A vibration-resistant detection method of weld position and gap for seam tracking of Z-weave GMAW
A vibration-resistant detection method of weld position and gap based on laser vision sensing is proposed in this paper due to the failure problem of automatic weave weld tracking of V-butt welds with gaps due to arc light, molten metal splash, seam gap variations, and inertial vibration of the weav...
Saved in:
| Published in: | International journal of advanced manufacturing technology Vol. 133; no. 7-8; pp. 3319 - 3334 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.08.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0268-3768, 1433-3015 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A vibration-resistant detection method of weld position and gap based on laser vision sensing is proposed in this paper due to the failure problem of automatic weave weld tracking of V-butt welds with gaps due to arc light, molten metal splash, seam gap variations, and inertial vibration of the weave motion in the manufacture of weave gas metal arc welding for pipelines vessels and ships. An improved random sampling consistency algorithm and an adaptive grayscale centroid algorithm are proposed to overcome the interference of arc light and molten metal splash, achieving the simultaneous image detection of weld position and gap. Moreover, a moving polynomial fitting algorithm is proposed to overcome vibration interference in the direction of weave motion and correct the weld position. Finally, the experimental results of Z-weave welding seam tracking of S-curve welds show that the proposed method can significantly reduce the weld tracking error, meeting the practical welding requirements. This study provides a new solution for eliminating the vibration interference of system devices in practical weave welding manufacturing. |
|---|---|
| AbstractList | A vibration-resistant detection method of weld position and gap based on laser vision sensing is proposed in this paper due to the failure problem of automatic weave weld tracking of V-butt welds with gaps due to arc light, molten metal splash, seam gap variations, and inertial vibration of the weave motion in the manufacture of weave gas metal arc welding for pipelines vessels and ships. An improved random sampling consistency algorithm and an adaptive grayscale centroid algorithm are proposed to overcome the interference of arc light and molten metal splash, achieving the simultaneous image detection of weld position and gap. Moreover, a moving polynomial fitting algorithm is proposed to overcome vibration interference in the direction of weave motion and correct the weld position. Finally, the experimental results of Z-weave welding seam tracking of S-curve welds show that the proposed method can significantly reduce the weld tracking error, meeting the practical welding requirements. This study provides a new solution for eliminating the vibration interference of system devices in practical weave welding manufacturing. |
| Author | Jia, Aiting Hong, Bo Gao, Jiapeng Zheng, Yi |
| Author_xml | – sequence: 1 givenname: Jiapeng surname: Gao fullname: Gao, Jiapeng email: gaojiapeng_cs@163.com organization: Anhui Province Key Laboratory of Special Heavy Load Robot, Anhui University of Technology – sequence: 2 givenname: Bo surname: Hong fullname: Hong, Bo organization: School of Mechanical Engineering, Xiangtan University – sequence: 3 givenname: Aiting surname: Jia fullname: Jia, Aiting organization: School of Mechanical Engineering, Xiangtan University – sequence: 4 givenname: Yi surname: Zheng fullname: Zheng, Yi organization: Anhui Province Key Laboratory of Special Heavy Load Robot, Anhui University of Technology |
| BookMark | eNp9kMtKAzEUhoMo2FZfwFXAdTS3ZpJlKVqFihtFcBMyM0md2iY1SVt8e2c6guCiqwOH7zuXfwhOffAWgCuCbwjGxW3CmBQYYcoRYYpTpE7AgHDGEMNkfAoGmAqJWCHkORimtGxxQYQcADOBu6aMJjfBo2hTk7LxGdY226rrwbXNH6GGwcG9XdVwE1Jz6Btfw4XZQBciTNasYY6m-mz8okPf0d6anYWzp8nbBThzZpXs5W8dgdf7u5fpA5o_zx6nkzmqGFEZuUJSK4vSjUXNqFNMFAI74WonTcWJ4tZIUzKFOTdEkqrmtVJ8rBzHZWspNgLX_dxNDF9bm7Jehm307UrNsCRcUkyLlpI9VcWQUrROV00-fN_e36w0wboLVPeB6jZQfQhUdwvoP3UTm7WJ38cl1kuphf3Cxr-rjlg_gA-KGg |
| CitedBy_id | crossref_primary_10_3390_s25082483 |
| Cites_doi | 10.1109/JSEN.2021.3106696 10.4236/wjet.2021.91004 10.1007/s00170-021-08573-3 10.1109/TIE.2023.3243265 10.1016/j.jmsy.2022.09.012 10.1016/j.jmapro.2021.10.005 10.1109/JSEN.2022.3224931 10.1109/JSEN.2022.3147489 10.1016/j.jmapro.2021.12.004 10.1109/TII.2020.2977121 10.1016/j.rcim.2018.08.003 10.1016/j.rcim.2019.101864 10.1016/j.jmapro.2020.02.026 10.1109/JSEN.2020.3032404 10.1016/j.mechatronics.2019.102261 10.1007/s00170-023-11442-w 10.3390/s19051144 10.1016/j.jmapro.2022.05.029 10.1016/j.optlaseng.2019.105947 10.1016/j.optlastec.2019.105648 10.1109/TIM.2021.3072103 10.1016/j.rcim.2019.101821 10.1016/j.optlastec.2022.108388 10.1016/j.optlastec.2022.108866 10.1016/j.jmsy.2016.11.005 10.1007/s00170-021-06782-4 10.1016/j.jmapro.2021.08.058 10.1109/TIM.2021.3106685 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-024-13942-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 3334 |
| ExternalDocumentID | 10_1007_s00170_024_13942_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575468 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Open Project of Anhui Province Key Laboratory of Special and Heavy Load Robot grantid: TZJQR008-2024 – fundername: University Research Program Project of Anhui Province grantid: 2023AH051118 |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-f782e87bf56d32f936760f6fdf8ac4194ea8ab39044a181cd4d99459f40b7bf93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246518000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-3768 |
| IngestDate | Wed Nov 05 04:18:06 EST 2025 Sat Nov 29 03:17:40 EST 2025 Tue Nov 18 21:34:51 EST 2025 Fri Feb 21 02:38:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Keywords | Seam gap Laser vision sensor Welding seam tracking Intelligent robot welding Weld position detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f782e87bf56d32f936760f6fdf8ac4194ea8ab39044a181cd4d99459f40b7bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3081482027 |
| PQPubID | 2044010 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3081482027 crossref_citationtrail_10_1007_s00170_024_13942_9 crossref_primary_10_1007_s00170_024_13942_9 springer_journals_10_1007_s00170_024_13942_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Xue, Chang, Peng, Gao, Tian, Du, Wang (CR14) 2019; 19 Xiao, Xu, Hou, Chen, Chen (CR17) 2021; 72 Cheng, Yu, Zhou, Chen, Yuan, Zhang (CR3) 2021; 70 Ma, Fan, Yang, Yang, Ji, Jing, Tan (CR19) 2021; 70 Nahid, Rasul, Mohammad (CR5) 2021; 114 Zou, Chen, Wei (CR23) 2020; 127 Shao, Huang (CR13) 2021; 21 Gao, Huang, You, Lan, Zhang (CR9) 2017; 42 Xu, Xu, Zhang, Chen (CR4) 2022; 79 Li, Mei, Hu, Gao, Yu, Housein, Wei (CR21) 2022; 155 Xue, Wang, Shen, Hu, Zhen, Liu, Wu, Yang (CR11) 2021; 63 Wang, Zhong, Shi, Zhang (CR16) 2020; 61 Xiao, Xu, Xu, Hou, Zhang, Chen (CR27) 2023; 71 Geng, Zhang, Tian, Shi, Wang, Cui (CR12) 2022; 119 Gao, Hong, Hong, Li, Jia, Qu (CR28) 2021; 21 Jia, Li, Ren, Wang, Yang (CR15) 2019; 119 Lei, Huang, Shao, Liu, Rong (CR6) 2020; 62 Lin, Jia, Huang, Wen, Hong, Hong (CR7) 2023; 126 Rout, Deepak, Biswal (CR2) 2019; 56 Yang, Fan, Huo, Li, Liu (CR10) 2023; 22 Wang, Li, Freiheit (CR1) 2022; 65 Xu, Zhang, Xiao, Hou, Chen (CR24) 2022; 74 Zou, Zhou (CR22) 2019; 63 Lü, Xie, He, Li, Xu, He, Fang, Zhang, Yang (CR26) 2023; 23 Ma, Fan, Deng, Luo, Ma, Jing, Tan (CR18) 2021; 70 Fan, Deng, Ma, Zhou, Jing, Tan (CR25) 2020; 17 Wang, Yue, Liu, Liu (CR8) 2021; 09 Wu, Hu, Lei, Yang, Gu (CR20) 2023; 158 NF Wang (13942_CR16) 2020; 61 YC Cheng (13942_CR3) 2021; 70 YS Geng (13942_CR12) 2022; 119 YK Ma (13942_CR18) 2021; 70 T Lei (13942_CR6) 2020; 62 N Jia (13942_CR15) 2019; 119 XD Gao (13942_CR9) 2017; 42 WM Li (13942_CR21) 2022; 155 BC Wang (13942_CR1) 2022; 65 BC Xue (13942_CR14) 2019; 19 JF Fan (13942_CR25) 2020; 17 WJ Shao (13942_CR13) 2021; 21 CQ Wu (13942_CR20) 2023; 158 Z Wang (13942_CR8) 2021; 09 RQ Xiao (13942_CR17) 2021; 72 YK Ma (13942_CR19) 2021; 70 L Yang (13942_CR10) 2023; 22 FJ Xu (13942_CR24) 2022; 74 J Lin (13942_CR7) 2023; 126 YB Zou (13942_CR23) 2020; 127 FJ Xu (13942_CR4) 2022; 79 RQ Xiao (13942_CR27) 2023; 71 A Rout (13942_CR2) 2019; 56 B Nahid (13942_CR5) 2021; 114 XQ Lü (13942_CR26) 2023; 23 KX Xue (13942_CR11) 2021; 63 JP Gao (13942_CR28) 2021; 21 YB Zou (13942_CR22) 2019; 63 |
| References_xml | – volume: 21 start-page: 23537 issue: 20 year: 2021 end-page: 23550 ident: CR28 article-title: A method of feature extraction of position detection and weld gap for GMAW seam tracking system of fillet weld with variable gaps publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3106696 – volume: 09 start-page: 51 issue: 1 year: 2021 end-page: 59 ident: CR8 article-title: Weld seam deviation prediction of gas metal arc welding based on arc sound signal publication-title: World J Eng Technol doi: 10.4236/wjet.2021.91004 – volume: 119 start-page: 8025 year: 2022 end-page: 8038 ident: CR12 article-title: A novel welding path planning method based on point cloud for robotic welding of impeller blades publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-08573-3 – volume: 71 start-page: 1037 issue: 1 year: 2023 end-page: 1048 ident: CR27 article-title: LSFP-tracker: an autonomous laser stripe feature point extraction algorithm based on Siamese network for robotic welding seam tracking publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2023.3243265 – volume: 65 start-page: 244 year: 2022 end-page: 259 ident: CR1 article-title: Towards intelligent welding systems from a HCPS perspective: a technology framework and implementation roadmap publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.09.012 – volume: 72 start-page: 48 year: 2021 end-page: 60 ident: CR17 article-title: A feature extraction algorithm based on improved Snake model for multi-pass seam tracking in robotic arc welding publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.10.005 – volume: 23 start-page: 7142 issue: 7 year: 2023 end-page: 7152 ident: CR26 article-title: Automatic recognition of multiple weld types based on structured light vision sensor using deep transfer learning publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3224931 – volume: 22 start-page: 6098 issue: 6 year: 2023 end-page: 6107 ident: CR10 article-title: Image denoising of seam images with deep learning for laser vision seam tracking publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3147489 – volume: 74 start-page: 151 year: 2022 end-page: 167 ident: CR24 article-title: Autonomous weld seam tracking under strong noise based on feature-supervised tracker-driven generative adversarial network publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.12.004 – volume: 17 start-page: 1220 issue: 2 year: 2020 end-page: 1230 ident: CR25 article-title: Seam feature point acquisition based on efficient convolution operator and particle filter in GMAW publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.2977121 – volume: 56 start-page: 12 year: 2019 end-page: 37 ident: CR2 article-title: Advances in weld seam tracking techniques for robotic welding: a review publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2018.08.003 – volume: 62 start-page: 101864 year: 2020 ident: CR6 article-title: A tactual weld seam tracking method in super narrow gap of thick plates publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2019.101864 – volume: 63 start-page: 48 year: 2021 end-page: 59 ident: CR11 article-title: Robotic seam tracking system based on vision sensing and human-machine interaction for multi-pass MAG welding publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.02.026 – volume: 21 start-page: 5368 issue: 4 year: 2021 end-page: 5376 ident: CR13 article-title: A robust weld seam tracking method by using intensity-modulated structured light publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3032404 – volume: 63 start-page: 102261 year: 2019 ident: CR22 article-title: Automatic seam detection and tracking system for robots based on laser vision publication-title: Mechatronics doi: 10.1016/j.mechatronics.2019.102261 – volume: 126 start-page: 5227 year: 2023 end-page: 5243 ident: CR7 article-title: Weld seam tracking method of root pass welding with variable gap based on magnetically controlled arc sensor publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-023-11442-w – volume: 19 start-page: 1144 year: 2019 ident: CR14 article-title: A vision based detection method for narrow butt joints and a robotic seam tracking system publication-title: Sensors doi: 10.3390/s19051144 – volume: 79 start-page: 854 year: 2022 end-page: 880 ident: CR4 article-title: Application of sensing technology in intelligent robotic arc welding: a review publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.05.029 – volume: 127 start-page: 105947 year: 2020 ident: CR23 article-title: Research on a real-time pose estimation method for a seam tracking system publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.105947 – volume: 119 start-page: 105648 year: 2019 ident: CR15 article-title: A 3D reconstruction method based on grid laser and gray scale photo for visual inspection of welds publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.105648 – volume: 70 start-page: 3001310 year: 2021 ident: CR18 article-title: Efficient and accurate start point guiding and seam tracking method for curve weld based on structure light publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3072103 – volume: 61 start-page: 101821 year: 2020 ident: CR16 article-title: A robust weld seam recognition method under heavy noise based on structured-light vision publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2019.101821 – volume: 155 start-page: 108388 year: 2022 ident: CR21 article-title: Multiple weld seam laser vision recognition method based on the IPCE algorithm publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108388 – volume: 158 start-page: 108866 year: 2023 ident: CR20 article-title: Research on robust laser vision feature extraction method for fillet welds with different reflective materials under uncertain interference publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108866 – volume: 42 start-page: 82 year: 2017 end-page: 92 ident: CR9 article-title: Magneto-optical imaging deviation model of micro-gap weld joint publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2016.11.005 – volume: 114 start-page: 251 year: 2021 end-page: 270 ident: CR5 article-title: Precise seam tracking in robotic welding by an improved image processing approach publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06782-4 – volume: 70 start-page: 452 year: 2021 end-page: 469 ident: CR3 article-title: Real-time sensing of gas metal arc welding process – a literature review and analysis publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.08.058 – volume: 70 start-page: 5015311 year: 2021 ident: CR19 article-title: A fast and robust seam tracking method for spatial circular weld based on laser visual sensor publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3106685 – volume: 09 start-page: 51 issue: 1 year: 2021 ident: 13942_CR8 publication-title: World J Eng Technol doi: 10.4236/wjet.2021.91004 – volume: 70 start-page: 452 year: 2021 ident: 13942_CR3 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.08.058 – volume: 63 start-page: 48 year: 2021 ident: 13942_CR11 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.02.026 – volume: 61 start-page: 101821 year: 2020 ident: 13942_CR16 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2019.101821 – volume: 72 start-page: 48 year: 2021 ident: 13942_CR17 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.10.005 – volume: 155 start-page: 108388 year: 2022 ident: 13942_CR21 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108388 – volume: 22 start-page: 6098 issue: 6 year: 2023 ident: 13942_CR10 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3147489 – volume: 65 start-page: 244 year: 2022 ident: 13942_CR1 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.09.012 – volume: 119 start-page: 105648 year: 2019 ident: 13942_CR15 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2019.105648 – volume: 21 start-page: 23537 issue: 20 year: 2021 ident: 13942_CR28 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3106696 – volume: 62 start-page: 101864 year: 2020 ident: 13942_CR6 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2019.101864 – volume: 127 start-page: 105947 year: 2020 ident: 13942_CR23 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.105947 – volume: 119 start-page: 8025 year: 2022 ident: 13942_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-08573-3 – volume: 114 start-page: 251 year: 2021 ident: 13942_CR5 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06782-4 – volume: 71 start-page: 1037 issue: 1 year: 2023 ident: 13942_CR27 publication-title: IEEE Trans Industr Electron doi: 10.1109/TIE.2023.3243265 – volume: 158 start-page: 108866 year: 2023 ident: 13942_CR20 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108866 – volume: 79 start-page: 854 year: 2022 ident: 13942_CR4 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.05.029 – volume: 63 start-page: 102261 year: 2019 ident: 13942_CR22 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2019.102261 – volume: 70 start-page: 3001310 year: 2021 ident: 13942_CR18 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3072103 – volume: 23 start-page: 7142 issue: 7 year: 2023 ident: 13942_CR26 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3224931 – volume: 70 start-page: 5015311 year: 2021 ident: 13942_CR19 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3106685 – volume: 74 start-page: 151 year: 2022 ident: 13942_CR24 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.12.004 – volume: 126 start-page: 5227 year: 2023 ident: 13942_CR7 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-023-11442-w – volume: 17 start-page: 1220 issue: 2 year: 2020 ident: 13942_CR25 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.2977121 – volume: 56 start-page: 12 year: 2019 ident: 13942_CR2 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2018.08.003 – volume: 42 start-page: 82 year: 2017 ident: 13942_CR9 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2016.11.005 – volume: 19 start-page: 1144 year: 2019 ident: 13942_CR14 publication-title: Sensors doi: 10.3390/s19051144 – volume: 21 start-page: 5368 issue: 4 year: 2021 ident: 13942_CR13 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3032404 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.4131534 |
| Snippet | A vibration-resistant detection method of weld position and gap based on laser vision sensing is proposed in this paper due to the failure problem of automatic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3319 |
| SubjectTerms | Adaptive algorithms Adaptive sampling Algorithms Arc seam welding Automatic welding CAE) and Design Centroids Computer-Aided Engineering (CAD Engineering Error analysis Error correction Gas metal arc welding Gas pipelines Image detection Industrial and Production Engineering Inertial coordinates Laser beam welding Liquid metals Mechanical Engineering Media Management Motion perception Original Article Polynomials Position sensing Random sampling S curves Seam tracking Tracking devices Tracking errors Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HeDAGzFeyoEbRKxt-sgJDcTjABNCIBCXKk1ihDS6sZXx94mzdAMkuHBuGqn97NiO7c-E7KcQCaXjmBlQNkAxWjIBJmRRCBkEPE0gcY3CV2m7nT0-iht_4TbwZZX1megOat1VeEd-FFnbxTMM1Y97bwynRmF21Y_QmCazyFRm5Xz25Kx9c1tLVCBSnIo5lrhQ4Cj6iURHPI5GeS6fd0gC1zxnA5MMVS_zbTau2c5RzTBr05j1mnjIxHdTNvFPf6RUnaU6X_rvNy6TRe-j0tZIqFbIlClXycIX5sI1Ilt0iIE2wspsxI5eaFlRbSpX2lXS0WRq2gX6YTqa1rVhVJaaPssetb4ytVr2Squ-VHhdj0uf2IeRQ0MvrlsP6-T-_Ozu9JL5aQ1MWTWuGFhfw2RpAXGiLdICqeCakICGTCoeCG5kJotINDmX1q1QmmsheCyANwv7log2yEzZLc0moWlYgJSBgiguuJChKLgEsJ5jjHRkHBokqH98rjyVOU7U6ORjEmYHVm7Byh1YuWiQg_E7vRGRx5-rd2qEcq_Ug3wCT4Mc1hhPHv--29bfu22T-RDFypUV7pCZqv9udsmcGlYvg_6eF-lPBe72nA priority: 102 providerName: ProQuest |
| Title | A vibration-resistant detection method of weld position and gap for seam tracking of Z-weave GMAW |
| URI | https://link.springer.com/article/10.1007/s00170-024-13942-9 https://www.proquest.com/docview/3081482027 |
| Volume | 133 |
| WOSCitedRecordID | wos001246518000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0B5QAHdkRZKh-4gaUmcRYfC2I5QFWxi0vk2B6EVNKqDeX3sd2kBQRIcI6dKLPEbzIzbwD2Ywy4VGFINUoToGglKEft08DHBD0WRxi5RuGLuN1OHh54p2wKG1bV7lVK0n2pJ81ujuqFmjOFGtTCfMpnoRZathkbo1_fVVbk8dhOwpxYmc_t-PmpFQcsDMa5rTLXEHmuYc4EI4l1t6Rsrfn-mZ-Prykm_ZJGdafT6fL_3msFlko0Slpj81mFGZ2vweIHjsJ1EC0ysiG1VSA1sbnFm3lBlC5cEVdOxjOoSQ_Jm-4qUlWBEZEr8iT6xKBiYvzphRQDIe2Pebv0kb5pMdLk7LJ1vwG3pyc3x-e0nMtApXHYgqJBFTqJMwwjZXTKLelbEyNUmAjJPM60SEQW8CZjwgAIqZjinIUcWTMzu3iwCXN5L9dbQGI_QyE8iUGYMS58njGBaDBiaInHGNbBq8SdypK03M7O6KYTumUnvtSIL3XiS3kdDiZ7-mPKjl9X71ZaTEv3HaaBAUossf-F6nBYaW16-ee7bf9t-Q4s-FbxrqBwF-aKwaveg3k5Kp6HgwbUjk7anauGrUe9bjgjfwfsu-3r |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwBuxUMAHOIHFxnEePiC0QEurblcVKqLikjq2B1Vqs8tu2BV_it_I2El2AYneeuAcx4rjbzwznplvAJ5lGCtjk4Q7NOSgOKu5Qid4LDDHSGYppqFQeJSNx_nxsTrcgJ9dLYxPq-zOxHBQ24nxd-SvYtJdMveu-pvpN-67RvnoatdCo4HFvvuxJJdt_nrvPe3vcyF2to_e7fK2qwA3BLeaI-lEl2clJqmlL1KesmyAKVrMtZHk0zud6zJWAyk1qT9jpVVKJgrloKS3PPkSHfmbMpZp0oPNt9vjw48dgiOV-S6cK4QLRQZNtpagWCZxE1dr4xxpFIr1yBHKvajnbVlPKO4L1DacdCgnK00Krv5UnWt7-K8QbtCMOzf_t396C260NjgbNkJzGzZcdQeu_8bMeBf0kC38RYKHLZ-5ubeyq5pZV4fUtYo1nbfZBNnSnVnW5b4xXVn2VU8Z-QKMlnbO6pk2Phzhh37hS6cXjn04GH6-B58uZY33oVdNKvcAWCZK1DoyGCelVFqoUmpEsowTT7cmsQ9Rt9GFaanafceQs2JFMh3AURA4igCOQvXhxeqdaUNUcuHorQ4RRXtozYs1HPrwssPU-vG_Z3t48WxP4eru0cGoGO2N9x_BNeEhHVIot6BXz767x3DFLOrT-exJK04MTi4bbb8AYxNTxQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xWCE4ALuAKBTWB25g0STOw8cKKKCFCrHLQ1wix_YgJAhVCe3fx3aSFlaAhDjHTpR5yN94Zr4B2Iox4FKFIdUoTYCilaActU8DHxP0WBxh5BqFT-JuN7m-5mevuvhdtXudkix7GixLU17s9hTujhrfHO0LNecLNQiG-ZRPwjQzkYwt6jr_e1lblMdjOxVzZHE-t6PoxxYdsDAo81xV3iHyXPOcCUwS63pJ1Wbz_jffHmVjfPpfStWdVJ2F7__jIsxXKJW0S7P6CRM6_wVzr7gLl0C0ycCG2lax1MTsFofmBVG6cMVdOSlnU5NHJEN9r0hdHUZErsit6BGDlonxswdS9IW0F_Z26Q0dajHQ5PC0fbUMF52Df3tHtJrXQKVx5IKiQRs6iTMMI2V0zS0ZXAsjVJgIyTzOtEhEFvAWY8IAC6mY4pyFHFkrM7t4sAJT-WOuV4HEfoZCeBKDMGNc-DxjAtFgx9ASkjFsgFeLPpUVmbmdqXGfjmiYnfhSI77UiS_lDdge7emVVB6frm7WGk0rt35KAwOgWGLvixqwU2tw_Pjjt619bflvmDnb76Qnx90_6zDrWxtwNYdNmCr6z3oDfshBcffU33TW_gJGNvch |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vibration-resistant+detection+method+of+weld+position+and+gap+for+seam+tracking+of+Z-weave+GMAW&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Gao%2C+Jiapeng&rft.au=Hong%2C+Bo&rft.au=Jia%2C+Aiting&rft.au=Zheng%2C+Yi&rft.date=2024-08-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=133&rft.issue=7-8&rft.spage=3319&rft.epage=3334&rft_id=info:doi/10.1007%2Fs00170-024-13942-9&rft.externalDocID=10_1007_s00170_024_13942_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |