A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design

The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archives of computational methods in engineering Ročník 30; číslo 6; s. 3657 - 3671
Hlavní autoři: Anosri, Siwakorn, Panagant, Natee, Champasak, Pakin, Bureerat, Sujin, Thipyopas, Chinnapat, Kumar, Sumit, Pholdee, Nantiwat, Yıldız, Betül Sultan, Yildiz, Ali Riza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.07.2023
Springer Nature B.V
Témata:
ISSN:1134-3060, 1886-1784
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the effectiveness of twelve new algorithms for solving unmanned aerial vehicle design issues is compared. The optimizers included Differential evolution for multi-objective optimization, Many-objective nondominated sorting genetic algorithm, Knee point-driven evolutionary algorithm for many-objective optimization, Reference vector guided evolutionary algorithm, Multi-objective bat algorithm with nondominated sorting, multi-objective flower pollination algorithm, Multi-objective cuckoo search algorithm, Multi-objective multi-verse optimizer, Multi-objective slime mould algorithm, Multi-objective jellyfish search algorithm, Multi-objective evolutionary algorithm based on decomposition and Self-adaptive many-objective meta-heuristic based on decomposition. The design problems include four many-objective conceptual designs of UAV viz. Conventional, Conventional with winglet, Twin boom and Canard, which are solved by all the optimizers employed. Widely used Hypervolume and Inverted Generational Distance metrics are considered to evaluate and compare the performance of examined algorithms. Friedman’s rank test based statistical examination manifests the dominance of the DEMO optimization technique over other compared techniques and exhibits its effectiveness in solving aircraft conceptual design problems. The findings of this work assist in not only solving aircraft design problems but also facilitating the development of unique algorithms for such challenging issues.
AbstractList The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the effectiveness of twelve new algorithms for solving unmanned aerial vehicle design issues is compared. The optimizers included Differential evolution for multi-objective optimization, Many-objective nondominated sorting genetic algorithm, Knee point-driven evolutionary algorithm for many-objective optimization, Reference vector guided evolutionary algorithm, Multi-objective bat algorithm with nondominated sorting, multi-objective flower pollination algorithm, Multi-objective cuckoo search algorithm, Multi-objective multi-verse optimizer, Multi-objective slime mould algorithm, Multi-objective jellyfish search algorithm, Multi-objective evolutionary algorithm based on decomposition and Self-adaptive many-objective meta-heuristic based on decomposition. The design problems include four many-objective conceptual designs of UAV viz. Conventional, Conventional with winglet, Twin boom and Canard, which are solved by all the optimizers employed. Widely used Hypervolume and Inverted Generational Distance metrics are considered to evaluate and compare the performance of examined algorithms. Friedman’s rank test based statistical examination manifests the dominance of the DEMO optimization technique over other compared techniques and exhibits its effectiveness in solving aircraft conceptual design problems. The findings of this work assist in not only solving aircraft design problems but also facilitating the development of unique algorithms for such challenging issues.
Author Yildiz, Ali Riza
Pholdee, Nantiwat
Thipyopas, Chinnapat
Yıldız, Betül Sultan
Anosri, Siwakorn
Bureerat, Sujin
Panagant, Natee
Kumar, Sumit
Champasak, Pakin
Author_xml – sequence: 1
  givenname: Siwakorn
  surname: Anosri
  fullname: Anosri, Siwakorn
  organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University
– sequence: 2
  givenname: Natee
  orcidid: 0000-0001-8041-8172
  surname: Panagant
  fullname: Panagant, Natee
  email: natepa@kku.ac.th
  organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University
– sequence: 3
  givenname: Pakin
  surname: Champasak
  fullname: Champasak, Pakin
  organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University, Department of Mechanical and Aerospace Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok
– sequence: 4
  givenname: Sujin
  surname: Bureerat
  fullname: Bureerat, Sujin
  organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University
– sequence: 5
  givenname: Chinnapat
  surname: Thipyopas
  fullname: Thipyopas, Chinnapat
  organization: Center of Innovative and Integrated Mini&Micro Air Vehicle, Department of Aerospace Engineering, Faculty of Engineering, Kasetsart University
– sequence: 6
  givenname: Sumit
  surname: Kumar
  fullname: Kumar, Sumit
  organization: College of Sciences and Engineering, Australian Maritime College, University of Tasmania
– sequence: 7
  givenname: Nantiwat
  surname: Pholdee
  fullname: Pholdee, Nantiwat
  organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University
– sequence: 8
  givenname: Betül Sultan
  surname: Yıldız
  fullname: Yıldız, Betül Sultan
  organization: Department of Mechanical Engineering, Bursa Uludağ University
– sequence: 9
  givenname: Ali Riza
  surname: Yildiz
  fullname: Yildiz, Ali Riza
  organization: Department of Mechanical Engineering, Bursa Uludağ University
BookMark eNp9kdtqGzEQhkVIIYfmBXIl6LVaabUnXRq3SQMJKaRpL4VWO7JldqWtpA21X6avGtkuFHqRqzkw3z_D_Bfo1HkHCF0z-pFR2nyKjLWcEVpwQoVgJdmdoHPWtjVhTVue5pzxknBa0zN0EeOG0qoUojhHfxZ46cdJBZXsC-CnNPdb7E1OVALiDUlrICok_ABJrWEONiarIzY-4Cc_vFi3wg_KbYnvNqAPGo9TsqPdZUHv8LfguwHGuNe8sb-hxz_3yLMblXO5WkCwasA_YG31APkWp2FKc259hmhX7j16Z9QQ4epvvETPN1--L7-S-8fbu-XinmjORCKGs05TpXXPRN20IOqedhQKU5UalKlo3xutdN30Xd00Rdc3WkCjhOraTmtT8Ev04ag7Bf9rhpjkxs_B5ZWSF1VdtwVjVZ4qjlM6-BgDGDkFO6qwlYzKvRHyaITMRsiDEXKXofY_SNt0-E4Kyg5vo_yIxrzHrSD8u-oN6hUBC6Sq
CitedBy_id crossref_primary_10_1080_23302674_2025_2492219
crossref_primary_10_1007_s42235_025_00708_6
crossref_primary_10_1109_ACCESS_2024_3379149
crossref_primary_10_1007_s11227_024_05999_w
crossref_primary_10_1007_s40684_025_00722_3
crossref_primary_10_1515_mt_2023_0319
crossref_primary_10_1080_15397734_2024_2389109
crossref_primary_10_1038_s41598_025_87673_6
crossref_primary_10_1016_j_sasc_2025_200381
crossref_primary_10_1007_s13369_024_08711_5
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_1108_EC_08_2024_0709
crossref_primary_10_1177_09544070241283509
crossref_primary_10_1515_mt_2023_0351
crossref_primary_10_3390_math11183844
crossref_primary_10_1515_mt_2024_0327
crossref_primary_10_1515_mt_2024_0005
crossref_primary_10_1007_s00500_024_09943_1
crossref_primary_10_1177_14644207241294056
crossref_primary_10_1515_mt_2025_0182
crossref_primary_10_3390_app14114358
crossref_primary_10_1016_j_sasc_2025_200275
crossref_primary_10_1515_mt_2024_0099
crossref_primary_10_1016_j_cosrev_2025_100805
crossref_primary_10_1515_mt_2023_0245
crossref_primary_10_1515_mt_2024_0098
crossref_primary_10_1007_s00170_025_15985_y
crossref_primary_10_1109_ACCESS_2023_3329836
crossref_primary_10_1515_mt_2024_0217
crossref_primary_10_1007_s00170_024_14600_w
crossref_primary_10_1007_s12008_024_02143_z
crossref_primary_10_1515_mt_2025_0075
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1016_j_rico_2025_100539
crossref_primary_10_1002_oca_3230
crossref_primary_10_1080_09544828_2023_2301230
crossref_primary_10_1515_cppm_2024_0045
crossref_primary_10_1080_00051144_2024_2420296
crossref_primary_10_1016_j_sasc_2025_200200
crossref_primary_10_1016_j_sasc_2025_200365
crossref_primary_10_1016_j_sasc_2025_200366
crossref_primary_10_1515_mt_2024_0187
crossref_primary_10_1016_j_advengsoft_2025_103908
crossref_primary_10_1515_mt_2024_0186
crossref_primary_10_1016_j_knosys_2025_113558
crossref_primary_10_1016_j_rineng_2025_106698
crossref_primary_10_1016_j_sasc_2024_200164
crossref_primary_10_1016_j_cma_2024_117718
crossref_primary_10_1515_mt_2024_0100
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_1007_s42235_025_00702_y
crossref_primary_10_1515_mt_2023_0091
crossref_primary_10_1108_EC_10_2024_0904
crossref_primary_10_1515_mt_2025_0043
crossref_primary_10_1080_01496395_2025_2502752
crossref_primary_10_1515_mt_2024_0519
crossref_primary_10_3390_app13126966
crossref_primary_10_1007_s12008_025_02280_z
crossref_primary_10_1080_15397734_2025_2513659
crossref_primary_10_1080_01496395_2025_2537712
crossref_primary_10_1177_09544070251343338
crossref_primary_10_1515_mt_2023_0226
crossref_primary_10_1016_j_engappai_2024_108043
crossref_primary_10_1007_s40684_024_00669_x
crossref_primary_10_1080_02533839_2025_2517349
crossref_primary_10_1515_mt_2024_0075
crossref_primary_10_1007_s12539_023_00597_5
crossref_primary_10_1515_mt_2024_0151
crossref_primary_10_3390_aerospace12060461
crossref_primary_10_1515_mt_2024_0233
crossref_primary_10_1002_tal_70014
Cites_doi 10.1016/j.compstruc.2016.01.008
10.1016/j.chaos.2020.109738
10.1007/s00521-015-1920-1
10.1016/j.cja.2013.12.008
10.1016/j.future.2019.07.015
10.1515/mt-2020-0077
10.1016/j.cor.2009.03.009
10.1109/ICCIAS.2006.294139
10.1155/2016/2813541
10.2514/6.2019-3577
10.5860/choice.51-0912
10.1109/4235.996017
10.1007/s11831-020-09442-0
10.1007/s11831-015-9155-y
10.2514/1.C031312
10.1016/j.advengsoft.2017.07.002
10.1007/S11831-021-09694-4/FIGURES/10
10.1016/j.compstruc.2012.07.010
10.1007/s11831-020-09443-z
10.1016/j.knosys.2019.105190
10.1109/TEVC.2014.2378512
10.1016/j.ins.2018.06.019
10.1007/s00521-015-1870-7
10.2514/6.2016-3362
10.1016/j.cja.2017.10.006
10.1016/j.knosys.2015.07.006
10.1007/S11831-021-09586-7/FIGURES/14
10.2514/6.2009-6237
10.1016/j.compstruc.2012.09.003
10.1007/s11831-020-09429-x
10.21467/proceedings.4.35
10.1007/s12205-017-0095-y
10.1007/s00158-021-02872-9
10.1016/j.advengsoft.2013.03.004
10.1016/j.eswa.2015.10.039
10.1007/S11831-021-09531-8/FIGURES/11
10.1504/IJVD.2017.082578
10.24200/sci.2017.2417
10.1007/978-3-540-31880-4_36
10.16356/j.1005-2615.2018.06.015
10.1007/s00500-004-0363-x
10.1016/j.advengsoft.2016.01.008
10.1109/TEVC.2012.2204264
10.1007/s11831-020-09456-8
10.1016/j.cor.2011.09.026
10.1016/j.compstruc.2016.03.001
10.1007/s00366-020-01077-w
10.1016/j.compstruc.2014.03.007
10.1016/j.ast.2019.05.067
10.1007/s10489-016-0825-8
10.1108/K-06-2019-0430
10.1007/s00158-021-03033-8
10.1007/s10898-007-9149-x
10.1016/j.ast.2020.105783
10.1017/S0001924000002621
10.1007/s11831-021-09546-1
10.2514/1.A33312
10.1109/TEVC.2007.892759
10.1109/ACCESS.2020.3047936
10.1007/S12541-021-00524-Y/FIGURES/20
10.1007/S11831-021-09529-2/TABLES/9
10.1108/JEDT-08-2018-0130
10.1007/978-3-319-13826-8_10
10.1109/TEVC.2016.2519378
10.1109/TEVC.2014.2350987
10.1016/j.ast.2020.105755
10.1080/0305215X.2013.832237
10.1109/TEVC.2013.2281535
10.1016/j.knosys.2017.07.018
10.1016/j.ast.2017.09.005
10.1016/j.ast.2017.11.032
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s11831-023-09914-z
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM - ProQuest
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Collection (ProQuest)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 3671
ExternalDocumentID 10_1007_s11831_023_09914_z
GrantInformation_xml – fundername: National Research Council Thailand
  grantid: N42A650549
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-f31bc0accd19678e96d0b0e2f54ceaf50ddfcac67db6772bd7c9e7a9ab8bccf23
IEDL.DBID RSV
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967260800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
IngestDate Sun Nov 30 05:05:28 EST 2025
Sat Nov 29 06:21:49 EST 2025
Tue Nov 18 22:21:38 EST 2025
Fri Feb 21 02:43:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Conceptual Design
Metaheuristic
Many-objective optimization
Comparative study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f31bc0accd19678e96d0b0e2f54ceaf50ddfcac67db6772bd7c9e7a9ab8bccf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8041-8172
PQID 3256682115
PQPubID 1486352
PageCount 15
ParticipantIDs proquest_journals_3256682115
crossref_primary_10_1007_s11831_023_09914_z
crossref_citationtrail_10_1007_s11831_023_09914_z
springer_journals_10_1007_s11831_023_09914_z
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica 24(2). https://doi.org/10.24200/sci.2017.2417
Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems 101. https://doi.org/10.1016/j.future.2019.07.015
Yan B, Zhao Q, Wang Z, Zhang JA (2018) Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. Inf Sci (N Y) 462. https://doi.org/10.1016/j.ins.2018.06.019
Pholdee N, Bureerat S (2018) A comparative study of eighteen self-adaptive Metaheuristic Algorithms for Truss sizing optimisation. KSCE J Civ Eng 22(8). https://doi.org/10.1007/s12205-017-0095-y
CHAI X, X. YU, and, WANG Y (2018) Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chin J Aeronaut 31(1). https://doi.org/10.1016/j.cja.2017.10.006
Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft comput 9(6). https://doi.org/10.1007/s00500-004-0363-x
Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100. https://doi.org/10.1016/j.ast.2020.105783
Kaveh A, Bakhshpoori T (2016) Water Evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167. https://doi.org/10.1016/j.compstruc.2016.01.008
Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191. https://doi.org/10.1016/j.knosys.2019.105190
Chou JS, Truong DN (2020) Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos Solitons Fractals 135. https://doi.org/10.1016/j.chaos.2020.109738
Cai Y, Rajaram D, Mavris DN (2019) Multi-mission multi-objective optimization in commercial aircraft conceptual design. https://doi.org/10.2514/6.2019-3577
Silva HL et al (2021) A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Struct Multidisciplinary Optim 64(6). https://doi.org/10.1007/s00158-021-03033-8
Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1). https://doi.org/10.1504/IJVD.2017.082578
Rajagopal S, Ganguli R (2008) Conceptual design of UAV using kriging based multi-objective genetic algorithm. Aeronaut J 112(1137). https://doi.org/10.1017/S0001924000002621
Rainer S, Kenneth P (1997) “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,”Journal of Global Optimization, vol. 11, no. 4
Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6). https://doi.org/10.1016/j.cor.2011.09.026
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114. https://doi.org/10.1016/j.advengsoft.2017.07.002
van Nguyen N, Tyan M, Jin S, Lee JW (2016) Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework. J Spacecr Rockets 53(1). https://doi.org/10.2514/1.A33312
Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of Metaheuristic Algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09443-z
Robič T, Filipič B (2005) “DEMO: Differential Evolution for Multiobjective Optimization,” in Lecture Notes in Computer Science, vol. 3410. doi: https://doi.org/10.1007/978-3-540-31880-4_36
Rostami P, Marzbanrad J (2021) Identification of optimal topologies for Continuum Structures using metaheuristics: a comparative study. Arch Comput Methods Eng 28(7). https://doi.org/10.1007/s11831-021-09546-1
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4). https://doi.org/10.1007/s00521-015-1920-1
Li M, Bai J, Li L, Meng X, Liu Q, Chen B (2019) A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp Sci Technol 92. https://doi.org/10.1016/j.ast.2019.05.067
Foroutan F, Mousavi Gazafrudi SM, Shokri-Ghaleh H (2021) A comparative study of recent optimization methods for optimal sizing of a Green Hybrid Traction Power Supply Substation. Arch Comput Methods Eng 28(4). https://doi.org/10.1007/s11831-020-09456-8
Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2). https://doi.org/10.1007/s00521-015-1870-7
Kunakote T et al (Jan. 2022) Comparative performance of twelve metaheuristics for wind farm layout optimisation. Arch Comput Methods Eng 29(1):717–730. https://doi.org/10.1007/S11831-021-09586-7/FIGURES/14
Gad AG (Aug. 2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput Methods Eng 29(5):2531–2561. https://doi.org/10.1007/S11831-021-09694-4/FIGURES/10
Montanino A, Alaimo G, Lanzarone E (2021) A gradient-based optimization method with functional principal component analysis for efficient structural topology optimization. Struct Multidisciplinary Optim 64(1). https://doi.org/10.1007/s00158-021-02872-9
Patel VK, Raja BD, Savsani VJ, Desai NB (2021) “Performance of Recent Optimization Algorithms and Its Comparison to State-of-the-Art Differential Evolution and Its Variants for the Economic Optimization of Cooling Tower,” Archives of Computational Methods in Engineering, vol. 28, no. 7, pp. 4523–4535, Dec. doi: https://doi.org/10.1007/S11831-021-09529-2/TABLES/9
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2). https://doi.org/10.1109/4235.996017
Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59. https://doi.org/10.1016/j.advengsoft.2013.03.004
Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4). https://doi.org/10.1109/TEVC.2012.2204264
Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134. https://doi.org/10.1016/j.knosys.2017.07.018
Chu S, Li J, Wei Z, Ren Q, Liu F (2018) Optimization of conceptual design parameters of civil aircraft based on operational requirements. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics 50(6). https://doi.org/10.16356/j.1005-2615.2018.06.015
Zhang Y, Zhu H, Tang D (2020) An improved hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem. Kybernetes 49(12). https://doi.org/10.1108/K-06-2019-0430
Neufeld D, Chung J, Behdinan K (2009) Aircraft conceptual design optimization with uncertain contributing analyses. https://doi.org/10.2514/6.2009-6237
Wang H, Jiao L, Yao X (2015) Two Arch2: an Improved two-archive Algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4). https://doi.org/10.1109/TEVC.2014.2350987
Patel VK, Raja BD (2021) Comparative performance of recent Advanced optimization algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09429-x
Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9). https://doi.org/10.1080/0305215X.2013.832237
Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47. https://doi.org/10.1016/j.eswa.2015.10.039
Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5). https://doi.org/10.1109/TEVC.2016.2519378
Zeng C, Abnous R, Gabani K, Chowdhury S, Maldonado V (2020) A new tilt-arm transitioning unmanned aerial vehicle: introduction and conceptual design. Aerosp Sci Technol 99. https://doi.org/10.1016/j.ast.2020.105755
Panagiotou P, Fotiadis-Karras S, Yakinthos K (2018) Conceptual design of a blended Wing Body MALE UAV. Aerosp Sci Technol 73. https://doi.org/10.1016/j.ast.2017.11.032
Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89. https://doi.org/10.1016/j.knosys.2015.07.006
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4). https://doi.org/10.1109/TEVC.2013.2281535
Kashani AR, Chiong R, Mirjalili S, Gandomi AH (2021) Particle Swarm optimization variants for solving geotechnical problems: review and comparative analysis. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09442-0
Zhang Q, Li H (2007) A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6). https://doi.org/10.1109/TEVC.2007.892759
Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) “MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting,” IEEE Access, vol. 9, doi: https://doi.org/10.1109/ACCESS.2020.3047936
Wendor AD, Botero E, Alonso JJ (2016) Comparing different off-the-shelf optimizers’ performance in conceptual aircraft design. https://doi.org/10.2514/6.2016-3362
Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6). https://d
9914_CR72
9914_CR71
9914_CR70
9914_CR37
9914_CR36
9914_CR35
9914_CR34
9914_CR33
9914_CR32
9914_CR31
9914_CR30
9914_CR39
9914_CR38
9914_CR7
9914_CR40
9914_CR8
9914_CR9
9914_CR3
9914_CR4
9914_CR5
9914_CR6
9914_CR48
9914_CR47
9914_CR1
9914_CR46
9914_CR2
9914_CR45
9914_CR44
9914_CR43
9914_CR42
9914_CR41
9914_CR49
9914_CR51
9914_CR50
9914_CR15
9914_CR59
9914_CR14
9914_CR58
9914_CR13
9914_CR57
9914_CR12
9914_CR56
9914_CR11
9914_CR55
9914_CR10
9914_CR54
9914_CR53
9914_CR52
9914_CR19
9914_CR18
9914_CR17
9914_CR16
9914_CR62
9914_CR61
9914_CR60
9914_CR26
9914_CR25
9914_CR69
9914_CR24
9914_CR68
9914_CR23
9914_CR67
9914_CR22
9914_CR66
9914_CR21
9914_CR65
9914_CR20
9914_CR64
9914_CR63
9914_CR29
9914_CR28
9914_CR27
References_xml – reference: Zhang Y, Zhu H, Tang D (2020) An improved hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem. Kybernetes 49(12). https://doi.org/10.1108/K-06-2019-0430
– reference: Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191. https://doi.org/10.1016/j.knosys.2019.105190
– reference: Wang H, Jiao L, Yao X (2015) Two Arch2: an Improved two-archive Algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4). https://doi.org/10.1109/TEVC.2014.2350987
– reference: Pholdee N, Bureerat S (2018) A comparative study of eighteen self-adaptive Metaheuristic Algorithms for Truss sizing optimisation. KSCE J Civ Eng 22(8). https://doi.org/10.1007/s12205-017-0095-y
– reference: Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4). https://doi.org/10.1007/s00521-015-1920-1
– reference: Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2). https://doi.org/10.1007/s00521-015-1870-7
– reference: Silva HL et al (2021) A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Struct Multidisciplinary Optim 64(6). https://doi.org/10.1007/s00158-021-03033-8
– reference: Kiani M, Yildiz AR (2016) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng 23(4). https://doi.org/10.1007/s11831-015-9155-y
– reference: Mirjalili S, Lewis A (2016) The Whale optimization Algorithm. Adv Eng Softw 95. https://doi.org/10.1016/j.advengsoft.2016.01.008
– reference: Neufeld D, Chung J, Behdinan K (2011) Aircraft conceptual design optimization considering fidelity uncertainties. J Aircr 48(5). https://doi.org/10.2514/1.C031312
– reference: Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray optimization. Comput Struct 112–113. https://doi.org/10.1016/j.compstruc.2012.09.003
– reference: Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47. https://doi.org/10.1016/j.eswa.2015.10.039
– reference: Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6). https://doi.org/10.1016/j.cor.2011.09.026
– reference: Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft comput 9(6). https://doi.org/10.1007/s00500-004-0363-x
– reference: Wendor AD, Botero E, Alonso JJ (2016) Comparing different off-the-shelf optimizers’ performance in conceptual aircraft design. https://doi.org/10.2514/6.2016-3362
– reference: Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5). https://doi.org/10.1109/TEVC.2016.2519378
– reference: Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100. https://doi.org/10.1016/j.ast.2020.105783
– reference: Robič T, Filipič B (2005) “DEMO: Differential Evolution for Multiobjective Optimization,” in Lecture Notes in Computer Science, vol. 3410. doi: https://doi.org/10.1007/978-3-540-31880-4_36
– reference: Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111. https://doi.org/10.1016/j.compstruc.2012.07.010
– reference: Zhang Q, Li H (2007) A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6). https://doi.org/10.1109/TEVC.2007.892759
– reference: Gao J, Wang J, “WBMOAIS (2010) A novel artificial immune system for multiobjective optimization. Comput Oper Res 37(1). https://doi.org/10.1016/j.cor.2009.03.009
– reference: Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139. https://doi.org/10.1016/j.compstruc.2014.03.007
– reference: van Nguyen N, Tyan M, Jin S, Lee JW (2016) Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework. J Spacecr Rockets 53(1). https://doi.org/10.2514/1.A33312
– reference: Wansasueb K, Pholdee N, Panagant N, Bureerat S (2022) Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing. Eng Comput 38(1). https://doi.org/10.1007/s00366-020-01077-w
– reference: Wang Y, Yin H, Zhang S, Yu X (2014) Multi-objective optimization of aircraft design for emission and cost reductions. Chin J Aeronaut 27(1). https://doi.org/10.1016/j.cja.2013.12.008
– reference: Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9). https://doi.org/10.1080/0305215X.2013.832237
– reference: Thakur N, Awasthi YK, Hooda M, Siddiqui AS (2019) Adaptive whale optimization for intelligent multi-constraints power quality improvement under deregulated environment. J Eng Des Technol 17(3). https://doi.org/10.1108/JEDT-08-2018-0130
– reference: Jamil M, Zepernick HJ, Yang XS (2015) Synthesizing cross-ambiguity functions using the improved bat algorithm. Stud Comput Intell 585. https://doi.org/10.1007/978-3-319-13826-8_10
– reference: Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems 101. https://doi.org/10.1016/j.future.2019.07.015
– reference: Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114. https://doi.org/10.1016/j.advengsoft.2017.07.002
– reference: Rostami P, Marzbanrad J (2021) Identification of optimal topologies for Continuum Structures using metaheuristics: a comparative study. Arch Comput Methods Eng 28(7). https://doi.org/10.1007/s11831-021-09546-1
– reference: Kaveh A, Bakhshpoori T (2016) Water Evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167. https://doi.org/10.1016/j.compstruc.2016.01.008
– reference: Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134. https://doi.org/10.1016/j.knosys.2017.07.018
– reference: Zeng C, Abnous R, Gabani K, Chowdhury S, Maldonado V (2020) A new tilt-arm transitioning unmanned aerial vehicle: introduction and conceptual design. Aerosp Sci Technol 99. https://doi.org/10.1016/j.ast.2020.105755
– reference: CHAI X, X. YU, and, WANG Y (2018) Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chin J Aeronaut 31(1). https://doi.org/10.1016/j.cja.2017.10.006
– reference: Rajagopal S, Ganguli R (2008) Conceptual design of UAV using kriging based multi-objective genetic algorithm. Aeronaut J 112(1137). https://doi.org/10.1017/S0001924000002621
– reference: Li M, Bai J, Li L, Meng X, Liu Q, Chen B (2019) A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp Sci Technol 92. https://doi.org/10.1016/j.ast.2019.05.067
– reference: Panagant N, Ylldlz M, Pholdee N, Ylldlz AR, Bureerat S, Sait SM (2021) A novel hybrid marine predators-nelder-mead optimization algorithm for the optimal design of engineering problems. Materialpruefung/Materials Test 63(5). https://doi.org/10.1515/mt-2020-0077
– reference: Patel VK, Raja BD (2021) Comparative performance of recent Advanced optimization algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09429-x
– reference: Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2). https://doi.org/10.1109/4235.996017
– reference: “Aircraft design: a systems engineering approach,”Choice Reviews Online, vol. 51, no. 02, doi: https://doi.org/10.5860/choice.51-0912
– reference: Kunakote T et al (Jan. 2022) Comparative performance of twelve metaheuristics for wind farm layout optimisation. Arch Comput Methods Eng 29(1):717–730. https://doi.org/10.1007/S11831-021-09586-7/FIGURES/14
– reference: Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J Global Optim 39(3). https://doi.org/10.1007/s10898-007-9149-x
– reference: Kashani AR, Chiong R, Mirjalili S, Gandomi AH (2021) Particle Swarm optimization variants for solving geotechnical problems: review and comparative analysis. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09442-0
– reference: Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89. https://doi.org/10.1016/j.knosys.2015.07.006
– reference: Montanino A, Alaimo G, Lanzarone E (2021) A gradient-based optimization method with functional principal component analysis for efficient structural topology optimization. Struct Multidisciplinary Optim 64(1). https://doi.org/10.1007/s00158-021-02872-9
– reference: Praditwong K, Yao X (2006) “A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm,” in International Conference on Computational Intelligence and Security, ICCIAS 2006, 2006, vol. 1. doi: https://doi.org/10.1109/ICCIAS.2006.294139
– reference: Panagiotou P, Fotiadis-Karras S, Yakinthos K (2018) Conceptual design of a blended Wing Body MALE UAV. Aerosp Sci Technol 73. https://doi.org/10.1016/j.ast.2017.11.032
– reference: Patel VK, Raja BD, Savsani VJ, Desai NB (2021) “Performance of Recent Optimization Algorithms and Its Comparison to State-of-the-Art Differential Evolution and Its Variants for the Economic Optimization of Cooling Tower,” Archives of Computational Methods in Engineering, vol. 28, no. 7, pp. 4523–4535, Dec. doi: https://doi.org/10.1007/S11831-021-09529-2/TABLES/9
– reference: Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6). https://doi.org/10.1109/TEVC.2014.2378512
– reference: Butt SU, Arshad M, Baqai AA, Saeed HA, Din NA, Khan RA (2021) “Correction to: Locator Placement Optimization for Minimum Part Positioning Error During Machining Operation Using Genetic Algorithm (International Journal of Precision Engineering and Manufacturing, 22, 5, (813–829), 10.1007/s12541-021-00500-6),” International Journal of Precision Engineering and Manufacturing, vol. 22, no. 6, p. 1169, Jun. 2021, doi: https://doi.org/10.1007/S12541-021-00524-Y/FIGURES/20
– reference: Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica 24(2). https://doi.org/10.24200/sci.2017.2417
– reference: Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4). https://doi.org/10.1109/TEVC.2013.2281535
– reference: Foroutan F, Mousavi Gazafrudi SM, Shokri-Ghaleh H (2021) A comparative study of recent optimization methods for optimal sizing of a Green Hybrid Traction Power Supply Substation. Arch Comput Methods Eng 28(4). https://doi.org/10.1007/s11831-020-09456-8
– reference: Yan B, Zhao Q, Wang Z, Zhang JA (2018) Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. Inf Sci (N Y) 462. https://doi.org/10.1016/j.ins.2018.06.019
– reference: Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) “MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting,” IEEE Access, vol. 9, doi: https://doi.org/10.1109/ACCESS.2020.3047936
– reference: Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of Metaheuristic Algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09443-z
– reference: Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169. https://doi.org/10.1016/j.compstruc.2016.03.001
– reference: Cai Y, Rajaram D, Mavris DN (2019) Multi-mission multi-objective optimization in commercial aircraft conceptual design. https://doi.org/10.2514/6.2019-3577
– reference: Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1). https://doi.org/10.1007/s10489-016-0825-8
– reference: Chou JS, Truong DN (2020) Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos Solitons Fractals 135. https://doi.org/10.1016/j.chaos.2020.109738
– reference: Chu S, Li J, Wei Z, Ren Q, Liu F (2018) Optimization of conceptual design parameters of civil aircraft based on operational requirements. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics 50(6). https://doi.org/10.16356/j.1005-2615.2018.06.015
– reference: Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1). https://doi.org/10.1504/IJVD.2017.082578
– reference: Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4). https://doi.org/10.1109/TEVC.2012.2204264
– reference: Singh V, Sharma SK, Vaibhav S (2016) “Transport Aircraft Conceptual Design Optimization Using Real Coded Genetic Algorithm,” International Journal of Aerospace Engineering, vol. 2016, doi: https://doi.org/10.1155/2016/2813541
– reference: Rainer S, Kenneth P (1997) “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,”Journal of Global Optimization, vol. 11, no. 4,
– reference: Gad AG (Aug. 2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput Methods Eng 29(5):2531–2561. https://doi.org/10.1007/S11831-021-09694-4/FIGURES/10
– reference: Neufeld D, Chung J, Behdinan K (2009) Aircraft conceptual design optimization with uncertain contributing analyses. https://doi.org/10.2514/6.2009-6237
– reference: Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59. https://doi.org/10.1016/j.advengsoft.2013.03.004
– reference: Bravo-Mosquera PD, Botero-Bolivar L, Acevedo-Giraldo D, Cerón-Muñoz HD (2017) Aerodynamic design analysis of a UAV for superficial research of volcanic environments. Aerosp Sci Technol 70. https://doi.org/10.1016/j.ast.2017.09.005
– reference: Panagant N, Pholdee N, Bureerat S, Yildiz AR, Mirjalili S (Aug. 2021) A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems. Arch Comput Methods Eng 28(5):4031–4047. https://doi.org/10.1007/S11831-021-09531-8/FIGURES/11
– reference: Essari AM, ESTIMATION OF EMPENNAGE DESIGN WEIGHT IN CONCEPTUAL DESIGN PHASE FOR TACTICAL UAVs (2018) “,” doi: https://doi.org/10.21467/proceedings.4.35
– ident: 9914_CR25
  doi: 10.1016/j.compstruc.2016.01.008
– ident: 9914_CR39
  doi: 10.1016/j.chaos.2020.109738
– ident: 9914_CR18
  doi: 10.1007/s00521-015-1920-1
– ident: 9914_CR60
  doi: 10.1016/j.cja.2013.12.008
– ident: 9914_CR27
  doi: 10.1016/j.future.2019.07.015
– ident: 9914_CR34
  doi: 10.1515/mt-2020-0077
– ident: 9914_CR42
  doi: 10.1016/j.cor.2009.03.009
– ident: 9914_CR43
  doi: 10.1109/ICCIAS.2006.294139
– ident: 9914_CR55
  doi: 10.1155/2016/2813541
– ident: 9914_CR59
  doi: 10.2514/6.2019-3577
– ident: 9914_CR71
  doi: 10.5860/choice.51-0912
– ident: 9914_CR35
  doi: 10.1109/4235.996017
– ident: 9914_CR63
  doi: 10.1007/s11831-020-09442-0
– ident: 9914_CR64
  doi: 10.1007/s11831-015-9155-y
– ident: 9914_CR1
  doi: 10.2514/1.C031312
– ident: 9914_CR21
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 9914_CR13
  doi: 10.1007/S11831-021-09694-4/FIGURES/10
– ident: 9914_CR23
  doi: 10.1016/j.compstruc.2012.07.010
– ident: 9914_CR62
  doi: 10.1007/s11831-020-09443-z
– ident: 9914_CR28
  doi: 10.1016/j.knosys.2019.105190
– ident: 9914_CR49
  doi: 10.1109/TEVC.2014.2378512
– ident: 9914_CR30
  doi: 10.1016/j.ins.2018.06.019
– ident: 9914_CR24
  doi: 10.1007/s00521-015-1870-7
– ident: 9914_CR6
  doi: 10.2514/6.2016-3362
– ident: 9914_CR54
  doi: 10.1016/j.cja.2017.10.006
– ident: 9914_CR17
  doi: 10.1016/j.knosys.2015.07.006
– ident: 9914_CR65
  doi: 10.1007/S11831-021-09586-7/FIGURES/14
– ident: 9914_CR2
  doi: 10.2514/6.2009-6237
– ident: 9914_CR15
  doi: 10.1016/j.compstruc.2012.09.003
– ident: 9914_CR66
  doi: 10.1007/s11831-020-09429-x
– ident: 9914_CR70
  doi: 10.21467/proceedings.4.35
– ident: 9914_CR32
  doi: 10.1007/s12205-017-0095-y
– ident: 9914_CR4
  doi: 10.1007/s00158-021-02872-9
– ident: 9914_CR16
  doi: 10.1016/j.advengsoft.2013.03.004
– ident: 9914_CR44
  doi: 10.1016/j.eswa.2015.10.039
– ident: 9914_CR67
  doi: 10.1007/S11831-021-09531-8/FIGURES/11
– ident: 9914_CR8
  doi: 10.1504/IJVD.2017.082578
– ident: 9914_CR26
  doi: 10.24200/sci.2017.2417
– ident: 9914_CR36
  doi: 10.1007/978-3-540-31880-4_36
– ident: 9914_CR57
  doi: 10.16356/j.1005-2615.2018.06.015
– ident: 9914_CR29
  doi: 10.1007/s00500-004-0363-x
– ident: 9914_CR19
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 9914_CR47
  doi: 10.1109/TEVC.2012.2204264
– ident: 9914_CR68
  doi: 10.1007/s11831-020-09456-8
– ident: 9914_CR37
  doi: 10.1016/j.cor.2011.09.026
– ident: 9914_CR20
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 9914_CR61
  doi: 10.1007/s00366-020-01077-w
– ident: 9914_CR22
  doi: 10.1016/j.compstruc.2014.03.007
– ident: 9914_CR5
  doi: 10.1016/j.ast.2019.05.067
– ident: 9914_CR45
  doi: 10.1007/s10489-016-0825-8
– ident: 9914_CR33
  doi: 10.1108/K-06-2019-0430
– ident: 9914_CR56
  doi: 10.1007/s00158-021-03033-8
– ident: 9914_CR14
  doi: 10.1007/s10898-007-9149-x
– ident: 9914_CR52
  doi: 10.1016/j.ast.2020.105783
– ident: 9914_CR58
  doi: 10.1017/S0001924000002621
– ident: 9914_CR69
  doi: 10.1007/s11831-021-09546-1
– ident: 9914_CR12
– ident: 9914_CR9
  doi: 10.2514/1.A33312
– ident: 9914_CR7
  doi: 10.1109/TEVC.2007.892759
– ident: 9914_CR38
  doi: 10.1109/ACCESS.2020.3047936
– ident: 9914_CR10
  doi: 10.1007/S12541-021-00524-Y/FIGURES/20
– ident: 9914_CR11
  doi: 10.1007/S11831-021-09529-2/TABLES/9
– ident: 9914_CR31
  doi: 10.1108/JEDT-08-2018-0130
– ident: 9914_CR40
  doi: 10.1007/978-3-319-13826-8_10
– ident: 9914_CR50
  doi: 10.1109/TEVC.2016.2519378
– ident: 9914_CR48
  doi: 10.1109/TEVC.2014.2350987
– ident: 9914_CR53
  doi: 10.1016/j.ast.2020.105755
– ident: 9914_CR41
  doi: 10.1080/0305215X.2013.832237
– ident: 9914_CR51
  doi: 10.1109/TEVC.2013.2281535
– ident: 9914_CR46
  doi: 10.1016/j.knosys.2017.07.018
– ident: 9914_CR72
  doi: 10.1016/j.ast.2017.09.005
– ident: 9914_CR3
  doi: 10.1016/j.ast.2017.11.032
SSID ssj0054992
Score 2.5778787
Snippet The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3657
SubjectTerms Aerodynamics
Aircraft design
Aircraft industry
Archives & records
Aviation
Comparative studies
Conceptual design
Decomposition
Design optimization
Effectiveness
Engineering
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic methods
Investigations
Mathematical and Computational Engineering
Multiple objective analysis
Optimization
Original Paper
Rank tests
Search algorithms
Sorting algorithms
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbKtgcu3fISC7TygRtY5LWJc0IrYNVDeUhAyy1yxrYAwYaSXdTyZ_irzDhOIyrBhWsSO5bmPZ75hrHNyGBoAlkgwKaJSBIlhdRSC2syjRamRIvrQFx_ZEdH8uIiP_EJt9qXVbY60SlqXQHlyHditM2pxHBluHv3W9DUKLpd9SM05thHQkkIXeneaauJKfRxt51hTNn_NPBNM03rHPIyBtJRLNBHChPx-NIwdd7mfxekzu6M--898Rf22XucfNSwyAL7YCaLrO-9T-5lu15iTyO-10GBcyow_Msry507Kior0FWkOjp-aKbq0sw8xDNHr5efVjeUmOCHqFpEVV43WpQfoz669Y2e_KQZXVPTnuOrP_jvX7TkfHKrSNfzkZMF_tNc0jnxLK6fcoaP9l2VyTI7Hx-c7X0XfnyDAJTrqbBxWEKgADRKeSZNnuqgDExkhwkYZYeB1hYUpJkuU_TxS51BbjKVq1KWADaKV1hvUk3MKuM5gUMpnakUwx8TmjxUSsYpSKNRPVsYsLClXQEe25xGbNwUHSoz0btAeheO3sXjgG39W3PXIHu8-fVGS-TCS3lddBQesO2WTbrXr--29vZu62w-cpxJVcEbrDe9n5mv7BM8TK_q-2-Ox58BN3AGbg
  priority: 102
  providerName: ProQuest
Title A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design
URI https://link.springer.com/article/10.1007/s11831-023-09914-z
https://www.proquest.com/docview/3256682115
Volume 30
WOSCitedRecordID wos000967260800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: 7WY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M0C
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7x6IEeSqFUDaWRD9zA0r6y9h7TlKhSmzQivNrLyuuHoIIsYpOq5c_0r3bseFlAUAkulnbXa400r2_smTHAdqQxNJEsoNKkCU0SwSlXXFGjmUIPU6DHdU1cv7LhkJ-cZCNfFFbV2e71kaSz1E2xG0ofhr5RTBHVhAm9XoRldHfcXtiwPz6q7a8NeNwZZxjbPf808KUyD69x1x01GPPesajzNv3V59H5Gl55dEm6c3FYgwU9WYdVjzSJ1-NqHV7eakP4Bv52Sa9pAk5sauEfUhrigCgtDUWQaDPoyEBPxame-ebOBPEuGZfndkuCDNCo0LL4Obef5Btaogtf4klG80trKrtm_-w3UnJsfzmcXAhr5UnXaQE50qeWaqTFVVLO8NUnl1-yAYf9vYPeZ-ovbqASNXpKTRwWMhBSKtRvxnWWqqAIdGQ6idTCdAKljBQyZapIEd0XislMM5GJghdSmih-C0uTcqLfAclsWyihmEgx8NGhzkIheJxKrhUaZiNbENb8y6Xvam4v1zjPm37Mlh858iN3_MivW7Bz88_lvKfHf2dv1WKRe_2u8hiRYsoxeO60YLcWg-bz46ttPm36e1iJnCTZ_OAtWJpezfQHeCF_Tc-qqzYssuPvbVj-uDcc7ePTF0ZxHAQ9O7IxjqPOj7bTjn_HQQgZ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJcKE91aQs-wAks8trYOaBq1bJqtQ8q0UJvwfFDLWo3pdkF2j_DP-A3MuMkRCDRWw9ck9iJnG--mbHnAfA8suiaaBFw7dKEJ4mSXBppuLPCoIYpUOP6Iq5jMZ3Ko6Nsfwl-trkwFFbZcqInalNq2iN_HaNuTiW6K_2t8y-cukbR6WrbQqOGxchefkOXrXqzt4P_90UUDd8ebO_ypqsA1wi3OXdxWOhAaW0QfELaLDVBEdjI9RNtlesHxjitdCpMkaLpWRihMytUpgpZaO2o0AFS_koSS0FyNRK8ZX5ytfzpahjTaUMaNEk6daoeyg467lHM0SYLE371pyLsrNu_DmS9nhuu_m8rdA_uNhY1G9QicB-W7OwBrDbWNWu4q3oIPwZsuyt1ziiA8pKVjnlzm5eOoylMcYJsYufq2C6aEtYMrXr2vjyljRc2QerkZfG51hLsHfLtWZPIyvbr1jwVzTk8-Y7v_khDDmdninQZG3hZZx_sMX0nfovPF13gpR0fRfMIDm9kmR7D8qyc2TVgGRW_UkaoFN07G9osVErGqZbWoPpxugdhi5VcN7XbqYXIad5VnSZ85Yiv3OMrv-rBy99jzuvKJdc-vdGCKm9YrMo7RPXgVQvL7va_Z3ty_WzP4PbuwWScj_emo3W4E3mpoAjoDVieXyzsJtzSX-cn1cVTL18MPt00XH8BdFZo-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xVAgeoOUQW6D1Q9-KRa5NnMcVsAIB25Uox1vk-BAgSBCbRcCf6V9l7DgNrQoS6mtiWyN5jm_smc8A3wKFqYlIPCp0HNEo4owyySTVKpEYYXKMuJbE9TAZDNj5eTp80cVvq92bK8m6p8GwNBXV1q3UW23jG2oipsFBSBHh-BF9moTpyBTSm3z9-LTxxSb5sfedfmjO_2PPtc38e40_Q1OLN_-6IrWRp7_w_zJ_hHmHOkmvVpNPMKGKRVhwCJQ4-x4twtwLesIl-NUj2y05ODElh4-k1MQCVFpqiuDRVNaRI1XxCzV2pM8EcTA5Lq_NUQU5QmdDy_yq9qvkB3qoG9f6SYb1YzYjs2b_8gElOTNTToobbrw_6VnrIKfqwkiNstgOyzF-2rF1J8tw0t_9ub1H3YMOVKClV1SHfi48LoREu0-YSmPp5Z4KdDcSiuuuJ6UWXMSJzGNE_blMRKoSnvKc5ULoIFyBqaIs1CqQ1NBFcZnwGBMi5avU55yFsWBKosPWogN-s5eZcGzn5tGN66zlaTb7keF-ZHY_sqcOfP8957bm-nhz9HqjIpmz-1EWIoKMGSbV3Q5sNirR_n59tc_vG_4VZoY7_exwf3CwBrOBVSpTQrwOU9XdWG3AB3FfXY7uvlhzeAbQyg2W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+State-of-the-art+Metaheuristics+for+Solving+Many-objective+Optimization+Problems+of+Fixed+Wing+Unmanned+Aerial+Vehicle+Conceptual+Design&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Anosri%2C+Siwakorn&rft.au=Panagant%2C+Natee&rft.au=Champasak%2C+Pakin&rft.au=Bureerat%2C+Sujin&rft.date=2023-07-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=6&rft.spage=3657&rft.epage=3671&rft_id=info:doi/10.1007%2Fs11831-023-09914-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_023_09914_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon