A general regularized gradient-projection method for solving equilibrium and constrained convex minimization problems

In this article, we provide a general iterative method for solving an equilibrium and a constrained convex minimization problem. By using the idea of regularized gradient-projection algorithm (RGPA), we find a common element, which is also a solution of a variational inequality problem. Then the str...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 65; číslo 11; s. 2007 - 2024
Hlavní autoři: Tian, Ming, Jiao, Si-Wen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 01.11.2016
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we provide a general iterative method for solving an equilibrium and a constrained convex minimization problem. By using the idea of regularized gradient-projection algorithm (RGPA), we find a common element, which is also a solution of a variational inequality problem. Then the strong convergence theorems are obtained under suitable conditions.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2016.1193738