Inpainting non-anatomical objects in brain imaging using enhanced deep convolutional autoencoder network
Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over t...
Saved in:
| Published in: | Sadhana (Bangalore) Vol. 49; no. 2; p. 181 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New Delhi
Springer India
18.05.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0973-7677, 0256-2499, 0973-7677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over the past decade, image inpainting techniques have advanced due to deep learning and multimedia information. In this paper, we proposed a deep convolutional autoencoder network with improved parameters as a robust method for inpainting non-anatomical objects in MRI and CT images. Traditional approaches based on the exemplar methods are much less effective than deep learning methods in capturing high-level features. However, the inpainted regions would appear blurr and with global inconsistency. To handle the fuzzy problem, we enhanced the network model by introducing skip connections between mirrored layers in the encoder and decoder stacks. This allowed the generative process of the inpainting region to directly use the low-level feature information of the processed image. To provide both pixel-accurate and local-global contents consistency, the proposed model is trained with a combination of the typical pixel-wise reconstruction loss and two adversarial losses, which makes the inpainted output seem more realistic and consistent with its surrounding contexts. As a result, the proposed approach is much faster than existing methods while providing unprecedented qualitative and quantitative evaluation with a high inpainting inception score of 10.58, peak signal-to-noise ratio (PSNR) 52.44, structural similarity index (SSIM) 0.95, universal image quality index (UQI) 0.96, and mean squared error (MSE) 40.73 for CT and MRI images. This offers a promising avenue for enhancing image fidelity, potentially advancing clinical decision-making and patient care in neuroimaging practice. |
|---|---|
| AbstractList | Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over the past decade, image inpainting techniques have advanced due to deep learning and multimedia information. In this paper, we proposed a deep convolutional autoencoder network with improved parameters as a robust method for inpainting non-anatomical objects in MRI and CT images. Traditional approaches based on the exemplar methods are much less effective than deep learning methods in capturing high-level features. However, the inpainted regions would appear blurr and with global inconsistency. To handle the fuzzy problem, we enhanced the network model by introducing skip connections between mirrored layers in the encoder and decoder stacks. This allowed the generative process of the inpainting region to directly use the low-level feature information of the processed image. To provide both pixel-accurate and local-global contents consistency, the proposed model is trained with a combination of the typical pixel-wise reconstruction loss and two adversarial losses, which makes the inpainted output seem more realistic and consistent with its surrounding contexts. As a result, the proposed approach is much faster than existing methods while providing unprecedented qualitative and quantitative evaluation with a high inpainting inception score of 10.58, peak signal-to-noise ratio (PSNR) 52.44, structural similarity index (SSIM) 0.95, universal image quality index (UQI) 0.96, and mean squared error (MSE) 40.73 for CT and MRI images. This offers a promising avenue for enhancing image fidelity, potentially advancing clinical decision-making and patient care in neuroimaging practice. |
| ArticleNumber | 181 |
| Author | Jha, Rajesh Kumar Raju, B Deevena Mohammed, Thayyaba Khatoon Kumar, Puranam Revanth Shilpa, B |
| Author_xml | – sequence: 1 givenname: Puranam Revanth orcidid: 0000-0002-9141-9901 surname: Kumar fullname: Kumar, Puranam Revanth email: revanth123451.rk@gmail.com organization: Department of Artificial Intelligence and Machine Learning, School of Engineering, Malla Reddy University – sequence: 2 givenname: B surname: Shilpa fullname: Shilpa, B organization: Department of Computer Science and Engineering, AVN Institute of Engineering and Technology – sequence: 3 givenname: Rajesh Kumar surname: Jha fullname: Jha, Rajesh Kumar email: rajeshjha@ifheindia.org organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education – sequence: 4 givenname: B Deevena surname: Raju fullname: Raju, B Deevena organization: Department of DS & AI, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education – sequence: 5 givenname: Thayyaba Khatoon surname: Mohammed fullname: Mohammed, Thayyaba Khatoon organization: Department of Artificial Intelligence and Machine Learning, School of Engineering, Malla Reddy University |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDrgR2InS1TxqFSJDawtx5m0KakdbAfE3-MQJBCLLsbjxT0zc-8CzYw1gNAlwdcEY3HjCcUZTzHNYuWMp_wEzXEpWCq4ELM__zO08H6PMRW4YHO0W5tetSa0ZpvEmakyKthDq1WX2GoPOvikNUnloiZpD2o76gY_vmB2ymiokxqgT7Q177YbQmtNRNUQLBhta3CJgfBh3es5Om1U5-Hipy_Ry_3d8-ox3Tw9rFe3m1QzUoa0oZXAIqt1UVSaU1U3jIqqrouc5JnKgAuiSiBKE665yDhoKKtCgagKFiHMluhqmts7-zaAD3JvBxeP8pLRXMSEymh8ieik0s5676CRvYv23KckWI6JyilRGfXyO1HJI1T8g3Qb1Gg5xHy64yibUB_3mC2436uOUF8TS49c |
| CitedBy_id | crossref_primary_10_1016_j_neuroscience_2025_06_043 crossref_primary_10_1007_s42979_025_04101_2 crossref_primary_10_1615_CritRevBiomedEng_2025058842 |
| Cites_doi | 10.1016/j.neuroimage.2019.116400 10.3390/s22030813 10.1145/1531326.1531330 10.1016/j.jvcir.2021.103430 10.1145/3072959.3073659 10.1016/j.neucom.2022.02.046 10.3390/app10217790 10.1109/TCI.2018.2884479 10.3390/info13020071 10.1007/s00521-022-06987-y 10.1007/s00521-022-06961-8 10.1016/j.image.2020.115929 10.3390/aerospace9090480 10.3390/app11094247 10.1038/s41598-020-80930-w 10.1109/TCYB.2020.2972944 10.1109/TMI.2020.2983721 10.1007/978-3-030-72084-1_8 10.1109/CVPR42600.2020.00778 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-46475-6_43 10.1109/ISBI48211.2021.9434115 10.1109/AIVR50618.2020.00039 10.1109/CVPR.2016.265 10.1109/WACV.2019.00154 10.1007/978-3-030-01252-6_6 10.1109/CVPR.2017.434 10.1109/ICCV.2019.00895 10.3390/app11020782 10.1109/ICSSSM.2007.4280177 10.1007/978-3-319-46475-6_25 10.1145/3426020.3426088 10.1109/CVPR.2016.278 |
| ContentType | Journal Article |
| Copyright | Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Academy of Sciences 2024. |
| Copyright_xml | – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Academy of Sciences 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s12046-024-02536-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 0973-7677 |
| ExternalDocumentID | 10_1007_s12046_024_02536_6 |
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABJCF ABRTQ AEUYN AFDZB AFFHD AFKRA AFOHR AHPBZ ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ KB. M7S OVT PDBOC PHGZM PHGZT PQGLB PTHSS 8FE 8FG D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-f2b7074dc88bc62adf327bdd85154a4e671a9e1ac16c6746ece9b8ae7b83dc803 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001227042100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0973-7677 0256-2499 |
| IngestDate | Sat Oct 11 06:56:10 EDT 2025 Sat Nov 29 05:51:19 EST 2025 Tue Nov 18 22:39:21 EST 2025 Fri Feb 21 02:40:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning Medical image inpainting Object removal Image translation Medical image analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f2b7074dc88bc62adf327bdd85154a4e671a9e1ac16c6746ece9b8ae7b83dc803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9141-9901 |
| PQID | 3257024908 |
| PQPubID | 2043821 |
| ParticipantIDs | proquest_journals_3257024908 crossref_primary_10_1007_s12046_024_02536_6 crossref_citationtrail_10_1007_s12046_024_02536_6 springer_journals_10_1007_s12046_024_02536_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-18 |
| PublicationDateYYYYMMDD | 2024-05-18 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Published by the Indian Academy of Sciences |
| PublicationTitle | Sadhana (Bangalore) |
| PublicationTitleAbbrev | Sādhanā |
| PublicationYear | 2024 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Ting, Ting, Liang, Xi, Jin (CR26) 2022; 83 Zang, Zhao, Qiao (CR32) 2023; 10 Tran, Kim, Yang, Lee (CR36) 2021; 11 CR18 Fair, Miranda-Dominguez, Snyder, Perrone, Earl, Van (CR8) 2020; 208 CR17 CR16 CR15 CR37 Yu, Li, Peng (CR7) 2022; 34 CR14 Citko, Sienko (CR10) 2022; 22 CR13 CR35 CR34 CR33 CR31 CR30 Kang, Shin, Seo, Byun, Lee, Kim (CR19) 2021; 11 Jing, Zheng, Zheng, Dong (CR1) 2022; 9 Zhao, Li, Niu, Qin, Peng, Niu (CR11) 2018; 5 Luo, Zheng (CR5) 2022; 13 Criminisi, Perez, Toyama (CR9) 2003; 2 Ngo, Tran, Kim, Yang, Lee (CR24) 2020; 10 Goodfellow, Pouget, Mirza (CR38) 2014; 27 Li, Cheng, Liu (CR23) 2020; 48 CR29 CR28 CR27 Alsalamah, Amin (CR12) 2016; 7 Jingwen, Boyan, Yin (CR2) 2022; 487 CR25 CR47 CR46 CR22 Shao, Wang, Fu, Yin (CR39) 2020; 87 CR21 CR43 CR20 CR42 Yu, Xu, Gao, Shi, Wang, Tao (CR3) 2021; 51 CR41 CR40 Barnes, Shechtman, Finkelstein, Goldman (CR44) 2009; 28 Iizuka, Simo, Ishikawa (CR45) 2017; 36 Dogan, Keles (CR4) 2022; 34 Feng, Zhao, Shi, Cheng, Wang, Ma (CR6) 2020; 39 S Feng (2536_CR6) 2020; 39 D Zang (2536_CR32) 2023; 10 J Yu (2536_CR7) 2022; 34 W Citko (2536_CR10) 2022; 22 MT Tran (2536_CR36) 2021; 11 M Alsalamah (2536_CR12) 2016; 7 2536_CR34 2536_CR33 2536_CR14 2536_CR13 2536_CR35 H Shao (2536_CR39) 2020; 87 2536_CR16 SK Kang (2536_CR19) 2021; 11 H Luo (2536_CR5) 2022; 13 2536_CR15 2536_CR37 IJ Goodfellow (2536_CR38) 2014; 27 A Criminisi (2536_CR9) 2003; 2 2536_CR18 J Yu (2536_CR3) 2021; 51 2536_CR17 Xu Ting (2536_CR26) 2022; 83 DK Ngo (2536_CR24) 2020; 10 2536_CR30 2536_CR31 Su Jingwen (2536_CR2) 2022; 487 ZD Li (2536_CR23) 2020; 48 2536_CR22 2536_CR25 C Barnes (2536_CR44) 2009; 28 2536_CR47 2536_CR46 Y Jing (2536_CR1) 2022; 9 W Zhao (2536_CR11) 2018; 5 2536_CR27 DA Fair (2536_CR8) 2020; 208 2536_CR29 2536_CR28 Y Dogan (2536_CR4) 2022; 34 S Iizuka (2536_CR45) 2017; 36 2536_CR41 2536_CR40 2536_CR21 2536_CR43 2536_CR20 2536_CR42 |
| References_xml | – volume: 208 start-page: 116400 year: 2020 ident: CR8 article-title: Correction of respiratory artifacts in MRI head motion estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116400 – volume: 22 start-page: 813 issue: 3 year: 2022 ident: CR10 article-title: Inpainted image reconstruction using an extended hopfield neural network based machine learning system publication-title: Sensors doi: 10.3390/s22030813 – ident: CR22 – ident: CR18 – ident: CR43 – ident: CR47 – volume: 28 start-page: 1 issue: 3 year: 2009 end-page: 11 ident: CR44 article-title: Patchmatch: A randomized correspondence algorithm for structural image editing publication-title: ACM Trans. Graph. doi: 10.1145/1531326.1531330 – ident: CR14 – volume: 83 start-page: 103430 year: 2022 ident: CR26 article-title: Exemplar-based image inpainting using adaptive two-stage structure-tensor based priority function and nonlocal filtering publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2021.103430 – ident: CR16 – ident: CR37 – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 14 ident: CR45 article-title: Globally and locally consistent image completion publication-title: ACM Transactions on Graphics (ToG). doi: 10.1145/3072959.3073659 – ident: CR30 – volume: 487 start-page: 46 year: 2022 end-page: 65 ident: CR2 article-title: A survey of deep learning approaches to image restoration publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.046 – volume: 10 start-page: 7790 year: 2020 ident: CR24 article-title: Multi-task learning for small brain tumor segmentation from MRI publication-title: Appl. Sci. doi: 10.3390/app10217790 – ident: CR33 – volume: 5 start-page: 333 issue: 2 year: 2018 end-page: 342 ident: CR11 article-title: Robust beam hardening artifacts reduction for computed tomography using spectrum modeling publication-title: IEEE Trans. Comput. Imaging. doi: 10.1109/TCI.2018.2884479 – ident: CR35 – ident: CR29 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – volume: 27 start-page: 1 year: 2014 end-page: 9 ident: CR38 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems. – volume: 2 start-page: 1 year: 2003 end-page: 8 ident: CR9 article-title: Object removal by exemplar-based inpainting publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 13 start-page: 7 issue: 2 year: 2022 ident: CR5 article-title: Semantic residual pyramid network for image inpainting publication-title: Information doi: 10.3390/info13020071 – ident: CR21 – ident: CR46 – volume: 48 start-page: 985 issue: 5 year: 2020 end-page: 989 ident: CR23 article-title: MRF image inpainting algorithm based on structure offsets statistic and multidirection features publication-title: Acta Electronica Sinica – volume: 34 start-page: 10001 issue: 12 year: 2022 end-page: 10021 ident: CR4 article-title: Iterative facial image inpainting based on an encoder-generator architecture publication-title: Neural Computing & Application doi: 10.1007/s00521-022-06987-y – volume: 34 start-page: 9717 year: 2022 end-page: 9731 ident: CR7 article-title: Reference-guided face inpainting with reference attention network publication-title: Neural Comput & Application doi: 10.1007/s00521-022-06961-8 – volume: 87 start-page: 115929 year: 2020 ident: CR39 article-title: Generative image inpainting via edge structure and color aware fusion publication-title: Signal Process. Image Communication. doi: 10.1016/j.image.2020.115929 – volume: 9 start-page: 480 issue: 9 year: 2022 ident: CR1 article-title: A pixel-wise foreign object debris detection method based on multi-scale feature inpainting publication-title: Aerospace doi: 10.3390/aerospace9090480 – ident: CR15 – volume: 11 start-page: 4247 issue: 9 year: 2021 ident: CR36 article-title: Multi-task learning for medical image inpainting based on organ boundary awareness publication-title: Applied Sciences. doi: 10.3390/app11094247 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 11 start-page: 1673 year: 2021 ident: CR19 article-title: Deep learning-based 3d inpainting of brain mr images publication-title: Scientific Reports. doi: 10.1038/s41598-020-80930-w – volume: 10 start-page: 1 issue: 3 year: 2023 end-page: 15 ident: CR32 article-title: Enhanced brain parcellation via abnormality inpainting for neuroimage-based consciousness evaluation of hydrocephalus patients by lumbar drainage publication-title: Brain Informatics. – ident: CR34 – volume: 51 start-page: 4350 issue: 9 year: 2021 end-page: 4362 ident: CR3 article-title: Toward realistic face photo-sketch synthesis via composition-aided gans publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2972944 – volume: 7 start-page: 91 year: 2016 end-page: 99 ident: CR12 article-title: Medical image inpainting with RBF interpolation technique publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 39 start-page: 3008 year: 2020 end-page: 3018 ident: CR6 article-title: CPFNet: context pyramid fusion network for medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2983721 – ident: CR28 – ident: CR41 – ident: CR20 – ident: 2536_CR47 doi: 10.1007/978-3-030-72084-1_8 – ident: 2536_CR15 doi: 10.1109/CVPR42600.2020.00778 – volume: 83 start-page: 103430 year: 2022 ident: 2536_CR26 publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2021.103430 – ident: 2536_CR21 doi: 10.1007/978-3-319-24574-4_28 – volume: 22 start-page: 813 issue: 3 year: 2022 ident: 2536_CR10 publication-title: Sensors doi: 10.3390/s22030813 – ident: 2536_CR17 – volume: 28 start-page: 1 issue: 3 year: 2009 ident: 2536_CR44 publication-title: ACM Trans. Graph. doi: 10.1145/1531326.1531330 – ident: 2536_CR28 doi: 10.1007/978-3-319-46475-6_43 – ident: 2536_CR43 doi: 10.1109/ISBI48211.2021.9434115 – ident: 2536_CR27 doi: 10.1109/AIVR50618.2020.00039 – volume: 51 start-page: 4350 issue: 9 year: 2021 ident: 2536_CR3 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2972944 – ident: 2536_CR14 doi: 10.1109/CVPR.2016.265 – volume: 11 start-page: 1673 year: 2021 ident: 2536_CR19 publication-title: Scientific Reports. doi: 10.1038/s41598-020-80930-w – volume: 27 start-page: 1 year: 2014 ident: 2536_CR38 publication-title: Advances in Neural Information Processing Systems. – ident: 2536_CR30 – volume: 10 start-page: 7790 year: 2020 ident: 2536_CR24 publication-title: Appl. Sci. doi: 10.3390/app10217790 – volume: 5 start-page: 333 issue: 2 year: 2018 ident: 2536_CR11 publication-title: IEEE Trans. Comput. Imaging. doi: 10.1109/TCI.2018.2884479 – ident: 2536_CR20 doi: 10.1109/WACV.2019.00154 – volume: 34 start-page: 9717 year: 2022 ident: 2536_CR7 publication-title: Neural Comput & Application doi: 10.1007/s00521-022-06961-8 – ident: 2536_CR42 doi: 10.1007/978-3-030-01252-6_6 – volume: 13 start-page: 7 issue: 2 year: 2022 ident: 2536_CR5 publication-title: Information doi: 10.3390/info13020071 – volume: 48 start-page: 985 issue: 5 year: 2020 ident: 2536_CR23 publication-title: Acta Electronica Sinica – volume: 11 start-page: 4247 issue: 9 year: 2021 ident: 2536_CR36 publication-title: Applied Sciences. doi: 10.3390/app11094247 – volume: 7 start-page: 91 year: 2016 ident: 2536_CR12 publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 34 start-page: 10001 issue: 12 year: 2022 ident: 2536_CR4 publication-title: Neural Computing & Application doi: 10.1007/s00521-022-06987-y – ident: 2536_CR37 – volume: 10 start-page: 1 issue: 3 year: 2023 ident: 2536_CR32 publication-title: Brain Informatics. – ident: 2536_CR13 doi: 10.1109/CVPR.2017.434 – ident: 2536_CR41 doi: 10.1109/ICCV.2019.00895 – volume: 487 start-page: 46 year: 2022 ident: 2536_CR2 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.046 – ident: 2536_CR31 doi: 10.3390/app11020782 – ident: 2536_CR46 doi: 10.1007/978-3-030-01252-6_6 – ident: 2536_CR16 doi: 10.1109/ICSSSM.2007.4280177 – ident: 2536_CR25 doi: 10.1007/978-3-319-46475-6_25 – ident: 2536_CR33 – volume: 208 start-page: 116400 year: 2020 ident: 2536_CR8 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116400 – ident: 2536_CR35 – volume: 9 start-page: 480 issue: 9 year: 2022 ident: 2536_CR1 publication-title: Aerospace doi: 10.3390/aerospace9090480 – volume: 2 start-page: 1 year: 2003 ident: 2536_CR9 publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – ident: 2536_CR18 doi: 10.1145/3426020.3426088 – volume: 87 start-page: 115929 year: 2020 ident: 2536_CR39 publication-title: Signal Process. Image Communication. doi: 10.1016/j.image.2020.115929 – ident: 2536_CR34 doi: 10.1109/CVPR.2016.278 – ident: 2536_CR29 doi: 10.1007/978-3-030-01252-6_6 – ident: 2536_CR22 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 2536_CR45 publication-title: ACM Transactions on Graphics (ToG). doi: 10.1145/3072959.3073659 – volume: 39 start-page: 3008 year: 2020 ident: 2536_CR6 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2983721 – ident: 2536_CR40 doi: 10.1007/978-3-030-01252-6_6 |
| SSID | ssj0027083 |
| Score | 2.3486917 |
| Snippet | Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 181 |
| SubjectTerms | Algorithms Computed tomography Computer vision Deep learning Design Diagnosis Engineering Human error Image quality Image reconstruction Magnetic resonance imaging Medical imaging Neural networks Optimization techniques Parameter robustness Pixels Signal to noise ratio Tomography |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xf5OBB0UDb7KbpUURREBFfeCt51V3Q7rJd_f1OsqlVUUEPPTVTwmQmM9NMvg9gl5m0wCjMaBQpLFB0xilWtgVVxhquI4fo5UFcL9LLS_HwkF2FS2FV3e1eH0n6nbq57JagKMWYgk-HcconYRrDnXCEDdc3902ZhVlFuB7zvdznENTklV-OQn2EOV3439wWYT5klORobAJLMGHLZZj7gDO4DEvBgyuyF2Cm91ege14OZM8TRZCyX1JZYv3twQNIX7m_MxXplUQ5CgnSe_ZkRsR1yT8SW3Z93wAx1g6I61sP9oui8mXUd9iYxg5JOW4xX4W705Pb4zMaeBeoRocc0SJRKWYWRguhNE-kKViSKmMwOeu0ZdvyNJaZjaWOueZpm1ttMyWkTZVgKBSxNZjCedt1IAyrTYl7ccG0aGcqyiwr4qyjrTBMxiprQVwvRa4DKLnjxnjKGzhlp9ocVZt71ea8BQfvMoMxJMevo7fqFc6De1Y5c9x9iTvzbMFhvaLN65-_tvG34Zswm3ij6NBYbMHUaPhit2FGv4561XDHm-0bp5HpBw priority: 102 providerName: Springer Nature |
| Title | Inpainting non-anatomical objects in brain imaging using enhanced deep convolutional autoencoder network |
| URI | https://link.springer.com/article/10.1007/s12046-024-02536-6 https://www.proquest.com/docview/3257024908 |
| Volume | 49 |
| WOSCitedRecordID | wos001227042100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 0973-7677 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: P5Z dateStart: 20230301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 0973-7677 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: M7S dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 0973-7677 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: KB. dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 0973-7677 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0973-7677 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnChPIpYCisfOIDAbRJvnPhUFQQCtVqtoEWol8ivsCtBdtks_f0dO14ikMqlh_iSjGVlxp4Ze_x9AAfMZCV6YUajSGGCogWnmNmWVBlruI4copcHcf2R9fv53Z0YhA23OpRVztdEv1CbsXZ75F-Yo1tL3DHV18kTdaxR7nQ1UGgswrJDSYh96d5Nm3BFDQwnunWKoiJcmmmuziU4EIo94pMyTvlrx9RGm28OSL3fufjwvyNeh7UQcZJvjYlswIKtNmEjzOmaHAbg6aMtGF5VEzny1BGkGldUVpiRezgBMlZuv6Ymo4ooRypBRo-e3oi4uvl7YquhryQgxtoJcZXswaJRVD7Pxg4t09gpqZqi84_w6-L859klDUwMVOMUndEyURnGGkbnudI8kaZkSaaMwXAt7cme5VkshY2ljrnmWY9bbYXKpc1UzlAoYtuwhOO2O0AY5p8SV-eS6bwnVCQsK2ORapsbJmMlOhDP1VDoAFPu2DIeihZg2amuwF9beNUVvAPHLzKTBqTj3a_35voqwoSti1ZZHTiZa7x9_e_edt_v7ROsJt7IUhrne7A0mz7bfVjRf2ajetqF5dPz_uC6C4vfTz93vfFiO0h_Y3t9c_sXAC30_g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9VAEJ4AmsBFRTQ8RdkDJBhcbbt92-7BEBUJLzxeOEDCreyvyku0fb4Wjf-Uf6Oz25YGE7hx8NBTu5vd7rc7Mzsz3wBsMZPkKIUZDQKFBooWnKJlm1NlrOE6cIxensR1nEwm6fm5OFmAP10ujAur7M5Ef1CbUrs78vfMlVuLnJtqb_aDuqpRzrvaldBoYHFkf_9Ck636MNrH9d2OooMvp58PaVtVgGqEW03zSCUoN41OU6V5JE3OokQZg6rHMJax5UkohQ2lDrnmScyttkKl0iYqZdgoYNjvIjyIGeqmzgn86V1v4AUN7SeqERSHKtoknSZVL8KJU5wBPkPGKb8pCHvt9h-HrJdzB4__tz_0BB61GjX52GyBVViwxVNYbc-siuy0xNpv1uByVMzk1JfGIEVZUFnIuvR0CaRU7j6qItOCKFc0g0y_-_JNxOUFfCW2uPSREsRYOyMuUr_dsdhUXtWlYwM1dk6KJqj-GZzdy4yfwxKO264DYWhfS5Q-OdNpLFQgLMtDMdQ2NUyGSgwg7JY90y0Nu6sG8i3rCaQdVDJcysxDJeMD2L1uM2tISO78eqPDR9YeSFXWg2MAbzuE9a9v7-3F3b1twvLh6fE4G48mRy9hJfIAH9Iw3YClen5lX8FD_bOeVvPXfqsQuLhv5P0FpJlPSQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9NADLdGhxA8jLUbojDYPexhCE5LcukleZyAahVVVWkw9S26r6yVxjVqU_5-fJeUFARI0x7ylPPpdLZjO7Z_BjhjOinQCjMaBBIDFJVxipFtQaU2mqvAIXp5ENdxMpmks1k23eni99Xu25Rk3dPgUJpsdVHq4qJtfItwG4r2BZ8B45Q_gv3YFdK7eP36pg250MNoWmX-Tve7OWp9zD_Sot7aDJ8__JyHcNB4muSyFo0u7Bnbg2c7-IM96DaavSbnDfz0uyOYj2wpFn6ABLFLS4XFuNyDCpCldH9t1mRhiXSjJcjiux9yRFz1_C0xdu7rCYg2piSunr2RayQVm2rpMDO1WRFbl54fw7fh568fr2gzj4EqVNSKFpFM0OPQKk2l4pHQBYsSqTU6bYNYxIYnochMKFTIFU9ibpTJZCpMIlOGRAF7AR08t3kJhGEUKvAbXTCVxpkMMsOKMBsok2omQpn1IdyyJVcNWLmbmXGXtzDL7mpzvNrcX23O-_D-F01ZQ3X8d_XJltt5o7brnLmZfpHLhfbhw5a77et_7_bqfstP4cn00zAfjyZfXsPTyMvHgIbpCXSq1ca8gcfqR7VYr956af4JFXX0zw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inpainting+non-anatomical+objects+in+brain+imaging+using+enhanced+deep+convolutional+autoencoder+network&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Kumar%2C+Puranam+Revanth&rft.au=Shilpa%2C+B&rft.au=Jha%2C+Rajesh+Kumar&rft.au=Raju%2C+B+Deevena&rft.date=2024-05-18&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=2&rft.spage=181&rft_id=info:doi/10.1007%2Fs12046-024-02536-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon |