A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design
The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the...
Uloženo v:
| Vydáno v: | Archives of computational methods in engineering Ročník 30; číslo 6; s. 3657 - 3671 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.07.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1134-3060, 1886-1784 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the effectiveness of twelve new algorithms for solving unmanned aerial vehicle design issues is compared. The optimizers included Differential evolution for multi-objective optimization, Many-objective nondominated sorting genetic algorithm, Knee point-driven evolutionary algorithm for many-objective optimization, Reference vector guided evolutionary algorithm, Multi-objective bat algorithm with nondominated sorting, multi-objective flower pollination algorithm, Multi-objective cuckoo search algorithm, Multi-objective multi-verse optimizer, Multi-objective slime mould algorithm, Multi-objective jellyfish search algorithm, Multi-objective evolutionary algorithm based on decomposition and Self-adaptive many-objective meta-heuristic based on decomposition. The design problems include four many-objective conceptual designs of UAV viz. Conventional, Conventional with winglet, Twin boom and Canard, which are solved by all the optimizers employed. Widely used Hypervolume and Inverted Generational Distance metrics are considered to evaluate and compare the performance of examined algorithms. Friedman’s rank test based statistical examination manifests the dominance of the DEMO optimization technique over other compared techniques and exhibits its effectiveness in solving aircraft conceptual design problems. The findings of this work assist in not only solving aircraft design problems but also facilitating the development of unique algorithms for such challenging issues. |
|---|---|
| AbstractList | The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In recent years many new metaheuristics have been developed, but their implementation in the design of the aircraft is limited. In this study, the effectiveness of twelve new algorithms for solving unmanned aerial vehicle design issues is compared. The optimizers included Differential evolution for multi-objective optimization, Many-objective nondominated sorting genetic algorithm, Knee point-driven evolutionary algorithm for many-objective optimization, Reference vector guided evolutionary algorithm, Multi-objective bat algorithm with nondominated sorting, multi-objective flower pollination algorithm, Multi-objective cuckoo search algorithm, Multi-objective multi-verse optimizer, Multi-objective slime mould algorithm, Multi-objective jellyfish search algorithm, Multi-objective evolutionary algorithm based on decomposition and Self-adaptive many-objective meta-heuristic based on decomposition. The design problems include four many-objective conceptual designs of UAV viz. Conventional, Conventional with winglet, Twin boom and Canard, which are solved by all the optimizers employed. Widely used Hypervolume and Inverted Generational Distance metrics are considered to evaluate and compare the performance of examined algorithms. Friedman’s rank test based statistical examination manifests the dominance of the DEMO optimization technique over other compared techniques and exhibits its effectiveness in solving aircraft conceptual design problems. The findings of this work assist in not only solving aircraft design problems but also facilitating the development of unique algorithms for such challenging issues. |
| Author | Yildiz, Ali Riza Pholdee, Nantiwat Thipyopas, Chinnapat Yıldız, Betül Sultan Anosri, Siwakorn Bureerat, Sujin Panagant, Natee Kumar, Sumit Champasak, Pakin |
| Author_xml | – sequence: 1 givenname: Siwakorn surname: Anosri fullname: Anosri, Siwakorn organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University – sequence: 2 givenname: Natee orcidid: 0000-0001-8041-8172 surname: Panagant fullname: Panagant, Natee email: natepa@kku.ac.th organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University – sequence: 3 givenname: Pakin surname: Champasak fullname: Champasak, Pakin organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University, Department of Mechanical and Aerospace Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok – sequence: 4 givenname: Sujin surname: Bureerat fullname: Bureerat, Sujin organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University – sequence: 5 givenname: Chinnapat surname: Thipyopas fullname: Thipyopas, Chinnapat organization: Center of Innovative and Integrated Mini&Micro Air Vehicle, Department of Aerospace Engineering, Faculty of Engineering, Kasetsart University – sequence: 6 givenname: Sumit surname: Kumar fullname: Kumar, Sumit organization: College of Sciences and Engineering, Australian Maritime College, University of Tasmania – sequence: 7 givenname: Nantiwat surname: Pholdee fullname: Pholdee, Nantiwat organization: SIRDC sustainable infrastructure research and develop center, Department of Mechanical engineering, Faculty of engineering, Khon Kaen University – sequence: 8 givenname: Betül Sultan surname: Yıldız fullname: Yıldız, Betül Sultan organization: Department of Mechanical Engineering, Bursa Uludağ University – sequence: 9 givenname: Ali Riza surname: Yildiz fullname: Yildiz, Ali Riza organization: Department of Mechanical Engineering, Bursa Uludağ University |
| BookMark | eNp9kdtqGzEQhkVIIYfmBXIl6LVaabUnXRq3SQMJKaRpL4VWO7JldqWtpA21X6avGtkuFHqRqzkw3z_D_Bfo1HkHCF0z-pFR2nyKjLWcEVpwQoVgJdmdoHPWtjVhTVue5pzxknBa0zN0EeOG0qoUojhHfxZ46cdJBZXsC-CnNPdb7E1OVALiDUlrICok_ABJrWEONiarIzY-4Cc_vFi3wg_KbYnvNqAPGo9TsqPdZUHv8LfguwHGuNe8sb-hxz_3yLMblXO5WkCwasA_YG31APkWp2FKc259hmhX7j16Z9QQ4epvvETPN1--L7-S-8fbu-XinmjORCKGs05TpXXPRN20IOqedhQKU5UalKlo3xutdN30Xd00Rdc3WkCjhOraTmtT8Ev04ag7Bf9rhpjkxs_B5ZWSF1VdtwVjVZ4qjlM6-BgDGDkFO6qwlYzKvRHyaITMRsiDEXKXofY_SNt0-E4Kyg5vo_yIxrzHrSD8u-oN6hUBC6Sq |
| CitedBy_id | crossref_primary_10_1080_23302674_2025_2492219 crossref_primary_10_1007_s42235_025_00708_6 crossref_primary_10_1109_ACCESS_2024_3379149 crossref_primary_10_1007_s11227_024_05999_w crossref_primary_10_1007_s40684_025_00722_3 crossref_primary_10_1515_mt_2023_0319 crossref_primary_10_1080_15397734_2024_2389109 crossref_primary_10_1038_s41598_025_87673_6 crossref_primary_10_1016_j_sasc_2025_200381 crossref_primary_10_1007_s13369_024_08711_5 crossref_primary_10_1016_j_asoc_2024_112019 crossref_primary_10_1108_EC_08_2024_0709 crossref_primary_10_1177_09544070241283509 crossref_primary_10_1515_mt_2023_0351 crossref_primary_10_3390_math11183844 crossref_primary_10_1515_mt_2024_0327 crossref_primary_10_1515_mt_2024_0005 crossref_primary_10_1007_s00500_024_09943_1 crossref_primary_10_1177_14644207241294056 crossref_primary_10_1515_mt_2025_0182 crossref_primary_10_3390_app14114358 crossref_primary_10_1016_j_sasc_2025_200275 crossref_primary_10_1515_mt_2024_0099 crossref_primary_10_1016_j_cosrev_2025_100805 crossref_primary_10_1515_mt_2023_0245 crossref_primary_10_1515_mt_2024_0098 crossref_primary_10_1007_s00170_025_15985_y crossref_primary_10_1109_ACCESS_2023_3329836 crossref_primary_10_1515_mt_2024_0217 crossref_primary_10_1007_s00170_024_14600_w crossref_primary_10_1007_s12008_024_02143_z crossref_primary_10_1515_mt_2025_0075 crossref_primary_10_3390_biomimetics9030186 crossref_primary_10_1016_j_rico_2025_100539 crossref_primary_10_1002_oca_3230 crossref_primary_10_1080_09544828_2023_2301230 crossref_primary_10_1515_cppm_2024_0045 crossref_primary_10_1080_00051144_2024_2420296 crossref_primary_10_1016_j_sasc_2025_200200 crossref_primary_10_1016_j_sasc_2025_200365 crossref_primary_10_1016_j_sasc_2025_200366 crossref_primary_10_1515_mt_2024_0187 crossref_primary_10_1016_j_advengsoft_2025_103908 crossref_primary_10_1515_mt_2024_0186 crossref_primary_10_1016_j_knosys_2025_113558 crossref_primary_10_1016_j_rineng_2025_106698 crossref_primary_10_1016_j_sasc_2024_200164 crossref_primary_10_1016_j_cma_2024_117718 crossref_primary_10_1515_mt_2024_0100 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_1007_s42235_025_00702_y crossref_primary_10_1515_mt_2023_0091 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1515_mt_2025_0043 crossref_primary_10_1080_01496395_2025_2502752 crossref_primary_10_1515_mt_2024_0519 crossref_primary_10_3390_app13126966 crossref_primary_10_1007_s12008_025_02280_z crossref_primary_10_1080_15397734_2025_2513659 crossref_primary_10_1080_01496395_2025_2537712 crossref_primary_10_1177_09544070251343338 crossref_primary_10_1515_mt_2023_0226 crossref_primary_10_1016_j_engappai_2024_108043 crossref_primary_10_1007_s40684_024_00669_x crossref_primary_10_1080_02533839_2025_2517349 crossref_primary_10_1515_mt_2024_0075 crossref_primary_10_1007_s12539_023_00597_5 crossref_primary_10_1515_mt_2024_0151 crossref_primary_10_3390_aerospace12060461 crossref_primary_10_1515_mt_2024_0233 crossref_primary_10_1002_tal_70014 |
| Cites_doi | 10.1016/j.compstruc.2016.01.008 10.1016/j.chaos.2020.109738 10.1007/s00521-015-1920-1 10.1016/j.cja.2013.12.008 10.1016/j.future.2019.07.015 10.1515/mt-2020-0077 10.1016/j.cor.2009.03.009 10.1109/ICCIAS.2006.294139 10.1155/2016/2813541 10.2514/6.2019-3577 10.5860/choice.51-0912 10.1109/4235.996017 10.1007/s11831-020-09442-0 10.1007/s11831-015-9155-y 10.2514/1.C031312 10.1016/j.advengsoft.2017.07.002 10.1007/S11831-021-09694-4/FIGURES/10 10.1016/j.compstruc.2012.07.010 10.1007/s11831-020-09443-z 10.1016/j.knosys.2019.105190 10.1109/TEVC.2014.2378512 10.1016/j.ins.2018.06.019 10.1007/s00521-015-1870-7 10.2514/6.2016-3362 10.1016/j.cja.2017.10.006 10.1016/j.knosys.2015.07.006 10.1007/S11831-021-09586-7/FIGURES/14 10.2514/6.2009-6237 10.1016/j.compstruc.2012.09.003 10.1007/s11831-020-09429-x 10.21467/proceedings.4.35 10.1007/s12205-017-0095-y 10.1007/s00158-021-02872-9 10.1016/j.advengsoft.2013.03.004 10.1016/j.eswa.2015.10.039 10.1007/S11831-021-09531-8/FIGURES/11 10.1504/IJVD.2017.082578 10.24200/sci.2017.2417 10.1007/978-3-540-31880-4_36 10.16356/j.1005-2615.2018.06.015 10.1007/s00500-004-0363-x 10.1016/j.advengsoft.2016.01.008 10.1109/TEVC.2012.2204264 10.1007/s11831-020-09456-8 10.1016/j.cor.2011.09.026 10.1016/j.compstruc.2016.03.001 10.1007/s00366-020-01077-w 10.1016/j.compstruc.2014.03.007 10.1016/j.ast.2019.05.067 10.1007/s10489-016-0825-8 10.1108/K-06-2019-0430 10.1007/s00158-021-03033-8 10.1007/s10898-007-9149-x 10.1016/j.ast.2020.105783 10.1017/S0001924000002621 10.1007/s11831-021-09546-1 10.2514/1.A33312 10.1109/TEVC.2007.892759 10.1109/ACCESS.2020.3047936 10.1007/S12541-021-00524-Y/FIGURES/20 10.1007/S11831-021-09529-2/TABLES/9 10.1108/JEDT-08-2018-0130 10.1007/978-3-319-13826-8_10 10.1109/TEVC.2016.2519378 10.1109/TEVC.2014.2350987 10.1016/j.ast.2020.105755 10.1080/0305215X.2013.832237 10.1109/TEVC.2013.2281535 10.1016/j.knosys.2017.07.018 10.1016/j.ast.2017.09.005 10.1016/j.ast.2017.11.032 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1007/s11831-023-09914-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM - ProQuest ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Collection (ProQuest) Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 3671 |
| ExternalDocumentID | 10_1007_s11831_023_09914_z |
| GrantInformation_xml | – fundername: National Research Council Thailand grantid: N42A650549 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB 7XB 8AL 8FK JQ2 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-f31bc0accd19678e96d0b0e2f54ceaf50ddfcac67db6772bd7c9e7a9ab8bccf23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967260800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Sun Nov 30 05:05:28 EST 2025 Sat Nov 29 06:21:49 EST 2025 Tue Nov 18 22:21:38 EST 2025 Fri Feb 21 02:43:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Conceptual Design Metaheuristic Many-objective optimization Comparative study |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f31bc0accd19678e96d0b0e2f54ceaf50ddfcac67db6772bd7c9e7a9ab8bccf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8041-8172 |
| PQID | 3256682115 |
| PQPubID | 1486352 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3256682115 crossref_primary_10_1007_s11831_023_09914_z crossref_citationtrail_10_1007_s11831_023_09914_z springer_journals_10_1007_s11831_023_09914_z |
| PublicationCentury | 2000 |
| PublicationDate | 20230700 2023-07-00 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica 24(2). https://doi.org/10.24200/sci.2017.2417 Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems 101. https://doi.org/10.1016/j.future.2019.07.015 Yan B, Zhao Q, Wang Z, Zhang JA (2018) Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. Inf Sci (N Y) 462. https://doi.org/10.1016/j.ins.2018.06.019 Pholdee N, Bureerat S (2018) A comparative study of eighteen self-adaptive Metaheuristic Algorithms for Truss sizing optimisation. KSCE J Civ Eng 22(8). https://doi.org/10.1007/s12205-017-0095-y CHAI X, X. YU, and, WANG Y (2018) Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chin J Aeronaut 31(1). https://doi.org/10.1016/j.cja.2017.10.006 Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft comput 9(6). https://doi.org/10.1007/s00500-004-0363-x Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100. https://doi.org/10.1016/j.ast.2020.105783 Kaveh A, Bakhshpoori T (2016) Water Evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167. https://doi.org/10.1016/j.compstruc.2016.01.008 Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191. https://doi.org/10.1016/j.knosys.2019.105190 Chou JS, Truong DN (2020) Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos Solitons Fractals 135. https://doi.org/10.1016/j.chaos.2020.109738 Cai Y, Rajaram D, Mavris DN (2019) Multi-mission multi-objective optimization in commercial aircraft conceptual design. https://doi.org/10.2514/6.2019-3577 Silva HL et al (2021) A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Struct Multidisciplinary Optim 64(6). https://doi.org/10.1007/s00158-021-03033-8 Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1). https://doi.org/10.1504/IJVD.2017.082578 Rajagopal S, Ganguli R (2008) Conceptual design of UAV using kriging based multi-objective genetic algorithm. Aeronaut J 112(1137). https://doi.org/10.1017/S0001924000002621 Rainer S, Kenneth P (1997) “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,”Journal of Global Optimization, vol. 11, no. 4 Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6). https://doi.org/10.1016/j.cor.2011.09.026 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114. https://doi.org/10.1016/j.advengsoft.2017.07.002 van Nguyen N, Tyan M, Jin S, Lee JW (2016) Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework. J Spacecr Rockets 53(1). https://doi.org/10.2514/1.A33312 Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of Metaheuristic Algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09443-z Robič T, Filipič B (2005) “DEMO: Differential Evolution for Multiobjective Optimization,” in Lecture Notes in Computer Science, vol. 3410. doi: https://doi.org/10.1007/978-3-540-31880-4_36 Rostami P, Marzbanrad J (2021) Identification of optimal topologies for Continuum Structures using metaheuristics: a comparative study. Arch Comput Methods Eng 28(7). https://doi.org/10.1007/s11831-021-09546-1 Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4). https://doi.org/10.1007/s00521-015-1920-1 Li M, Bai J, Li L, Meng X, Liu Q, Chen B (2019) A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp Sci Technol 92. https://doi.org/10.1016/j.ast.2019.05.067 Foroutan F, Mousavi Gazafrudi SM, Shokri-Ghaleh H (2021) A comparative study of recent optimization methods for optimal sizing of a Green Hybrid Traction Power Supply Substation. Arch Comput Methods Eng 28(4). https://doi.org/10.1007/s11831-020-09456-8 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2). https://doi.org/10.1007/s00521-015-1870-7 Kunakote T et al (Jan. 2022) Comparative performance of twelve metaheuristics for wind farm layout optimisation. Arch Comput Methods Eng 29(1):717–730. https://doi.org/10.1007/S11831-021-09586-7/FIGURES/14 Gad AG (Aug. 2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput Methods Eng 29(5):2531–2561. https://doi.org/10.1007/S11831-021-09694-4/FIGURES/10 Montanino A, Alaimo G, Lanzarone E (2021) A gradient-based optimization method with functional principal component analysis for efficient structural topology optimization. Struct Multidisciplinary Optim 64(1). https://doi.org/10.1007/s00158-021-02872-9 Patel VK, Raja BD, Savsani VJ, Desai NB (2021) “Performance of Recent Optimization Algorithms and Its Comparison to State-of-the-Art Differential Evolution and Its Variants for the Economic Optimization of Cooling Tower,” Archives of Computational Methods in Engineering, vol. 28, no. 7, pp. 4523–4535, Dec. doi: https://doi.org/10.1007/S11831-021-09529-2/TABLES/9 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2). https://doi.org/10.1109/4235.996017 Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59. https://doi.org/10.1016/j.advengsoft.2013.03.004 Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4). https://doi.org/10.1109/TEVC.2012.2204264 Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134. https://doi.org/10.1016/j.knosys.2017.07.018 Chu S, Li J, Wei Z, Ren Q, Liu F (2018) Optimization of conceptual design parameters of civil aircraft based on operational requirements. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics 50(6). https://doi.org/10.16356/j.1005-2615.2018.06.015 Zhang Y, Zhu H, Tang D (2020) An improved hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem. Kybernetes 49(12). https://doi.org/10.1108/K-06-2019-0430 Neufeld D, Chung J, Behdinan K (2009) Aircraft conceptual design optimization with uncertain contributing analyses. https://doi.org/10.2514/6.2009-6237 Wang H, Jiao L, Yao X (2015) Two Arch2: an Improved two-archive Algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4). https://doi.org/10.1109/TEVC.2014.2350987 Patel VK, Raja BD (2021) Comparative performance of recent Advanced optimization algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09429-x Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9). https://doi.org/10.1080/0305215X.2013.832237 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47. https://doi.org/10.1016/j.eswa.2015.10.039 Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5). https://doi.org/10.1109/TEVC.2016.2519378 Zeng C, Abnous R, Gabani K, Chowdhury S, Maldonado V (2020) A new tilt-arm transitioning unmanned aerial vehicle: introduction and conceptual design. Aerosp Sci Technol 99. https://doi.org/10.1016/j.ast.2020.105755 Panagiotou P, Fotiadis-Karras S, Yakinthos K (2018) Conceptual design of a blended Wing Body MALE UAV. Aerosp Sci Technol 73. https://doi.org/10.1016/j.ast.2017.11.032 Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89. https://doi.org/10.1016/j.knosys.2015.07.006 Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4). https://doi.org/10.1109/TEVC.2013.2281535 Kashani AR, Chiong R, Mirjalili S, Gandomi AH (2021) Particle Swarm optimization variants for solving geotechnical problems: review and comparative analysis. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09442-0 Zhang Q, Li H (2007) A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6). https://doi.org/10.1109/TEVC.2007.892759 Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) “MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting,” IEEE Access, vol. 9, doi: https://doi.org/10.1109/ACCESS.2020.3047936 Wendor AD, Botero E, Alonso JJ (2016) Comparing different off-the-shelf optimizers’ performance in conceptual aircraft design. https://doi.org/10.2514/6.2016-3362 Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6). https://d 9914_CR72 9914_CR71 9914_CR70 9914_CR37 9914_CR36 9914_CR35 9914_CR34 9914_CR33 9914_CR32 9914_CR31 9914_CR30 9914_CR39 9914_CR38 9914_CR7 9914_CR40 9914_CR8 9914_CR9 9914_CR3 9914_CR4 9914_CR5 9914_CR6 9914_CR48 9914_CR47 9914_CR1 9914_CR46 9914_CR2 9914_CR45 9914_CR44 9914_CR43 9914_CR42 9914_CR41 9914_CR49 9914_CR51 9914_CR50 9914_CR15 9914_CR59 9914_CR14 9914_CR58 9914_CR13 9914_CR57 9914_CR12 9914_CR56 9914_CR11 9914_CR55 9914_CR10 9914_CR54 9914_CR53 9914_CR52 9914_CR19 9914_CR18 9914_CR17 9914_CR16 9914_CR62 9914_CR61 9914_CR60 9914_CR26 9914_CR25 9914_CR69 9914_CR24 9914_CR68 9914_CR23 9914_CR67 9914_CR22 9914_CR66 9914_CR21 9914_CR65 9914_CR20 9914_CR64 9914_CR63 9914_CR29 9914_CR28 9914_CR27 |
| References_xml | – reference: Zhang Y, Zhu H, Tang D (2020) An improved hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem. Kybernetes 49(12). https://doi.org/10.1108/K-06-2019-0430 – reference: Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191. https://doi.org/10.1016/j.knosys.2019.105190 – reference: Wang H, Jiao L, Yao X (2015) Two Arch2: an Improved two-archive Algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4). https://doi.org/10.1109/TEVC.2014.2350987 – reference: Pholdee N, Bureerat S (2018) A comparative study of eighteen self-adaptive Metaheuristic Algorithms for Truss sizing optimisation. KSCE J Civ Eng 22(8). https://doi.org/10.1007/s12205-017-0095-y – reference: Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4). https://doi.org/10.1007/s00521-015-1920-1 – reference: Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2). https://doi.org/10.1007/s00521-015-1870-7 – reference: Silva HL et al (2021) A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Struct Multidisciplinary Optim 64(6). https://doi.org/10.1007/s00158-021-03033-8 – reference: Kiani M, Yildiz AR (2016) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng 23(4). https://doi.org/10.1007/s11831-015-9155-y – reference: Mirjalili S, Lewis A (2016) The Whale optimization Algorithm. Adv Eng Softw 95. https://doi.org/10.1016/j.advengsoft.2016.01.008 – reference: Neufeld D, Chung J, Behdinan K (2011) Aircraft conceptual design optimization considering fidelity uncertainties. J Aircr 48(5). https://doi.org/10.2514/1.C031312 – reference: Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray optimization. Comput Struct 112–113. https://doi.org/10.1016/j.compstruc.2012.09.003 – reference: Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47. https://doi.org/10.1016/j.eswa.2015.10.039 – reference: Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6). https://doi.org/10.1016/j.cor.2011.09.026 – reference: Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft comput 9(6). https://doi.org/10.1007/s00500-004-0363-x – reference: Wendor AD, Botero E, Alonso JJ (2016) Comparing different off-the-shelf optimizers’ performance in conceptual aircraft design. https://doi.org/10.2514/6.2016-3362 – reference: Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5). https://doi.org/10.1109/TEVC.2016.2519378 – reference: Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100. https://doi.org/10.1016/j.ast.2020.105783 – reference: Robič T, Filipič B (2005) “DEMO: Differential Evolution for Multiobjective Optimization,” in Lecture Notes in Computer Science, vol. 3410. doi: https://doi.org/10.1007/978-3-540-31880-4_36 – reference: Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111. https://doi.org/10.1016/j.compstruc.2012.07.010 – reference: Zhang Q, Li H (2007) A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6). https://doi.org/10.1109/TEVC.2007.892759 – reference: Gao J, Wang J, “WBMOAIS (2010) A novel artificial immune system for multiobjective optimization. Comput Oper Res 37(1). https://doi.org/10.1016/j.cor.2009.03.009 – reference: Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139. https://doi.org/10.1016/j.compstruc.2014.03.007 – reference: van Nguyen N, Tyan M, Jin S, Lee JW (2016) Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework. J Spacecr Rockets 53(1). https://doi.org/10.2514/1.A33312 – reference: Wansasueb K, Pholdee N, Panagant N, Bureerat S (2022) Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing. Eng Comput 38(1). https://doi.org/10.1007/s00366-020-01077-w – reference: Wang Y, Yin H, Zhang S, Yu X (2014) Multi-objective optimization of aircraft design for emission and cost reductions. Chin J Aeronaut 27(1). https://doi.org/10.1016/j.cja.2013.12.008 – reference: Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9). https://doi.org/10.1080/0305215X.2013.832237 – reference: Thakur N, Awasthi YK, Hooda M, Siddiqui AS (2019) Adaptive whale optimization for intelligent multi-constraints power quality improvement under deregulated environment. J Eng Des Technol 17(3). https://doi.org/10.1108/JEDT-08-2018-0130 – reference: Jamil M, Zepernick HJ, Yang XS (2015) Synthesizing cross-ambiguity functions using the improved bat algorithm. Stud Comput Intell 585. https://doi.org/10.1007/978-3-319-13826-8_10 – reference: Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems 101. https://doi.org/10.1016/j.future.2019.07.015 – reference: Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114. https://doi.org/10.1016/j.advengsoft.2017.07.002 – reference: Rostami P, Marzbanrad J (2021) Identification of optimal topologies for Continuum Structures using metaheuristics: a comparative study. Arch Comput Methods Eng 28(7). https://doi.org/10.1007/s11831-021-09546-1 – reference: Kaveh A, Bakhshpoori T (2016) Water Evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167. https://doi.org/10.1016/j.compstruc.2016.01.008 – reference: Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134. https://doi.org/10.1016/j.knosys.2017.07.018 – reference: Zeng C, Abnous R, Gabani K, Chowdhury S, Maldonado V (2020) A new tilt-arm transitioning unmanned aerial vehicle: introduction and conceptual design. Aerosp Sci Technol 99. https://doi.org/10.1016/j.ast.2020.105755 – reference: CHAI X, X. YU, and, WANG Y (2018) Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chin J Aeronaut 31(1). https://doi.org/10.1016/j.cja.2017.10.006 – reference: Rajagopal S, Ganguli R (2008) Conceptual design of UAV using kriging based multi-objective genetic algorithm. Aeronaut J 112(1137). https://doi.org/10.1017/S0001924000002621 – reference: Li M, Bai J, Li L, Meng X, Liu Q, Chen B (2019) A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp Sci Technol 92. https://doi.org/10.1016/j.ast.2019.05.067 – reference: Panagant N, Ylldlz M, Pholdee N, Ylldlz AR, Bureerat S, Sait SM (2021) A novel hybrid marine predators-nelder-mead optimization algorithm for the optimal design of engineering problems. Materialpruefung/Materials Test 63(5). https://doi.org/10.1515/mt-2020-0077 – reference: Patel VK, Raja BD (2021) Comparative performance of recent Advanced optimization algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09429-x – reference: Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2). https://doi.org/10.1109/4235.996017 – reference: “Aircraft design: a systems engineering approach,”Choice Reviews Online, vol. 51, no. 02, doi: https://doi.org/10.5860/choice.51-0912 – reference: Kunakote T et al (Jan. 2022) Comparative performance of twelve metaheuristics for wind farm layout optimisation. Arch Comput Methods Eng 29(1):717–730. https://doi.org/10.1007/S11831-021-09586-7/FIGURES/14 – reference: Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J Global Optim 39(3). https://doi.org/10.1007/s10898-007-9149-x – reference: Kashani AR, Chiong R, Mirjalili S, Gandomi AH (2021) Particle Swarm optimization variants for solving geotechnical problems: review and comparative analysis. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09442-0 – reference: Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89. https://doi.org/10.1016/j.knosys.2015.07.006 – reference: Montanino A, Alaimo G, Lanzarone E (2021) A gradient-based optimization method with functional principal component analysis for efficient structural topology optimization. Struct Multidisciplinary Optim 64(1). https://doi.org/10.1007/s00158-021-02872-9 – reference: Praditwong K, Yao X (2006) “A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm,” in International Conference on Computational Intelligence and Security, ICCIAS 2006, 2006, vol. 1. doi: https://doi.org/10.1109/ICCIAS.2006.294139 – reference: Panagiotou P, Fotiadis-Karras S, Yakinthos K (2018) Conceptual design of a blended Wing Body MALE UAV. Aerosp Sci Technol 73. https://doi.org/10.1016/j.ast.2017.11.032 – reference: Patel VK, Raja BD, Savsani VJ, Desai NB (2021) “Performance of Recent Optimization Algorithms and Its Comparison to State-of-the-Art Differential Evolution and Its Variants for the Economic Optimization of Cooling Tower,” Archives of Computational Methods in Engineering, vol. 28, no. 7, pp. 4523–4535, Dec. doi: https://doi.org/10.1007/S11831-021-09529-2/TABLES/9 – reference: Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6). https://doi.org/10.1109/TEVC.2014.2378512 – reference: Butt SU, Arshad M, Baqai AA, Saeed HA, Din NA, Khan RA (2021) “Correction to: Locator Placement Optimization for Minimum Part Positioning Error During Machining Operation Using Genetic Algorithm (International Journal of Precision Engineering and Manufacturing, 22, 5, (813–829), 10.1007/s12541-021-00500-6),” International Journal of Precision Engineering and Manufacturing, vol. 22, no. 6, p. 1169, Jun. 2021, doi: https://doi.org/10.1007/S12541-021-00524-Y/FIGURES/20 – reference: Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica 24(2). https://doi.org/10.24200/sci.2017.2417 – reference: Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4). https://doi.org/10.1109/TEVC.2013.2281535 – reference: Foroutan F, Mousavi Gazafrudi SM, Shokri-Ghaleh H (2021) A comparative study of recent optimization methods for optimal sizing of a Green Hybrid Traction Power Supply Substation. Arch Comput Methods Eng 28(4). https://doi.org/10.1007/s11831-020-09456-8 – reference: Yan B, Zhao Q, Wang Z, Zhang JA (2018) Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. Inf Sci (N Y) 462. https://doi.org/10.1016/j.ins.2018.06.019 – reference: Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) “MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting,” IEEE Access, vol. 9, doi: https://doi.org/10.1109/ACCESS.2020.3047936 – reference: Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of Metaheuristic Algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28(3). https://doi.org/10.1007/s11831-020-09443-z – reference: Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169. https://doi.org/10.1016/j.compstruc.2016.03.001 – reference: Cai Y, Rajaram D, Mavris DN (2019) Multi-mission multi-objective optimization in commercial aircraft conceptual design. https://doi.org/10.2514/6.2019-3577 – reference: Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1). https://doi.org/10.1007/s10489-016-0825-8 – reference: Chou JS, Truong DN (2020) Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos Solitons Fractals 135. https://doi.org/10.1016/j.chaos.2020.109738 – reference: Chu S, Li J, Wei Z, Ren Q, Liu F (2018) Optimization of conceptual design parameters of civil aircraft based on operational requirements. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics 50(6). https://doi.org/10.16356/j.1005-2615.2018.06.015 – reference: Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1). https://doi.org/10.1504/IJVD.2017.082578 – reference: Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4). https://doi.org/10.1109/TEVC.2012.2204264 – reference: Singh V, Sharma SK, Vaibhav S (2016) “Transport Aircraft Conceptual Design Optimization Using Real Coded Genetic Algorithm,” International Journal of Aerospace Engineering, vol. 2016, doi: https://doi.org/10.1155/2016/2813541 – reference: Rainer S, Kenneth P (1997) “Differential Evolution: a simple and efficient heuristic for global optimization over continuous spaces,”Journal of Global Optimization, vol. 11, no. 4, – reference: Gad AG (Aug. 2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch Comput Methods Eng 29(5):2531–2561. https://doi.org/10.1007/S11831-021-09694-4/FIGURES/10 – reference: Neufeld D, Chung J, Behdinan K (2009) Aircraft conceptual design optimization with uncertain contributing analyses. https://doi.org/10.2514/6.2009-6237 – reference: Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59. https://doi.org/10.1016/j.advengsoft.2013.03.004 – reference: Bravo-Mosquera PD, Botero-Bolivar L, Acevedo-Giraldo D, Cerón-Muñoz HD (2017) Aerodynamic design analysis of a UAV for superficial research of volcanic environments. Aerosp Sci Technol 70. https://doi.org/10.1016/j.ast.2017.09.005 – reference: Panagant N, Pholdee N, Bureerat S, Yildiz AR, Mirjalili S (Aug. 2021) A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems. Arch Comput Methods Eng 28(5):4031–4047. https://doi.org/10.1007/S11831-021-09531-8/FIGURES/11 – reference: Essari AM, ESTIMATION OF EMPENNAGE DESIGN WEIGHT IN CONCEPTUAL DESIGN PHASE FOR TACTICAL UAVs (2018) “,” doi: https://doi.org/10.21467/proceedings.4.35 – ident: 9914_CR25 doi: 10.1016/j.compstruc.2016.01.008 – ident: 9914_CR39 doi: 10.1016/j.chaos.2020.109738 – ident: 9914_CR18 doi: 10.1007/s00521-015-1920-1 – ident: 9914_CR60 doi: 10.1016/j.cja.2013.12.008 – ident: 9914_CR27 doi: 10.1016/j.future.2019.07.015 – ident: 9914_CR34 doi: 10.1515/mt-2020-0077 – ident: 9914_CR42 doi: 10.1016/j.cor.2009.03.009 – ident: 9914_CR43 doi: 10.1109/ICCIAS.2006.294139 – ident: 9914_CR55 doi: 10.1155/2016/2813541 – ident: 9914_CR59 doi: 10.2514/6.2019-3577 – ident: 9914_CR71 doi: 10.5860/choice.51-0912 – ident: 9914_CR35 doi: 10.1109/4235.996017 – ident: 9914_CR63 doi: 10.1007/s11831-020-09442-0 – ident: 9914_CR64 doi: 10.1007/s11831-015-9155-y – ident: 9914_CR1 doi: 10.2514/1.C031312 – ident: 9914_CR21 doi: 10.1016/j.advengsoft.2017.07.002 – ident: 9914_CR13 doi: 10.1007/S11831-021-09694-4/FIGURES/10 – ident: 9914_CR23 doi: 10.1016/j.compstruc.2012.07.010 – ident: 9914_CR62 doi: 10.1007/s11831-020-09443-z – ident: 9914_CR28 doi: 10.1016/j.knosys.2019.105190 – ident: 9914_CR49 doi: 10.1109/TEVC.2014.2378512 – ident: 9914_CR30 doi: 10.1016/j.ins.2018.06.019 – ident: 9914_CR24 doi: 10.1007/s00521-015-1870-7 – ident: 9914_CR6 doi: 10.2514/6.2016-3362 – ident: 9914_CR54 doi: 10.1016/j.cja.2017.10.006 – ident: 9914_CR17 doi: 10.1016/j.knosys.2015.07.006 – ident: 9914_CR65 doi: 10.1007/S11831-021-09586-7/FIGURES/14 – ident: 9914_CR2 doi: 10.2514/6.2009-6237 – ident: 9914_CR15 doi: 10.1016/j.compstruc.2012.09.003 – ident: 9914_CR66 doi: 10.1007/s11831-020-09429-x – ident: 9914_CR70 doi: 10.21467/proceedings.4.35 – ident: 9914_CR32 doi: 10.1007/s12205-017-0095-y – ident: 9914_CR4 doi: 10.1007/s00158-021-02872-9 – ident: 9914_CR16 doi: 10.1016/j.advengsoft.2013.03.004 – ident: 9914_CR44 doi: 10.1016/j.eswa.2015.10.039 – ident: 9914_CR67 doi: 10.1007/S11831-021-09531-8/FIGURES/11 – ident: 9914_CR8 doi: 10.1504/IJVD.2017.082578 – ident: 9914_CR26 doi: 10.24200/sci.2017.2417 – ident: 9914_CR36 doi: 10.1007/978-3-540-31880-4_36 – ident: 9914_CR57 doi: 10.16356/j.1005-2615.2018.06.015 – ident: 9914_CR29 doi: 10.1007/s00500-004-0363-x – ident: 9914_CR19 doi: 10.1016/j.advengsoft.2016.01.008 – ident: 9914_CR47 doi: 10.1109/TEVC.2012.2204264 – ident: 9914_CR68 doi: 10.1007/s11831-020-09456-8 – ident: 9914_CR37 doi: 10.1016/j.cor.2011.09.026 – ident: 9914_CR20 doi: 10.1016/j.compstruc.2016.03.001 – ident: 9914_CR61 doi: 10.1007/s00366-020-01077-w – ident: 9914_CR22 doi: 10.1016/j.compstruc.2014.03.007 – ident: 9914_CR5 doi: 10.1016/j.ast.2019.05.067 – ident: 9914_CR45 doi: 10.1007/s10489-016-0825-8 – ident: 9914_CR33 doi: 10.1108/K-06-2019-0430 – ident: 9914_CR56 doi: 10.1007/s00158-021-03033-8 – ident: 9914_CR14 doi: 10.1007/s10898-007-9149-x – ident: 9914_CR52 doi: 10.1016/j.ast.2020.105783 – ident: 9914_CR58 doi: 10.1017/S0001924000002621 – ident: 9914_CR69 doi: 10.1007/s11831-021-09546-1 – ident: 9914_CR12 – ident: 9914_CR9 doi: 10.2514/1.A33312 – ident: 9914_CR7 doi: 10.1109/TEVC.2007.892759 – ident: 9914_CR38 doi: 10.1109/ACCESS.2020.3047936 – ident: 9914_CR10 doi: 10.1007/S12541-021-00524-Y/FIGURES/20 – ident: 9914_CR11 doi: 10.1007/S11831-021-09529-2/TABLES/9 – ident: 9914_CR31 doi: 10.1108/JEDT-08-2018-0130 – ident: 9914_CR40 doi: 10.1007/978-3-319-13826-8_10 – ident: 9914_CR50 doi: 10.1109/TEVC.2016.2519378 – ident: 9914_CR48 doi: 10.1109/TEVC.2014.2350987 – ident: 9914_CR53 doi: 10.1016/j.ast.2020.105755 – ident: 9914_CR41 doi: 10.1080/0305215X.2013.832237 – ident: 9914_CR51 doi: 10.1109/TEVC.2013.2281535 – ident: 9914_CR46 doi: 10.1016/j.knosys.2017.07.018 – ident: 9914_CR72 doi: 10.1016/j.ast.2017.09.005 – ident: 9914_CR3 doi: 10.1016/j.ast.2017.11.032 |
| SSID | ssj0054992 |
| Score | 2.5778787 |
| Snippet | The complexity of aircraft design problems increases with many objectives and diverse constraints, thus necessitating effective optimization techniques. In... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3657 |
| SubjectTerms | Aerodynamics Aircraft design Aircraft industry Archives & records Aviation Comparative studies Conceptual design Decomposition Design optimization Effectiveness Engineering Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic methods Investigations Mathematical and Computational Engineering Multiple objective analysis Optimization Original Paper Rank tests Search algorithms Sorting algorithms Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbKtgcu3fISC7TygRtY5LWJc0IrYNVDeUhAyy1yxrYAwYaSXdTyZ_irzDhOIyrBhWsSO5bmPZ75hrHNyGBoAlkgwKaJSBIlhdRSC2syjRamRIvrQFx_ZEdH8uIiP_EJt9qXVbY60SlqXQHlyHditM2pxHBluHv3W9DUKLpd9SM05thHQkkIXeneaauJKfRxt51hTNn_NPBNM03rHPIyBtJRLNBHChPx-NIwdd7mfxekzu6M--898Rf22XucfNSwyAL7YCaLrO-9T-5lu15iTyO-10GBcyow_Msry507Kior0FWkOjp-aKbq0sw8xDNHr5efVjeUmOCHqFpEVV43WpQfoz669Y2e_KQZXVPTnuOrP_jvX7TkfHKrSNfzkZMF_tNc0jnxLK6fcoaP9l2VyTI7Hx-c7X0XfnyDAJTrqbBxWEKgADRKeSZNnuqgDExkhwkYZYeB1hYUpJkuU_TxS51BbjKVq1KWADaKV1hvUk3MKuM5gUMpnakUwx8TmjxUSsYpSKNRPVsYsLClXQEe25xGbNwUHSoz0btAeheO3sXjgG39W3PXIHu8-fVGS-TCS3lddBQesO2WTbrXr--29vZu62w-cpxJVcEbrDe9n5mv7BM8TK_q-2-Ox58BN3AGbg priority: 102 providerName: ProQuest |
| Title | A Comparative Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial Vehicle Conceptual Design |
| URI | https://link.springer.com/article/10.1007/s11831-023-09914-z https://www.proquest.com/docview/3256682115 |
| Volume | 30 |
| WOSCitedRecordID | wos000967260800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: 7WY dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: M0C dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1886-1784 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7x6IEeSqFUDaWRD9zA0r6y9h7TlKhSmzQivNrLyuuHoIIsYpOq5c_0r3bseFlAUAkulnbXa400r2_smTHAdqQxNJEsoNKkCU0SwSlXXFGjmUIPU6DHdU1cv7LhkJ-cZCNfFFbV2e71kaSz1E2xG0ofhr5RTBHVhAm9XoRldHfcXtiwPz6q7a8NeNwZZxjbPf808KUyD69x1x01GPPesajzNv3V59H5Gl55dEm6c3FYgwU9WYdVjzSJ1-NqHV7eakP4Bv52Sa9pAk5sauEfUhrigCgtDUWQaDPoyEBPxame-ebOBPEuGZfndkuCDNCo0LL4Obef5Btaogtf4klG80trKrtm_-w3UnJsfzmcXAhr5UnXaQE50qeWaqTFVVLO8NUnl1-yAYf9vYPeZ-ovbqASNXpKTRwWMhBSKtRvxnWWqqAIdGQ6idTCdAKljBQyZapIEd0XislMM5GJghdSmih-C0uTcqLfAclsWyihmEgx8NGhzkIheJxKrhUaZiNbENb8y6Xvam4v1zjPm37Mlh858iN3_MivW7Bz88_lvKfHf2dv1WKRe_2u8hiRYsoxeO60YLcWg-bz46ttPm36e1iJnCTZ_OAtWJpezfQHeCF_Tc-qqzYssuPvbVj-uDcc7ePTF0ZxHAQ9O7IxjqPOj7bTjn_HQQgZ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJcKE91aQs-wAks8trYOaBq1bJqtQ8q0UJvwfFDLWo3pdkF2j_DP-A3MuMkRCDRWw9ck9iJnG--mbHnAfA8suiaaBFw7dKEJ4mSXBppuLPCoIYpUOP6Iq5jMZ3Ko6Nsfwl-trkwFFbZcqInalNq2iN_HaNuTiW6K_2t8y-cukbR6WrbQqOGxchefkOXrXqzt4P_90UUDd8ebO_ypqsA1wi3OXdxWOhAaW0QfELaLDVBEdjI9RNtlesHxjitdCpMkaLpWRihMytUpgpZaO2o0AFS_koSS0FyNRK8ZX5ytfzpahjTaUMaNEk6daoeyg467lHM0SYLE371pyLsrNu_DmS9nhuu_m8rdA_uNhY1G9QicB-W7OwBrDbWNWu4q3oIPwZsuyt1ziiA8pKVjnlzm5eOoylMcYJsYufq2C6aEtYMrXr2vjyljRc2QerkZfG51hLsHfLtWZPIyvbr1jwVzTk8-Y7v_khDDmdninQZG3hZZx_sMX0nfovPF13gpR0fRfMIDm9kmR7D8qyc2TVgGRW_UkaoFN07G9osVErGqZbWoPpxugdhi5VcN7XbqYXIad5VnSZ85Yiv3OMrv-rBy99jzuvKJdc-vdGCKm9YrMo7RPXgVQvL7va_Z3ty_WzP4PbuwWScj_emo3W4E3mpoAjoDVieXyzsJtzSX-cn1cVTL18MPt00XH8BdFZo-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xVAgeoOUQW6D1Q9-KRa5NnMcVsAIB25Uox1vk-BAgSBCbRcCf6V9l7DgNrQoS6mtiWyN5jm_smc8A3wKFqYlIPCp0HNEo4owyySTVKpEYYXKMuJbE9TAZDNj5eTp80cVvq92bK8m6p8GwNBXV1q3UW23jG2oipsFBSBHh-BF9moTpyBTSm3z9-LTxxSb5sfedfmjO_2PPtc38e40_Q1OLN_-6IrWRp7_w_zJ_hHmHOkmvVpNPMKGKRVhwCJQ4-x4twtwLesIl-NUj2y05ODElh4-k1MQCVFpqiuDRVNaRI1XxCzV2pM8EcTA5Lq_NUQU5QmdDy_yq9qvkB3qoG9f6SYb1YzYjs2b_8gElOTNTToobbrw_6VnrIKfqwkiNstgOyzF-2rF1J8tw0t_9ub1H3YMOVKClV1SHfi48LoREu0-YSmPp5Z4KdDcSiuuuJ6UWXMSJzGNE_blMRKoSnvKc5ULoIFyBqaIs1CqQ1NBFcZnwGBMi5avU55yFsWBKosPWogN-s5eZcGzn5tGN66zlaTb7keF-ZHY_sqcOfP8957bm-nhz9HqjIpmz-1EWIoKMGSbV3Q5sNirR_n59tc_vG_4VZoY7_exwf3CwBrOBVSpTQrwOU9XdWG3AB3FfXY7uvlhzeAbQyg2W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+State-of-the-art+Metaheuristics+for+Solving+Many-objective+Optimization+Problems+of+Fixed+Wing+Unmanned+Aerial+Vehicle+Conceptual+Design&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Anosri%2C+Siwakorn&rft.au=Panagant%2C+Natee&rft.au=Champasak%2C+Pakin&rft.au=Bureerat%2C+Sujin&rft.date=2023-07-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=6&rft.spage=3657&rft.epage=3671&rft_id=info:doi/10.1007%2Fs11831-023-09914-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_023_09914_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |