Dynamic multi-objective evolutionary algorithm for IoT services

The primary goal of the Internet of things(IoT) is to provide people with anywhere services in real life. But intelligent IoT shouldn’t only provide services, but also consider how to allocate heterogeneous resources reasonably, which has become a very challenging problem. To obtain the best resourc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 51; číslo 3; s. 1177 - 1200
Hlavní autoři: Fang, Shun-shun, Chai, Zheng-yi, Li, Ya-lun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2021
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The primary goal of the Internet of things(IoT) is to provide people with anywhere services in real life. But intelligent IoT shouldn’t only provide services, but also consider how to allocate heterogeneous resources reasonably, which has become a very challenging problem. To obtain the best resource allocation scheme, it is crucial to minimize the service cost and service time. Since the two objectives are contradictory, we have modelled IoT services as a dynamic multi-objective optimization problem. Then a dynamic multi-objective evolutionary algorithm for dynamic IoT services(dMOEA/DI) is proposed. In dMOEA/DI, we have designed operators such as the appropriate encoding method, dynamic detection operator, filtering strategy, differential evolution, and polynomial mutation. Based on the single service strategy and collaborative service strategy, experimental research is performed on the agricultural IoT services with dynamic requests under different distributions. The simulation experimental results prove that dMOEA/DI performs better than the contrasted algorithms on the IoT service optimization problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-020-01861-7