Semantic-oriented learning-based image compression by Only-Train-Once quantized autoencoders

Accessibility to big training datasets together with current advances in computing power has emerged interest in the leverage of deep learning to address image compression. This needs to train and deploy separate networks for rate adaptation, which is impractical and extensive in terms of memory cos...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 17; no. 1; pp. 285 - 293
Main Authors: Sebai, D., Shah, A. Ulah
Format: Journal Article
Language:English
Published: London Springer London 01.02.2023
Springer Nature B.V
Subjects:
ISSN:1863-1703, 1863-1711
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accessibility to big training datasets together with current advances in computing power has emerged interest in the leverage of deep learning to address image compression. This needs to train and deploy separate networks for rate adaptation, which is impractical and extensive in terms of memory cost and power consumption, especially for broad bitrate ranges. To deal with such limitation, the variable-rate compression methods use the Lagrange multiplier to control the Rate/Distortion trade-offs in order not to require retraining of the neural network for each rate. However, they do not make an optimized bit allocation for the eye-catching foreground details, and do not consider the different degree of attention that the human eye has to each area of the image. Thus, other deep learning-based image compression approaches, which could outperform the above ones, are replied on the use of additional information. In this paper, we present a loss-conditional autoencoder tailored to the specific task of semantic image understanding to achieve higher visual quality in lossy variable-rate compression. Our framework is a neural network-based scheme able to automatically optimize coding parameters with multi-term perceptual loss function based on semantic-important structural SIMilarity index. To ensure the rate adaptation, we suggest modulating the compression network on the bitwidth of its activations by quantizing them according to several bitwidth values. Experiments are presented on the JPEG AI dataset in which our method achieves competitive and higher visual quality for the same compressed size, when compared to conventional codecs and related work.
AbstractList Accessibility to big training datasets together with current advances in computing power has emerged interest in the leverage of deep learning to address image compression. This needs to train and deploy separate networks for rate adaptation, which is impractical and extensive in terms of memory cost and power consumption, especially for broad bitrate ranges. To deal with such limitation, the variable-rate compression methods use the Lagrange multiplier to control the Rate/Distortion trade-offs in order not to require retraining of the neural network for each rate. However, they do not make an optimized bit allocation for the eye-catching foreground details, and do not consider the different degree of attention that the human eye has to each area of the image. Thus, other deep learning-based image compression approaches, which could outperform the above ones, are replied on the use of additional information. In this paper, we present a loss-conditional autoencoder tailored to the specific task of semantic image understanding to achieve higher visual quality in lossy variable-rate compression. Our framework is a neural network-based scheme able to automatically optimize coding parameters with multi-term perceptual loss function based on semantic-important structural SIMilarity index. To ensure the rate adaptation, we suggest modulating the compression network on the bitwidth of its activations by quantizing them according to several bitwidth values. Experiments are presented on the JPEG AI dataset in which our method achieves competitive and higher visual quality for the same compressed size, when compared to conventional codecs and related work.
Author Sebai, D.
Shah, A. Ulah
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0001-7720-2741
  surname: Sebai
  fullname: Sebai, D.
  email: sebaidorsaf@gmail.com
  organization: Cristal Laboratory,National School of Computer Sciences, University of Manouba
– sequence: 2
  givenname: A. Ulah
  surname: Shah
  fullname: Shah, A. Ulah
  organization: Faculty of Computer Science and Information Technology, University Tun Hussein Onn
BookMark eNp9kMtKAzEUhoNUsNa-gKsB19GcyTSZWUrxBkIX1p0QMrmUKdOkTdJFfXpTRxRcNBCSA_93kvNdopHzziB0DeQWCOF3EYAzgklZHjcFDGdoDDWjGDjA6PdO6AWaxrgmedGS16weo483s5EudQr70BmXjC56I4Pr3Aq3Muay28iVKZTfbIOJsfOuaA_FwvUHvAyyc3jhlCl2-2OTzxyX--SNU16bEK_QuZV9NNOfc4LeHx-W82f8unh6md-_YkWhSdiy0oLRVCrNas1rTWwjrTYNb6uWVG2lZ4q1llRaMw7KalpDKUtdVS2XkMsJuhn6boPf7U1MYu33weUnBS1nrGG04TSn6iGlgo8xGCtUl2TKE6U8SC-AiKNOMegUWaX41ikgo-U_dBuyl3A4DdEBijnsVib8_eoE9QV-EIuN
CitedBy_id crossref_primary_10_1142_S2196888825500137
crossref_primary_10_3103_S1060992X24700012
crossref_primary_10_1109_ACCESS_2024_3468028
crossref_primary_10_3390_technologies13070310
Cites_doi 10.3390/app9173580
10.1016/j.neucom.2019.01.086
10.1109/ICCV.2019.00324
10.1109/ICASSP.2019.8683541
10.1109/CVPR.2018.00339
10.1109/DCC.2017.56
10.1109/LSP.2020.2970539
10.1109/MMSP48831.2020.9287130
10.1007/978-3-030-04167-0_9
10.1109/CVPR.2016.319
10.1109/MMSP53017.2021.9733550
10.1016/S0923-5965(01)00024-8
10.1109/CVPR.2017.577
10.1109/MMSP48831.2020.9287082
10.1109/CVPR.2018.00462
10.1109/ICCV.2015.123
10.1109/CVPRW50498.2020.00089
10.1109/30.125072
10.1109/TIP.2003.819861
10.1109/CVPRW50498.2020.00088
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11760-022-02231-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 293
ExternalDocumentID 10_1007_s11760_022_02231_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-f62f1ed3acd68d78d0f9afde97b4b04b4d5c6bf04dd671cfd3812a2d44b7a1fd3
IEDL.DBID P5Z
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789008100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Sat Oct 11 06:55:27 EDT 2025
Sat Nov 29 05:30:59 EST 2025
Tue Nov 18 21:24:51 EST 2025
Fri Feb 21 02:44:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Learning-based image compression
Loss-conditional autoencoder
Variable-rate compression
Multi-term loss function
Quantized autoencoders
Only-Train-Once
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f62f1ed3acd68d78d0f9afde97b4b04b4d5c6bf04dd671cfd3812a2d44b7a1fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7720-2741
PQID 3256963973
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_3256963973
crossref_citationtrail_10_1007_s11760_022_02231_1
crossref_primary_10_1007_s11760_022_02231_1
springer_journals_10_1007_s11760_022_02231_1
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Luo, S., Yang, Y., Song, M.: DeepSIC: deep semantic image compression. In: International Conference on Neural Information Processing (2018)
Theis, L., Shi, W., Cunningham, A., Huszar, F.: Lossy image compression with compressive autoencoders. In: International Conference on Learning Representations (2017)
YangFHerranzLvan de WeijerJGuitinJAILopezAMozerovMVariable rate deep image compression with modulated autoencoderIEEE Signal Process. Lett.20202733133510.1109/LSP.2020.2970539
Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (2018)
AgustssonEMentzerFTschannenMCavigelliLTimofteRBeniniLGoolLVSoft-to-hard vector quantization for end-toend learning compressible representationsAdv. Neural Inf. Process. Syst.20173011411151
Lee, W.-C., Chang, C.-P., Peng, W.-H., Hang, H.-M.: A hybrid layered image compressor with deep-learning technique. In: International Workshop on Multimedia Signal Processing (2020)
Sebai, D.: Multi-rate deep semantic image compression with quantized modulated autoencoder. In: IEEE International Workshop on Multimedia Signal Processing (MMSP) (2021)
Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. IEEE Data Compression Conference (DCC) (2017)
Zhou, B.L., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
ChenZHeTLearning based facial image compression with semantic fidelity metricNeurocomputing2019338162510.1016/j.neucom.2019.01.086
Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv:1611.01704 (2016)
Akbari, M., Liang, J., Han, J.: DSSLIC: deep semantic segmentation-based layered image compression. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)
Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor, J., Covell, M.: Full resolution image compression with recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. https://authors.library.caltech.edu/7694
Hoang, T.M., Zhou, J., Fan, Y.: Image compression with encoder-decoder matched semantic segmentation. In: Conference on Computer Vision and Pattern Recognition Workshops (2020)
Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: International Conference on Machine Learning, pp. 2922–2930 (2017)
Zhou, J., Nakagawa, A., Kato, K., Wen, S., Kazui, K., Tan, Z.: Variable rate image compression method with dead-zone quantizer. In: Conference on Computer Vision and Pattern Recognition Workshops (2020)
Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Conditional probability models for deep image compression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4394–4402 (2018)
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.20043460061210.1109/TIP.2003.819861
Choi, Y., El-Khamy, M., Lee, J.: Variable Rate Deep Image Compression With a Conditional autoencoder. In: International Conference on Computer Vision (ICCV) (2019)
Wallace, G. K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)
Akyazi, P., Ebrahimi, T.: Learning-based image compression using convolutional autoencoder and wavelet decomposition. IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Ascenso, J., Akyazi, P.: MPEG AI image coding common test conditions. In: 84th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$84^{th}$$\end{document} JPEG meeting (ISO/IEC JTC 1/SC29/WG1, document N84035), Brussels, Geneva: ISO, 13–19 July (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision (ICCV) (2015)
Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Sig. Process.: Image Commun. 17(1), 3–48 (2002)
Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content weighted image compression. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
WangCHanYWangWAn end-to-end deep learning image compression framework based on semantic analysisAppl. Sci.2019917358010.3390/app9173580
Chen, Z., Tianyu, H.: Learning based facial image compression with semantic fidelity metric. Neurocomputing 338, 16–25 (2019)
Lee, J., Cho, S., Beack, S.-K.: Context-adaptive entropy model for end-to-end optimized image compression. In: International Conference on Learning Representations (2019)
Lin, J., Akbari, M., Fu, H., Zhang, Q.,Wang, S., Liang, J., Liu, D., Liang, F., Zhang, G., Tu, C.: Learned variable-rate multi-frequency image compression using modulated generalized octave convolution. In: International Workshop on Multimedia Signal Processing (2020)
Mahalingaiah, K., Sharma, H., Kaplish, P., Cheng, I.: Semantic learning for image compression (SLIC)
Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. In: Data Compression Conference (DCC) (2017)
MinnenDBalléJTodericiGDJoint autoregressive and hierarchical priors for learned image compressionAdv. Neural Inf. Process. Syst.2018311079410803
Fraunhofer Heinrich Hertz Institute.: VVC official test model VTM. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware
Dosovitskiy, A., Djolonga, J.: You only train once: Loss-conditional training of deep networks In: International Conference on Learning Representations (2020)
Bellard, F.: BPG image format. https://bellard.org/bpg (2014)
2231_CR20
2231_CR21
F Yang (2231_CR13) 2020; 27
2231_CR8
2231_CR9
D Minnen (2231_CR5) 2018; 31
2231_CR28
2231_CR1
2231_CR2
2231_CR26
2231_CR3
2231_CR27
2231_CR24
Z Chen (2231_CR29) 2019; 338
2231_CR6
2231_CR22
2231_CR7
2231_CR23
2231_CR31
2231_CR10
2231_CR30
E Agustsson (2231_CR4) 2017; 30
Z Wang (2231_CR32) 2004; 3
C Wang (2231_CR25) 2019; 9
2231_CR19
2231_CR17
2231_CR18
2231_CR15
2231_CR37
2231_CR16
2231_CR35
2231_CR14
2231_CR36
2231_CR11
2231_CR33
2231_CR12
2231_CR34
References_xml – reference: Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Sig. Process.: Image Commun. 17(1), 3–48 (2002)
– reference: YangFHerranzLvan de WeijerJGuitinJAILopezAMozerovMVariable rate deep image compression with modulated autoencoderIEEE Signal Process. Lett.20202733133510.1109/LSP.2020.2970539
– reference: Fraunhofer Heinrich Hertz Institute.: VVC official test model VTM. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware
– reference: Dosovitskiy, A., Djolonga, J.: You only train once: Loss-conditional training of deep networks In: International Conference on Learning Representations (2020)
– reference: Lee, J., Cho, S., Beack, S.-K.: Context-adaptive entropy model for end-to-end optimized image compression. In: International Conference on Learning Representations (2019)
– reference: Akbari, M., Liang, J., Han, J.: DSSLIC: deep semantic segmentation-based layered image compression. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)
– reference: Wallace, G. K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)
– reference: Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (2018)
– reference: AgustssonEMentzerFTschannenMCavigelliLTimofteRBeniniLGoolLVSoft-to-hard vector quantization for end-toend learning compressible representationsAdv. Neural Inf. Process. Syst.20173011411151
– reference: Lee, W.-C., Chang, C.-P., Peng, W.-H., Hang, H.-M.: A hybrid layered image compressor with deep-learning technique. In: International Workshop on Multimedia Signal Processing (2020)
– reference: Chen, Z., Tianyu, H.: Learning based facial image compression with semantic fidelity metric. Neurocomputing 338, 16–25 (2019)
– reference: Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. In: Data Compression Conference (DCC) (2017)
– reference: Ascenso, J., Akyazi, P.: MPEG AI image coding common test conditions. In: 84th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$84^{th}$$\end{document} JPEG meeting (ISO/IEC JTC 1/SC29/WG1, document N84035), Brussels, Geneva: ISO, 13–19 July (2019)
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.20043460061210.1109/TIP.2003.819861
– reference: Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor, J., Covell, M.: Full resolution image compression with recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314 (2017)
– reference: Choi, Y., El-Khamy, M., Lee, J.: Variable Rate Deep Image Compression With a Conditional autoencoder. In: International Conference on Computer Vision (ICCV) (2019)
– reference: Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Semantic perceptual image compression using deep convolution networks. IEEE Data Compression Conference (DCC) (2017)
– reference: Zhou, B.L., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
– reference: He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision (ICCV) (2015)
– reference: Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: International Conference on Machine Learning, pp. 2922–2930 (2017)
– reference: Sebai, D.: Multi-rate deep semantic image compression with quantized modulated autoencoder. In: IEEE International Workshop on Multimedia Signal Processing (MMSP) (2021)
– reference: MinnenDBalléJTodericiGDJoint autoregressive and hierarchical priors for learned image compressionAdv. Neural Inf. Process. Syst.2018311079410803
– reference: Theis, L., Shi, W., Cunningham, A., Huszar, F.: Lossy image compression with compressive autoencoders. In: International Conference on Learning Representations (2017)
– reference: Luo, S., Yang, Y., Song, M.: DeepSIC: deep semantic image compression. In: International Conference on Neural Information Processing (2018)
– reference: Bellard, F.: BPG image format. https://bellard.org/bpg (2014)
– reference: Hoang, T.M., Zhou, J., Fan, Y.: Image compression with encoder-decoder matched semantic segmentation. In: Conference on Computer Vision and Pattern Recognition Workshops (2020)
– reference: Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. https://authors.library.caltech.edu/7694/
– reference: Lin, J., Akbari, M., Fu, H., Zhang, Q.,Wang, S., Liang, J., Liu, D., Liang, F., Zhang, G., Tu, C.: Learned variable-rate multi-frequency image compression using modulated generalized octave convolution. In: International Workshop on Multimedia Signal Processing (2020)
– reference: Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv:1611.01704 (2016)
– reference: Akyazi, P., Ebrahimi, T.: Learning-based image compression using convolutional autoencoder and wavelet decomposition. IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
– reference: ChenZHeTLearning based facial image compression with semantic fidelity metricNeurocomputing2019338162510.1016/j.neucom.2019.01.086
– reference: Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content weighted image compression. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
– reference: WangCHanYWangWAn end-to-end deep learning image compression framework based on semantic analysisAppl. Sci.2019917358010.3390/app9173580
– reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
– reference: Zhou, J., Nakagawa, A., Kato, K., Wen, S., Kazui, K., Tan, Z.: Variable rate image compression method with dead-zone quantizer. In: Conference on Computer Vision and Pattern Recognition Workshops (2020)
– reference: Mahalingaiah, K., Sharma, H., Kaplish, P., Cheng, I.: Semantic learning for image compression (SLIC)
– reference: Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Conditional probability models for deep image compression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4394–4402 (2018)
– ident: 2231_CR36
– volume: 9
  start-page: 3580
  issue: 17
  year: 2019
  ident: 2231_CR25
  publication-title: Appl. Sci.
  doi: 10.3390/app9173580
– volume: 338
  start-page: 16
  year: 2019
  ident: 2231_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.086
– ident: 2231_CR34
– ident: 2231_CR30
– volume: 30
  start-page: 1141
  year: 2017
  ident: 2231_CR4
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 2231_CR6
– ident: 2231_CR8
– ident: 2231_CR14
  doi: 10.1109/ICCV.2019.00324
– ident: 2231_CR19
  doi: 10.1109/ICASSP.2019.8683541
– ident: 2231_CR20
  doi: 10.1109/CVPR.2018.00339
– ident: 2231_CR28
  doi: 10.1109/DCC.2017.56
– ident: 2231_CR23
  doi: 10.1109/DCC.2017.56
– ident: 2231_CR18
– volume: 27
  start-page: 331
  year: 2020
  ident: 2231_CR13
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2970539
– ident: 2231_CR17
  doi: 10.1109/MMSP48831.2020.9287130
– ident: 2231_CR27
  doi: 10.1007/978-3-030-04167-0_9
– ident: 2231_CR12
– ident: 2231_CR31
  doi: 10.1109/CVPR.2016.319
– ident: 2231_CR10
– ident: 2231_CR37
– ident: 2231_CR3
– ident: 2231_CR33
  doi: 10.1109/MMSP53017.2021.9733550
– ident: 2231_CR2
  doi: 10.1016/S0923-5965(01)00024-8
– ident: 2231_CR9
  doi: 10.1109/CVPR.2017.577
– ident: 2231_CR16
  doi: 10.1109/MMSP48831.2020.9287082
– ident: 2231_CR7
– ident: 2231_CR11
  doi: 10.1109/CVPR.2018.00462
– ident: 2231_CR35
  doi: 10.1109/ICCV.2015.123
– ident: 2231_CR15
  doi: 10.1109/CVPRW50498.2020.00089
– ident: 2231_CR26
– ident: 2231_CR1
  doi: 10.1109/30.125072
– ident: 2231_CR22
– volume: 31
  start-page: 10794
  year: 2018
  ident: 2231_CR5
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 600
  issue: 4
  year: 2004
  ident: 2231_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: 2231_CR21
  doi: 10.1016/j.neucom.2019.01.086
– ident: 2231_CR24
  doi: 10.1109/CVPRW50498.2020.00088
SSID ssj0000327868
Score 2.3181002
Snippet Accessibility to big training datasets together with current advances in computing power has emerged interest in the leverage of deep learning to address image...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 285
SubjectTerms Adaptation
Codec
Computer Imaging
Computer Science
Datasets
Deep learning
Image coding
Image compression
Image Processing and Computer Vision
Image quality
Lagrange multiplier
Machine learning
Methods
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Semantic analysis
Semantics
Signal,Image and Speech Processing
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6ketCD1apYrbIHb7qQdLfZ7FHE4smKreJBCMk-pNCm2odQf70zebQqKughh5DNEGZ3M18yM99HyIl1yteJdowbTDPylmIKYCuzUrmk5SQyrGRiE_L6Onx4UDdFU9ikrHYvU5LZm3rZ7ObLwGNYfQ4H9xl886xCuAtRsOG2e7_4s-LxpgzzHrgwQP5NjxfdMt-b-RyRljDzS2Y0Czjt6v8edYtsFgCTnucrYpus2LRGqqV4Ay32co1sfGAi3CGPXTsEH_c1GyHxMcBQWuhJPDEMdIb2h_DmoViBnlfOpjSZ0046mLMeqkywDlilLzM08gbD49l0hByZWCe9S-7al72LK1YILzANO3LKXNB0vjU81iYIjQyN51TsjFUyEYknEmFaOkicJ4wJpK-dgbDfjJtGiETGPpzukUo6Su0-ocoprYQTQWCFEMg9zwHTGQiYsQXkp-rEL50f6YKVHMUxBtGSTxmdGYEjo8yZkV8np4t7nnNOjl9HN8o5jYr9OYk4ID2FOU1eJ2flHC4v_2zt4G_DD8k66tPnZd4NUpmOZ_aIrOnXaX8yPs7W7TvelOZh
  priority: 102
  providerName: Springer Nature
Title Semantic-oriented learning-based image compression by Only-Train-Once quantized autoencoders
URI https://link.springer.com/article/10.1007/s11760-022-02231-1
https://www.proquest.com/docview/3256963973
Volume 17
WOSCitedRecordID wos000789008100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58HfTgW6yPsgdvGtw06WZzEhWLINTiiyLCspuHFHSrthX015vZTVsV7MXDLiybhJCZzAyZyfcB7BkrqcqUJUxjmpHVJZEubCVGSJvVrUCElYJsQjSbcbstW_7ArefLKoc2sTDUuqvwjPyQOd8sMQvFjl5eCbJGYXbVU2hMwyyiJCB1Q6t-PzpjCVlNxOVtuDhCJM6Q-Xsz5e05KqKQYDm7exgl9KdvGgecv3KkhetpLP130suw6IPO4LjUkhWYMvkqLHyDIlyDh2vz7Ba5o7A_4nTqwBNKPBL0dDroPDvTE2AJelk6mwfZR3CZP32QG6SZIJdOfYLXAQ7y6Zqng34XQTKxUHodbhtnN6fnxDMvEOW2ZJ_YqGap0SxVOoq1iHVoZWq1kSLjWcgzrusqymzItY4EVVY7v19La5rzTKTUfW7ATN7NzSYE0kolueVRZDjnCD7PXFCnncdMjQv9ZAXocM0T5WHJkR3jKRkDKqOcEiejpJBTQiuwP-rzUoJyTGy9MxRO4jdoLxlLpgIHQ_GOf_892tbk0bZhHgnpy7ruHZjpvw3MLsyp936n91aF2ZOzZuuqCtMXglQLZXXvq-u7L9AT7gU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH9BMFEO4GdYAZ2DnnRipzPb6RwMISCBLC4mrgkHk9rOh9kEusDuSpY_yr-R9_rBqoncOHjooel00nZ-76Pz3vs9gNc-GGELG7h0FGaUXcMNuq3caxOKbtDEsFI1m9D9fnp8bD4vwK-2FobSKludWClqN7K0R_5eom02FIWSW2fnnLpGUXS1baFRw6LnZ5f4yzb-cLCL6_smjvc-Dnb2edNVgFuE24SHJA7CO5lbl6ROpy4KJg_OG12oIlKFcl2bFCFSziVa2ODQpsV57JQqdC7wFOe9B0tKpprkqqf5zZ5OJGOd1tV3aULMn5Fs6nTqaj2hk4hT-jweUnDxpy2cO7h_xWQrU7e3-r99pEew0jjVbLuWgsew4MsnsPwb1eJT-PbFnyKIhpael3hIHWsaZvzgZMkdG56iamWUYl-nBpesmLGj8mTGB9RGgx-heLDzKU1yhcPz6WREJKCUCP4Mvt7J6z2HxXJU-jVgJhhrVFBJ4pVSRK4v0Wl16BHkHl1b0wHRrnFmG9p16v5xks0JowkXGWIiq3CRiQ68vbnnrCYduXX0RguGrFFA42yOhA68a-E0v_zv2V7cPtsreLA_-HSYHR70e-vwMEaXr85h34DFycXUb8J9-3MyHF-8rESDwfe7htk1hhJLUQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ERfTgoyrW5x686dKku81mj6IWRamCVXoQQrIPKWjqIxX017uTh1VRQTzkELIZwuxu5kvmm28Ato2VvkqUpUxjmpG1JJUOtlIjpE1aVqDCSt5sQnQ6Ya8nzz9U8eds9yolWdQ0oEpTmjXutW2MCt98EXgUmejuYD513z8THIn0-L1-cfX-l8VjTREW9XBhgFqcHisrZ7438zk6jSDnlyxpHnzac_9_7HmYLYEn2StWygKMmbQGc1VTB1Lu8RrMfFAoXITrC3PnfN9XdICCyA6ekrLPxA3FAKhJ_869kQgy0wtGbUqSF3KW3r7QLnafoGfOKnkYopFXNzweZgPUzkT-9BJctg-7-0e0bMhAldupGbVB0_pGs1jpINQi1J6VsdVGioQnHk-4bqkgsR7XOhC-strBgWbc1JwnIvbd6TKMp4PUrACRVirJLQ8CwzlHTXrmsJ52gTQ2DhHKOvjVRESqVCvHphm30UhnGZ0ZOUdGuTMjvw477_fcF1odv45er-Y3KvftU8QcApSY62R12K3mc3T5Z2urfxu-BVPnB-3o9LhzsgbT2MK-YIKvw3j2ODQbMKmes_7T42a-nN8AF_PyKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic-oriented+learning-based+image+compression+by+Only-Train-Once+quantized+autoencoders&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Sebai%2C+D.&rft.au=Shah%2C+A.+Ulah&rft.date=2023-02-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=17&rft.issue=1&rft.spage=285&rft.epage=293&rft_id=info:doi/10.1007%2Fs11760-022-02231-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_022_02231_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon