dXJtbaFpfNImwVa7EGEXnd_AjfU26Np99eD85Wl2Dk4rXUd78Tun4PX-bjmbZ4vnh8fZ7SIzFMuUVcJoWqDCUkHLQuesMoiKqhScr20uaEVJsdakJJIVlcyFJtQI0--oNabglE7B1XC3Dc1HZ2NS26YLfZuoiKCC5blkvE-JIWVCE2OwlTIu6eT6IkG7WmGkDkrVoFT1StWPUnVAyT-0DW6nw_44RAco9mG_seHvqyPUN3UkjOU
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_110765
crossref_primary_10_2514_1_J058190
crossref_primary_10_1007_s11071_023_08958_x
crossref_primary_10_1371_journal_pone_0330909
Cites_doi 10.1016/j.jsv.2010.04.008
10.2172/249299
10.1016/j.ymssp.2015.01.021
10.1177/1475921710361324
10.1177/058310249803000201
10.1007/s13349-011-0009-5
10.1115/1.4042520
10.1017/S026357470600316X
10.1115/1.4039296
10.1016/j.jsv.2008.02.018
10.1371/journal.pone.0137779
10.1016/j.cma.2017.06.007
10.1016/j.jsv.2011.01.028
10.1016/0771-050X(80)90013-3
10.2514/3.2874
10.2514/3.3027
10.1007/s11071-011-0119-y
10.1115/1.1401075
10.1016/j.cma.2014.05.002
10.1007/s11071-017-3385-5
10.2514/6.2019-0489
10.2514/3.4741
10.1115/1.2375141
10.1016/0013-7944(94)00175-8
10.1115/1.4003940
10.1016/j.ymssp.2011.02.003
10.1016/j.ijnonlinmec.2009.01.006
10.1007/BF00927673
10.1016/j.ijnonlinmec.2009.07.002
10.1006/mssp.1995.0026
10.1016/j.jsv.2014.01.029
10.1115/1.3007908
10.1137/S1064827594276424
10.1115/1.2889743
10.1137/S1064827502400650
10.1177/1077546316689214
10.1115/1.4038613
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Springer Nature B.V. 2019.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Springer Nature B.V. 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11071-019-04844-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1131
ExternalDocumentID 10_1007_s11071_019_04844_7
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SCV
T16
TEORI
UZXMN
VFIZW
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-f8ca3606e383d6a54fc038fd877be583f326ba2d2946f958a23c8c7be3ecc6733
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465633400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 02:05:55 EST 2025
Sat Nov 29 03:06:23 EST 2025
Tue Nov 18 22:25:34 EST 2025
Fri Feb 21 02:32:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cracked structure
Hybrid symbolic–numeric computation
Reduced-order modeling
Piecewise-linear nonlinearity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f8ca3606e383d6a54fc038fd877be583f326ba2d2946f958a23c8c7be3ecc6733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1144-2432
0000-0002-1844-0093
PQID 2838455947
PQPubID 2043746
PageCount 17
ParticipantIDs proquest_journals_2838455947
crossref_citationtrail_10_1007_s11071_019_04844_7
crossref_primary_10_1007_s11071_019_04844_7
springer_journals_10_1007_s11071_019_04844_7
PublicationCentury 2000
PublicationDate 20190401
2019-4-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190401
  day: 1
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KimJGParkYJLeeGHKimDNA general model reduction with primal assembly in structural dynamicsComput. Methods Appl. Mech. Eng.2017324128368274610.1016/j.cma.2017.06.007
JaumouillVSinouJJPetitjeanBAn adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems–application to bolted structuresJ. Sound Vib.2010329194048406710.1016/j.jsv.2010.04.008
GuyanRJReduction of stiffness and mass matricesAIAA J.19653238010.2514/3.2874
EwinsDJModal Testing: Theory and Practice1984TauntonResearch Studies Press
SaitoACastanierMPPierreCPoudouOEfficient nonlinear vibration analysis of the forced response of rotating cracked bladesJ. Comput. Nonlinear Dyn. Trans. ASME200941011,00510.1115/1.3007908
DellaCNShuDVibration of delaminated composite laminates: a reviewAppl. Mech. Rev.200760112010.1115/1.2375141
HeinHFeklistovaLComputationally efficient delamination detection in composite beams using Haar waveletsMech. Syst. Signal Process.20112562257227010.1016/j.ymssp.2011.02.003
JungCD’SouzaKEpureanuBINonlinear amplitude approximation for bilinear systemsJ. Sound Vib.20143331329091910.1016/j.jsv.2014.01.029
MATLAB: version: R2017b. The MathWorks Inc., Natick, Massachusetts (2017)
BurlayenkoVNSadowskiTInfluence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich platesInt. J. Non-Linear Mech.20094595996810.1016/j.ijnonlinmec.2009.07.002
BovsunovskyASuraceCNon-linearities in the vibrations of elastic structures with a closing crack: a state of the art reviewMech. Syst. Signal Process.201562–6312914810.1016/j.ymssp.2015.01.021
KurstakED’SouzaKMultistage blisk and large mistuning modeling using fourier constraint modes and PRIMEJ. Eng. Gas Turbines Power Trans. ASME2018140707250510.1115/1.4038613
CraigRRBamptonMCCCoupling of substructures for dynamic analysesAIAA J.1968671313131910.2514/3.47410159.56202
Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems. Ph.D. thesis, The University of Michigan (2007)
ShampineLFReicheltMWThe matlab ode suiteSIAM J. Sci. Comput.1997181122143337410.1137/S10648275942764240868.65040
ZuccaSEpureanuBIReduced order models for nonlinear dynamic analysis of structures with intermittent contactsJ. Vib. Control2018241225912604380077310.1177/1077546316689214
ShiiryayevOVSlaterJCDetection of fatigue cracks using random decrement signaturesStruct. Health Monit.20109434736010.1177/1475921710361324
Tien, M.H., Hu, T., D’Souza, K.: Generalized bilinear amplitude approximation and X-Xr for modeling cyclically symmetric structures with cracks. Journal of Vibration and Acoustics 140(4), 041,012–041,012–10 (2018). https://doi.org/10.1115/1.4039296
BrownjohnJMWDe StefanoAXuYLWenzelHAktanAEVibration-based monitoring of civil infrastructure: challenges and successesJ. Civ. Struct. Health Monit.201113799510.1007/s13349-011-0009-5
ZhouTXuJSunZDynamic analysis and diagnosis of a cracked rotorJ. Vib. Acoust. Trans. ASME200112353453910.1115/1.1401075
CastanierMPÓttarssonGPierreCA reduced order modeling technique for mistuned bladed disksJ. Vib. Acoust.1997119343944710.1115/1.2889743
HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705
KimJGLeePSAn accurate error estimator for guyan reductionComput. Methods Appl. Mech. Eng.2014278119323184610.1016/j.cma.2014.05.00206928115
IronsBStructural eigenvalue problems: elimination of unwanted variablesAIAA J.19653596196210.2514/3.3027
Tien, M.H., Hu, T., D’Souza, K.: Efficient analysis of cyclic symmetric structures with mistuning and cracks. In: AIAA Scitech 2019 Forum, pp. AIAA 2019–0489 (2019). https://doi.org/10.2514/6.2019-0489
Allemang, R.: Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques. Ph.D .Thesis, University of Cincinnati, Mechanical Engineering Department (1980)
Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. In: Los Alamos National Laboratory Report LA-13070-MS. Los Alamos, NM (1996)
MarinescuOEpureanuBBanuMReduced order models of mistuned cracked bladed disksJ. Vib. Acoust.20111335051,01410.1115/1.4003940
NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech.195985EM36794
ZuccaSFirroneCMGolaMMNumerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loadsNonlinear Dyn.201267319431955287742910.1007/s11071-011-0119-y
DoeblingSWFarrarCRPrimeMBA summary review of vibration-based damage identification methodsShock Vib. Dig.19983029110510.1177/058310249803000201
D’SouzaKEpureanuBIMultiple augmentations of nonlinear systems and generalized minimum rank perturbations for damage detectionJ. Sound Vib.20083161–510112110.1016/j.jsv.2008.02.018
FriswellMIPennyJETGarveySDUsing linear model reduction to investigate the dynamics of structures with local non-linearitiesMech. Syst. Signal Process.19959331732810.1006/mssp.1995.0026
MaOWangJModel order reduction for impact-contact dynamics simulations of flexible manipulatorsRobotica2007250439740710.1017/S026357470600316X
TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-Linear Mech.200944437138210.1016/j.ijnonlinmec.2009.01.0061203.74141
TienMHD’SouzaKA generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestressNonlinear Dyn.20178842403241610.1007/s11071-017-3385-5
DimarogonasADVibration of cracked structures: a state of the art reviewEng. Fract. Mech.199655583185710.1016/0013-7944(94)00175-8
BrakeMA hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraintsJ. Sound Vib.2011330133196322110.1016/j.jsv.2011.01.028
TienMHD’SouzaKAnalyzing bilinear systems using a new hybrid symbolic-numeric computational methodJ. Vibr. Acoust.2019141303100810.1115/1.4042520
BennighofJKLehoucqRBAn automated multilevel substructuring method for eigenspace computation in linear elastodynamicsSIAM J. Sci. Comput.200425620842106208683210.1137/S10648275024006501133.65304
DormandJPrincePA family of embedded Runge–Kutta formulaeJ. Comput. Appl. Math.198061192656859910.1016/0771-050X(80)90013-30448.65045
D’SouzaKEpureanuBIPascualMForecasting bifurcations from large perturbation recoveries in feedback ecosystemsPLOS ONE2015109119
SW Doebling (4844_CR11) 1998; 30
T Zhou (4844_CR40) 2001; 123
RJ Guyan (4844_CR18) 1965; 3
V Jaumouill (4844_CR22) 2010; 329
NM Newmark (4844_CR30) 1959; 85
K D’Souza (4844_CR14) 2008; 316
H Hein (4844_CR19) 2011; 25
E Kurstak (4844_CR26) 2018; 140
JK Bennighof (4844_CR2) 2004; 25
K D’Souza (4844_CR15) 2015; 10
MH Tien (4844_CR36) 2017; 88
MP Castanier (4844_CR7) 1997; 119
4844_CR29
LF Shampine (4844_CR33) 1997; 18
B Irons (4844_CR21) 1965; 3
JG Kim (4844_CR24) 2014; 278
S Zucca (4844_CR41) 2018; 24
O Ma (4844_CR27) 2007; 25
C Jung (4844_CR23) 2014; 333
MH Tien (4844_CR37) 2019; 141
S Zucca (4844_CR42) 2012; 67
C Theodosiou (4844_CR35) 2009; 44
CN Della (4844_CR9) 2007; 60
AD Dimarogonas (4844_CR10) 1996; 55
4844_CR12
JG Kim (4844_CR25) 2017; 324
4844_CR31
JMW Brownjohn (4844_CR5) 2011; 1
VN Burlayenko (4844_CR6) 2009; 45
DJ Ewins (4844_CR16) 1984
4844_CR38
A Bovsunovsky (4844_CR3) 2015; 62–63
OV Shiiryayev (4844_CR34) 2010; 9
4844_CR39
J Dormand (4844_CR13) 1980; 6
MR Hestenes (4844_CR20) 1969; 4
4844_CR1
MI Friswell (4844_CR17) 1995; 9
O Marinescu (4844_CR28) 2011; 133
M Brake (4844_CR4) 2011; 330
A Saito (4844_CR32) 2009; 4
RR Craig (4844_CR8) 1968; 6
References_xml – reference: Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. In: Los Alamos National Laboratory Report LA-13070-MS. Los Alamos, NM (1996)
– reference: HeinHFeklistovaLComputationally efficient delamination detection in composite beams using Haar waveletsMech. Syst. Signal Process.20112562257227010.1016/j.ymssp.2011.02.003
– reference: ShiiryayevOVSlaterJCDetection of fatigue cracks using random decrement signaturesStruct. Health Monit.20109434736010.1177/1475921710361324
– reference: D’SouzaKEpureanuBIMultiple augmentations of nonlinear systems and generalized minimum rank perturbations for damage detectionJ. Sound Vib.20083161–510112110.1016/j.jsv.2008.02.018
– reference: HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705
– reference: ShampineLFReicheltMWThe matlab ode suiteSIAM J. Sci. Comput.1997181122143337410.1137/S10648275942764240868.65040
– reference: BennighofJKLehoucqRBAn automated multilevel substructuring method for eigenspace computation in linear elastodynamicsSIAM J. Sci. Comput.200425620842106208683210.1137/S10648275024006501133.65304
– reference: NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech.195985EM36794
– reference: DellaCNShuDVibration of delaminated composite laminates: a reviewAppl. Mech. Rev.200760112010.1115/1.2375141
– reference: KurstakED’SouzaKMultistage blisk and large mistuning modeling using fourier constraint modes and PRIMEJ. Eng. Gas Turbines Power Trans. ASME2018140707250510.1115/1.4038613
– reference: TheodosiouCNatsiavasSDynamics of finite element structural models with multiple unilateral constraintsInt. J. Non-Linear Mech.200944437138210.1016/j.ijnonlinmec.2009.01.0061203.74141
– reference: Tien, M.H., Hu, T., D’Souza, K.: Generalized bilinear amplitude approximation and X-Xr for modeling cyclically symmetric structures with cracks. Journal of Vibration and Acoustics 140(4), 041,012–041,012–10 (2018). https://doi.org/10.1115/1.4039296
– reference: Tien, M.H., Hu, T., D’Souza, K.: Efficient analysis of cyclic symmetric structures with mistuning and cracks. In: AIAA Scitech 2019 Forum, pp. AIAA 2019–0489 (2019). https://doi.org/10.2514/6.2019-0489
– reference: JungCD’SouzaKEpureanuBINonlinear amplitude approximation for bilinear systemsJ. Sound Vib.20143331329091910.1016/j.jsv.2014.01.029
– reference: MATLAB: version: R2017b. The MathWorks Inc., Natick, Massachusetts (2017)
– reference: Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems. Ph.D. thesis, The University of Michigan (2007)
– reference: SaitoACastanierMPPierreCPoudouOEfficient nonlinear vibration analysis of the forced response of rotating cracked bladesJ. Comput. Nonlinear Dyn. Trans. ASME200941011,00510.1115/1.3007908
– reference: Allemang, R.: Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques. Ph.D .Thesis, University of Cincinnati, Mechanical Engineering Department (1980)
– reference: DoeblingSWFarrarCRPrimeMBA summary review of vibration-based damage identification methodsShock Vib. Dig.19983029110510.1177/058310249803000201
– reference: JaumouillVSinouJJPetitjeanBAn adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems–application to bolted structuresJ. Sound Vib.2010329194048406710.1016/j.jsv.2010.04.008
– reference: MarinescuOEpureanuBBanuMReduced order models of mistuned cracked bladed disksJ. Vib. Acoust.20111335051,01410.1115/1.4003940
– reference: IronsBStructural eigenvalue problems: elimination of unwanted variablesAIAA J.19653596196210.2514/3.3027
– reference: MaOWangJModel order reduction for impact-contact dynamics simulations of flexible manipulatorsRobotica2007250439740710.1017/S026357470600316X
– reference: EwinsDJModal Testing: Theory and Practice1984TauntonResearch Studies Press
– reference: ZhouTXuJSunZDynamic analysis and diagnosis of a cracked rotorJ. Vib. Acoust. Trans. ASME200112353453910.1115/1.1401075
– reference: BovsunovskyASuraceCNon-linearities in the vibrations of elastic structures with a closing crack: a state of the art reviewMech. Syst. Signal Process.201562–6312914810.1016/j.ymssp.2015.01.021
– reference: D’SouzaKEpureanuBIPascualMForecasting bifurcations from large perturbation recoveries in feedback ecosystemsPLOS ONE2015109119
– reference: KimJGParkYJLeeGHKimDNA general model reduction with primal assembly in structural dynamicsComput. Methods Appl. Mech. Eng.2017324128368274610.1016/j.cma.2017.06.007
– reference: TienMHD’SouzaKA generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestressNonlinear Dyn.20178842403241610.1007/s11071-017-3385-5
– reference: ZuccaSFirroneCMGolaMMNumerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loadsNonlinear Dyn.201267319431955287742910.1007/s11071-011-0119-y
– reference: BrownjohnJMWDe StefanoAXuYLWenzelHAktanAEVibration-based monitoring of civil infrastructure: challenges and successesJ. Civ. Struct. Health Monit.201113799510.1007/s13349-011-0009-5
– reference: ZuccaSEpureanuBIReduced order models for nonlinear dynamic analysis of structures with intermittent contactsJ. Vib. Control2018241225912604380077310.1177/1077546316689214
– reference: FriswellMIPennyJETGarveySDUsing linear model reduction to investigate the dynamics of structures with local non-linearitiesMech. Syst. Signal Process.19959331732810.1006/mssp.1995.0026
– reference: GuyanRJReduction of stiffness and mass matricesAIAA J.19653238010.2514/3.2874
– reference: KimJGLeePSAn accurate error estimator for guyan reductionComput. Methods Appl. Mech. Eng.2014278119323184610.1016/j.cma.2014.05.00206928115
– reference: BrakeMA hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraintsJ. Sound Vib.2011330133196322110.1016/j.jsv.2011.01.028
– reference: CraigRRBamptonMCCCoupling of substructures for dynamic analysesAIAA J.1968671313131910.2514/3.47410159.56202
– reference: BurlayenkoVNSadowskiTInfluence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich platesInt. J. Non-Linear Mech.20094595996810.1016/j.ijnonlinmec.2009.07.002
– reference: DimarogonasADVibration of cracked structures: a state of the art reviewEng. Fract. Mech.199655583185710.1016/0013-7944(94)00175-8
– reference: TienMHD’SouzaKAnalyzing bilinear systems using a new hybrid symbolic-numeric computational methodJ. Vibr. Acoust.2019141303100810.1115/1.4042520
– reference: CastanierMPÓttarssonGPierreCA reduced order modeling technique for mistuned bladed disksJ. Vib. Acoust.1997119343944710.1115/1.2889743
– reference: DormandJPrincePA family of embedded Runge–Kutta formulaeJ. Comput. Appl. Math.198061192656859910.1016/0771-050X(80)90013-30448.65045
– volume: 329
  start-page: 4048
  issue: 19
  year: 2010
  ident: 4844_CR22
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.04.008
– volume-title: Modal Testing: Theory and Practice
  year: 1984
  ident: 4844_CR16
– ident: 4844_CR12
  doi: 10.2172/249299
– volume: 62–63
  start-page: 129
  year: 2015
  ident: 4844_CR3
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.01.021
– ident: 4844_CR29
– volume: 9
  start-page: 347
  issue: 4
  year: 2010
  ident: 4844_CR34
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921710361324
– volume: 30
  start-page: 91
  issue: 2
  year: 1998
  ident: 4844_CR11
  publication-title: Shock Vib. Dig.
  doi: 10.1177/058310249803000201
– volume: 1
  start-page: 79
  issue: 3
  year: 2011
  ident: 4844_CR5
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-011-0009-5
– volume: 141
  start-page: 031008
  issue: 3
  year: 2019
  ident: 4844_CR37
  publication-title: J. Vibr. Acoust.
  doi: 10.1115/1.4042520
– volume: 25
  start-page: 397
  issue: 04
  year: 2007
  ident: 4844_CR27
  publication-title: Robotica
  doi: 10.1017/S026357470600316X
– ident: 4844_CR38
  doi: 10.1115/1.4039296
– volume: 316
  start-page: 101
  issue: 1–5
  year: 2008
  ident: 4844_CR14
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.02.018
– volume: 10
  start-page: 1
  issue: 9
  year: 2015
  ident: 4844_CR15
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0137779
– volume: 324
  start-page: 1
  year: 2017
  ident: 4844_CR25
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.06.007
– volume: 330
  start-page: 3196
  issue: 13
  year: 2011
  ident: 4844_CR4
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.01.028
– volume: 6
  start-page: 19
  issue: 1
  year: 1980
  ident: 4844_CR13
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0771-050X(80)90013-3
– volume: 3
  start-page: 380
  issue: 2
  year: 1965
  ident: 4844_CR18
  publication-title: AIAA J.
  doi: 10.2514/3.2874
– ident: 4844_CR31
– volume: 3
  start-page: 961
  issue: 5
  year: 1965
  ident: 4844_CR21
  publication-title: AIAA J.
  doi: 10.2514/3.3027
– volume: 67
  start-page: 1943
  issue: 3
  year: 2012
  ident: 4844_CR42
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0119-y
– volume: 123
  start-page: 534
  year: 2001
  ident: 4844_CR40
  publication-title: J. Vib. Acoust. Trans. ASME
  doi: 10.1115/1.1401075
– volume: 278
  start-page: 1
  year: 2014
  ident: 4844_CR24
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.05.002
– volume: 85
  start-page: 67
  issue: EM3
  year: 1959
  ident: 4844_CR30
  publication-title: J. Eng. Mech.
– volume: 88
  start-page: 2403
  issue: 4
  year: 2017
  ident: 4844_CR36
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3385-5
– ident: 4844_CR39
  doi: 10.2514/6.2019-0489
– volume: 6
  start-page: 1313
  issue: 7
  year: 1968
  ident: 4844_CR8
  publication-title: AIAA J.
  doi: 10.2514/3.4741
– volume: 60
  start-page: 1
  issue: 1
  year: 2007
  ident: 4844_CR9
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2375141
– volume: 55
  start-page: 831
  issue: 5
  year: 1996
  ident: 4844_CR10
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(94)00175-8
– volume: 133
  start-page: 051,014
  issue: 5
  year: 2011
  ident: 4844_CR28
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4003940
– volume: 25
  start-page: 2257
  issue: 6
  year: 2011
  ident: 4844_CR19
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.02.003
– volume: 44
  start-page: 371
  issue: 4
  year: 2009
  ident: 4844_CR35
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.01.006
– volume: 4
  start-page: 303
  year: 1969
  ident: 4844_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– volume: 45
  start-page: 959
  year: 2009
  ident: 4844_CR6
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2009.07.002
– volume: 9
  start-page: 317
  issue: 3
  year: 1995
  ident: 4844_CR17
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.1995.0026
– volume: 333
  start-page: 2909
  issue: 13
  year: 2014
  ident: 4844_CR23
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.01.029
– volume: 4
  start-page: 011,005
  issue: 1
  year: 2009
  ident: 4844_CR32
  publication-title: J. Comput. Nonlinear Dyn. Trans. ASME
  doi: 10.1115/1.3007908
– volume: 18
  start-page: 1
  issue: 1
  year: 1997
  ident: 4844_CR33
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594276424
– ident: 4844_CR1
– volume: 119
  start-page: 439
  issue: 3
  year: 1997
  ident: 4844_CR7
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2889743
– volume: 25
  start-page: 2084
  issue: 6
  year: 2004
  ident: 4844_CR2
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502400650
– volume: 24
  start-page: 2591
  issue: 12
  year: 2018
  ident: 4844_CR41
  publication-title: J. Vib. Control
  doi: 10.1177/1077546316689214
– volume: 140
  start-page: 072505
  issue: 7
  year: 2018
  ident: 4844_CR26
  publication-title: J. Eng. Gas Turbines Power Trans. ASME
  doi: 10.1115/1.4038613
SSID ssj0003208
Score 2.3103034
Snippet The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1115
SubjectTerms Aerospace engineering
Algorithms
Automotive Engineering
Cantilever beams
Classical Mechanics
Computational efficiency
Control
Cracks
Dynamical Systems
Engineering
Initial conditions
Mass-spring systems
Mathematical models
Mechanical Engineering
Nonlinear response
Nonlinear systems
Nonlinearity
Numerical integration
Numerical methods
Optimization
Original Paper
Reduced order models
Search process
Steady state
Switches
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8KAHUdSIounBmy6OtVu7k1EC4bQQPxJuS9ethMQAMvTgX-_r1oGayMVzt6bJ7_V99_cArhT3RMK57yjqcYd1mHYSppVDmWBMSzdjQTlsgkeRGI3CoU245batstKJhaJOZ8rkyG_RDAqG7i_jd_M3x0yNMtVVO0JjG-qGqQzlvP7Qi4aPK11MvWImnYtRhslIjOyzmfLxHEY-JpQ2xQE8mMN_mqa1v_mrRFpYnn7jv2c-gH3rc5L7UkgOYSubNqFh_U9ib3fehL1v5IRHoAozZp5LkrQcW0-kZTAhM03UQqICSElJQPuOUTsxOV1SdSgS0wQv1ZLMTcWImP76MRmXJNeTT_xx8BR1j-Gl33vuDhw7kgGx7IRLRwslKcY8GQa2aSB9hNWlQqeC8yTzBdXoDSbSS72QBTr0hfSoEgrXKIpKwCk9gdp0Ns1OgaSJz3Uo_FDSkIXalxIjw0xQV0tDmei2oFOhESvLV27GZrzGa6Zlg2CMCMYFgjFvwfXqn3nJ1rHx63YFW2xvbh6vMWvBTQX8evnv3c4273YOu14payhybaghONkF7KiP5SRfXFq5_QKmofNV
  priority: 102
  providerName: ProQuest
Title Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC
URI https://link.springer.com/article/10.1007/s11071-019-04844-7
https://www.proquest.com/docview/2838455947
Volume 96
WOSCitedRecordID wos000465633400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5R8KAHUdSIIunBmy4Za7d2RyUYToSIGm5L162ExABh6MG_3tetY2rURM_9kabvvfZ97XvfA7hU3BMx576jqMcd1mXaiZlWDmWCMS3dlAVFsQk-HIrJJBzZpLCsjHYvvyTzk7pKdkOkYqCveczHiRy-DXXfsM0YjD5-2py_1Mvr0LmILMwrxMSmynw_x-frqPIxv3yL5rfNXeN_6zyAfetdkptCHQ5hK503oWE9TWLtOGvC3gcawiNQ-YVlEiNJUhSoJ9JylZCFJmol0dQTUlDNviA-J-b1lpSxiMSEu0u1JkvzN0RMJP2UTAs669kbDhyMh71jeLzrP_QGji2-gFLrhmtHCyUpopsUIWwSSB8F6FKhE8F5nPqCavT7YuklXsgCHfpCelQJhW0UlSLglJ5Abb6Yp6dAktjnOhR-KGnIQu1LiRgwFdTV0pAjui3oljKIlGUmNwUynqOKU9nsaYR7GuV7GvEWXG3GLAtejl97t0vRRtZGswgdK8EQUDFsvi5FWTX_PNvZ37qfw65XaAMqRRtqKKz0AnbU63qWrTpQv-0PR_cdE3Q67uSa_A6XRep3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hpVLpAcpLXUqLD-VUIrK2EzuHqmopaBE0QgWkvQXHsVcrtbvLZgHRH9Xf2HHisLQS3DhwdmL58XkeHs83AB-0oDIXIgo0oyLgHW6DnFsdMC45tyo0PK6LTYg0lb1ecjIHf5pcGPesspGJlaAuRtrdke-iGpQczV8uPo8vA1c1ykVXmxIaNSyOzO0Numzlp8NvuL_blB7sn-11A19VAIfTSaaBlVoxNNsN-mZFrCIcWcikLaQQuYkks2jQ5IoWNOGxTSKpKNNSYxvD2cbCXYCiyJ_njMdRC-a_7qcnP-5kP6NVDbwQvRp3A9LzaTp1sh56Ws51d8EIXIhA_KsKZ_btfyHZStMdLD23NXoNi96mJl_qQ7AMc2a4AkveviZeepUr8Ooe-eIq6EpNu3RQUtwO1a-BJsoztJCRJXqiUMAVpCbYvZqYkrg7a9K8wCTukb_SUzJ2ETHi8gf6pF-TeA9-44_d03RvDc6fZOLr0BqOhuYNkCKPhE1klCiW8MRGSqHnayQLrXKUkGEbOs3uZ9rzsbuyID-zGZO0Q0yGiMkqxGSiDR_v_hnXbCSPfr3ZwCTzkqnMZhhpw04DtFnzw71tPN7bFrzsnn0_zo4P06O3sEBrnCPcN6GFG2XewQt9PR2Uk_f-zBC4eGoI_gUsT1Dh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbgTTcs2y7tHg1KMJoNETXcNt3ulpAYIIAe_PVO98GiURPjta80nWk7XzvzDcC54o4IOXctRR1usQbTVsi0sigTjGlpx6yZJpvgvi_6fa-7FMWfeLvnX5JpTINhaRrN65NI14vAN0QtBgabh30c1OKrsMawzDh1PfSeF2cxdZKcdDaiDPMi0c_CZr4f4_PVVNibX75Ik5unXf7_nHdgO7M6yVWqJruwEo8qUM4sUJLt71kFtpboCfdAJReZCZgkUZq4nsiMw4SMNVFTiUdARFIK2lfE7cS86pLcR5GY-Uk1JxPzZ0SMh_2ADFKa6-E7duz0_NY-PLVvHlsdK0vKgNJseHNLCyUpop4YoW3UlC4K1qZCR4LzMHYF1WgPhtKJHI81tecK6VAlFNZRVJYmp_QASqPxKD4EEoUu155wPUk95mlXSsSGsaC2loY00a5CI5dHoDLGcpM44yUouJbNmga4pkGypgGvwsWizyTl6_i1dS0Xc5Dt3VmABpdgCLQYVl_mYi2qfx7t6G_Nz2Cje90O7m_9u2PYdFLFQP2oQQnlFp_AunqbD2fT00SlPwBHE_Ot
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+dynamic+analysis+of+cracked+structures+with+multiple+contact+pairs+using+generalized+HSNC&rft.jtitle=Nonlinear+dynamics&rft.au=Tien%2C+Meng-Hsuan&rft.au=D%E2%80%99Souza%2C+Kiran&rft.date=2019-04-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=96&rft.issue=2&rft.spage=1115&rft.epage=1131&rft_id=info:doi/10.1007%2Fs11071-019-04844-7&rft.externalDocID=10_1007_s11071_019_04844_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon