An efficient numerical algorithm for solving nonlinear Volterra integral equations in the reproducing kernel space

The main purpose of this paper is to approximate the solution of the nonlinear Volterra integral equation numerically in the reproducing kernel space. Consequently, in the study, combining Quasi-Newton’s method and the least-square method, we develop a new method for solving this kind of equation. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 69; číslo 4; s. 3131 - 3149
Hlavní autoři: Dai, Xuefei, Niu, Jing, Xu, Yanxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main purpose of this paper is to approximate the solution of the nonlinear Volterra integral equation numerically in the reproducing kernel space. Consequently, in the study, combining Quasi-Newton’s method and the least-square method, we develop a new method for solving this kind of equation. This technique transforms the nonlinear Volterra integral equation into a linear algebraic system of equations, which can be solved by using the least-square method breezily. At the same time, to ensure the preciseness of the method, we strictly analyze the existence and uniqueness of ε -approximate solution and its convergence. Finally, we illustrate the accuracy and reliability of this method by giving some examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-023-01874-8