Inpainting non-anatomical objects in brain imaging using enhanced deep convolutional autoencoder network

Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over t...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) Vol. 49; no. 2; p. 181
Main Authors: Kumar, Puranam Revanth, Shilpa, B, Jha, Rajesh Kumar, Raju, B Deevena, Mohammed, Thayyaba Khatoon
Format: Journal Article
Language:English
Published: New Delhi Springer India 18.05.2024
Springer Nature B.V
Subjects:
ISSN:0973-7677, 0256-2499, 0973-7677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over the past decade, image inpainting techniques have advanced due to deep learning and multimedia information. In this paper, we proposed a deep convolutional autoencoder network with improved parameters as a robust method for inpainting non-anatomical objects in MRI and CT images. Traditional approaches based on the exemplar methods are much less effective than deep learning methods in capturing high-level features. However, the inpainted regions would appear blurr and with global inconsistency. To handle the fuzzy problem, we enhanced the network model by introducing skip connections between mirrored layers in the encoder and decoder stacks. This allowed the generative process of the inpainting region to directly use the low-level feature information of the processed image. To provide both pixel-accurate and local-global contents consistency, the proposed model is trained with a combination of the typical pixel-wise reconstruction loss and two adversarial losses, which makes the inpainted output seem more realistic and consistent with its surrounding contexts. As a result, the proposed approach is much faster than existing methods while providing unprecedented qualitative and quantitative evaluation with a high inpainting inception score of 10.58, peak signal-to-noise ratio (PSNR) 52.44, structural similarity index (SSIM) 0.95, universal image quality index (UQI) 0.96, and mean squared error (MSE) 40.73 for CT and MRI images. This offers a promising avenue for enhancing image fidelity, potentially advancing clinical decision-making and patient care in neuroimaging practice.
AbstractList Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images. Therefore, enhancing the accuracy of diagnostic imaging and inpainting damaged areas are essential for medical diagnosis. Over the past decade, image inpainting techniques have advanced due to deep learning and multimedia information. In this paper, we proposed a deep convolutional autoencoder network with improved parameters as a robust method for inpainting non-anatomical objects in MRI and CT images. Traditional approaches based on the exemplar methods are much less effective than deep learning methods in capturing high-level features. However, the inpainted regions would appear blurr and with global inconsistency. To handle the fuzzy problem, we enhanced the network model by introducing skip connections between mirrored layers in the encoder and decoder stacks. This allowed the generative process of the inpainting region to directly use the low-level feature information of the processed image. To provide both pixel-accurate and local-global contents consistency, the proposed model is trained with a combination of the typical pixel-wise reconstruction loss and two adversarial losses, which makes the inpainted output seem more realistic and consistent with its surrounding contexts. As a result, the proposed approach is much faster than existing methods while providing unprecedented qualitative and quantitative evaluation with a high inpainting inception score of 10.58, peak signal-to-noise ratio (PSNR) 52.44, structural similarity index (SSIM) 0.95, universal image quality index (UQI) 0.96, and mean squared error (MSE) 40.73 for CT and MRI images. This offers a promising avenue for enhancing image fidelity, potentially advancing clinical decision-making and patient care in neuroimaging practice.
ArticleNumber 181
Author Jha, Rajesh Kumar
Raju, B Deevena
Mohammed, Thayyaba Khatoon
Kumar, Puranam Revanth
Shilpa, B
Author_xml – sequence: 1
  givenname: Puranam Revanth
  orcidid: 0000-0002-9141-9901
  surname: Kumar
  fullname: Kumar, Puranam Revanth
  email: revanth123451.rk@gmail.com
  organization: Department of Artificial Intelligence and Machine Learning, School of Engineering, Malla Reddy University
– sequence: 2
  givenname: B
  surname: Shilpa
  fullname: Shilpa, B
  organization: Department of Computer Science and Engineering, AVN Institute of Engineering and Technology
– sequence: 3
  givenname: Rajesh Kumar
  surname: Jha
  fullname: Jha, Rajesh Kumar
  email: rajeshjha@ifheindia.org
  organization: Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education
– sequence: 4
  givenname: B Deevena
  surname: Raju
  fullname: Raju, B Deevena
  organization: Department of DS & AI, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education
– sequence: 5
  givenname: Thayyaba Khatoon
  surname: Mohammed
  fullname: Mohammed, Thayyaba Khatoon
  organization: Department of Artificial Intelligence and Machine Learning, School of Engineering, Malla Reddy University
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDrgR2InS1TxqFSJDawtx5m0KakdbAfE3-MQJBCLLsbjxT0zc-8CzYw1gNAlwdcEY3HjCcUZTzHNYuWMp_wEzXEpWCq4ELM__zO08H6PMRW4YHO0W5tetSa0ZpvEmakyKthDq1WX2GoPOvikNUnloiZpD2o76gY_vmB2ymiokxqgT7Q177YbQmtNRNUQLBhta3CJgfBh3es5Om1U5-Hipy_Ry_3d8-ox3Tw9rFe3m1QzUoa0oZXAIqt1UVSaU1U3jIqqrouc5JnKgAuiSiBKE665yDhoKKtCgagKFiHMluhqmts7-zaAD3JvBxeP8pLRXMSEymh8ieik0s5676CRvYv23KckWI6JyilRGfXyO1HJI1T8g3Qb1Gg5xHy64yibUB_3mC2436uOUF8TS49c
CitedBy_id crossref_primary_10_1016_j_neuroscience_2025_06_043
crossref_primary_10_1007_s42979_025_04101_2
crossref_primary_10_1615_CritRevBiomedEng_2025058842
Cites_doi 10.1016/j.neuroimage.2019.116400
10.3390/s22030813
10.1145/1531326.1531330
10.1016/j.jvcir.2021.103430
10.1145/3072959.3073659
10.1016/j.neucom.2022.02.046
10.3390/app10217790
10.1109/TCI.2018.2884479
10.3390/info13020071
10.1007/s00521-022-06987-y
10.1007/s00521-022-06961-8
10.1016/j.image.2020.115929
10.3390/aerospace9090480
10.3390/app11094247
10.1038/s41598-020-80930-w
10.1109/TCYB.2020.2972944
10.1109/TMI.2020.2983721
10.1007/978-3-030-72084-1_8
10.1109/CVPR42600.2020.00778
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-46475-6_43
10.1109/ISBI48211.2021.9434115
10.1109/AIVR50618.2020.00039
10.1109/CVPR.2016.265
10.1109/WACV.2019.00154
10.1007/978-3-030-01252-6_6
10.1109/CVPR.2017.434
10.1109/ICCV.2019.00895
10.3390/app11020782
10.1109/ICSSSM.2007.4280177
10.1007/978-3-319-46475-6_25
10.1145/3426020.3426088
10.1109/CVPR.2016.278
ContentType Journal Article
Copyright Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Academy of Sciences 2024.
Copyright_xml – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Academy of Sciences 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s12046-024-02536-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_024_02536_6
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BGNMA
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
HG5
HG6
HMJXF
HRMNR
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RAB
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABJCF
ABRTQ
AEUYN
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
OVT
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-f2b7074dc88bc62adf327bdd85154a4e671a9e1ac16c6746ece9b8ae7b83dc803
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001227042100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0973-7677
0256-2499
IngestDate Sat Oct 11 06:56:10 EDT 2025
Sat Nov 29 05:51:19 EST 2025
Tue Nov 18 22:39:21 EST 2025
Fri Feb 21 02:40:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Medical image inpainting
Object removal
Image translation
Medical image analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f2b7074dc88bc62adf327bdd85154a4e671a9e1ac16c6746ece9b8ae7b83dc803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9141-9901
PQID 3257024908
PQPubID 2043821
ParticipantIDs proquest_journals_3257024908
crossref_primary_10_1007_s12046_024_02536_6
crossref_citationtrail_10_1007_s12046_024_02536_6
springer_journals_10_1007_s12046_024_02536_6
PublicationCentury 2000
PublicationDate 2024-05-18
PublicationDateYYYYMMDD 2024-05-18
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-18
  day: 18
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Ting, Ting, Liang, Xi, Jin (CR26) 2022; 83
Zang, Zhao, Qiao (CR32) 2023; 10
Tran, Kim, Yang, Lee (CR36) 2021; 11
CR18
Fair, Miranda-Dominguez, Snyder, Perrone, Earl, Van (CR8) 2020; 208
CR17
CR16
CR15
CR37
Yu, Li, Peng (CR7) 2022; 34
CR14
Citko, Sienko (CR10) 2022; 22
CR13
CR35
CR34
CR33
CR31
CR30
Kang, Shin, Seo, Byun, Lee, Kim (CR19) 2021; 11
Jing, Zheng, Zheng, Dong (CR1) 2022; 9
Zhao, Li, Niu, Qin, Peng, Niu (CR11) 2018; 5
Luo, Zheng (CR5) 2022; 13
Criminisi, Perez, Toyama (CR9) 2003; 2
Ngo, Tran, Kim, Yang, Lee (CR24) 2020; 10
Goodfellow, Pouget, Mirza (CR38) 2014; 27
Li, Cheng, Liu (CR23) 2020; 48
CR29
CR28
CR27
Alsalamah, Amin (CR12) 2016; 7
Jingwen, Boyan, Yin (CR2) 2022; 487
CR25
CR47
CR46
CR22
Shao, Wang, Fu, Yin (CR39) 2020; 87
CR21
CR43
CR20
CR42
Yu, Xu, Gao, Shi, Wang, Tao (CR3) 2021; 51
CR41
CR40
Barnes, Shechtman, Finkelstein, Goldman (CR44) 2009; 28
Iizuka, Simo, Ishikawa (CR45) 2017; 36
Dogan, Keles (CR4) 2022; 34
Feng, Zhao, Shi, Cheng, Wang, Ma (CR6) 2020; 39
S Feng (2536_CR6) 2020; 39
D Zang (2536_CR32) 2023; 10
J Yu (2536_CR7) 2022; 34
W Citko (2536_CR10) 2022; 22
MT Tran (2536_CR36) 2021; 11
M Alsalamah (2536_CR12) 2016; 7
2536_CR34
2536_CR33
2536_CR14
2536_CR13
2536_CR35
H Shao (2536_CR39) 2020; 87
2536_CR16
SK Kang (2536_CR19) 2021; 11
H Luo (2536_CR5) 2022; 13
2536_CR15
2536_CR37
IJ Goodfellow (2536_CR38) 2014; 27
A Criminisi (2536_CR9) 2003; 2
2536_CR18
J Yu (2536_CR3) 2021; 51
2536_CR17
Xu Ting (2536_CR26) 2022; 83
DK Ngo (2536_CR24) 2020; 10
2536_CR30
2536_CR31
Su Jingwen (2536_CR2) 2022; 487
ZD Li (2536_CR23) 2020; 48
2536_CR22
2536_CR25
C Barnes (2536_CR44) 2009; 28
2536_CR47
2536_CR46
Y Jing (2536_CR1) 2022; 9
W Zhao (2536_CR11) 2018; 5
2536_CR27
DA Fair (2536_CR8) 2020; 208
2536_CR29
2536_CR28
Y Dogan (2536_CR4) 2022; 34
S Iizuka (2536_CR45) 2017; 36
2536_CR41
2536_CR40
2536_CR21
2536_CR43
2536_CR20
2536_CR42
References_xml – volume: 208
  start-page: 116400
  year: 2020
  ident: CR8
  article-title: Correction of respiratory artifacts in MRI head motion estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116400
– volume: 22
  start-page: 813
  issue: 3
  year: 2022
  ident: CR10
  article-title: Inpainted image reconstruction using an extended hopfield neural network based machine learning system
  publication-title: Sensors
  doi: 10.3390/s22030813
– ident: CR22
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  end-page: 11
  ident: CR44
  article-title: Patchmatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1531326.1531330
– ident: CR14
– volume: 83
  start-page: 103430
  year: 2022
  ident: CR26
  article-title: Exemplar-based image inpainting using adaptive two-stage structure-tensor based priority function and nonlocal filtering
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2021.103430
– ident: CR16
– ident: CR37
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 14
  ident: CR45
  article-title: Globally and locally consistent image completion
  publication-title: ACM Transactions on Graphics (ToG).
  doi: 10.1145/3072959.3073659
– ident: CR30
– volume: 487
  start-page: 46
  year: 2022
  end-page: 65
  ident: CR2
  article-title: A survey of deep learning approaches to image restoration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.046
– volume: 10
  start-page: 7790
  year: 2020
  ident: CR24
  article-title: Multi-task learning for small brain tumor segmentation from MRI
  publication-title: Appl. Sci.
  doi: 10.3390/app10217790
– ident: CR33
– volume: 5
  start-page: 333
  issue: 2
  year: 2018
  end-page: 342
  ident: CR11
  article-title: Robust beam hardening artifacts reduction for computed tomography using spectrum modeling
  publication-title: IEEE Trans. Comput. Imaging.
  doi: 10.1109/TCI.2018.2884479
– ident: CR35
– ident: CR29
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR42
– volume: 27
  start-page: 1
  year: 2014
  end-page: 9
  ident: CR38
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems.
– volume: 2
  start-page: 1
  year: 2003
  end-page: 8
  ident: CR9
  article-title: Object removal by exemplar-based inpainting
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 13
  start-page: 7
  issue: 2
  year: 2022
  ident: CR5
  article-title: Semantic residual pyramid network for image inpainting
  publication-title: Information
  doi: 10.3390/info13020071
– ident: CR21
– ident: CR46
– volume: 48
  start-page: 985
  issue: 5
  year: 2020
  end-page: 989
  ident: CR23
  article-title: MRF image inpainting algorithm based on structure offsets statistic and multidirection features
  publication-title: Acta Electronica Sinica
– volume: 34
  start-page: 10001
  issue: 12
  year: 2022
  end-page: 10021
  ident: CR4
  article-title: Iterative facial image inpainting based on an encoder-generator architecture
  publication-title: Neural Computing & Application
  doi: 10.1007/s00521-022-06987-y
– volume: 34
  start-page: 9717
  year: 2022
  end-page: 9731
  ident: CR7
  article-title: Reference-guided face inpainting with reference attention network
  publication-title: Neural Comput & Application
  doi: 10.1007/s00521-022-06961-8
– volume: 87
  start-page: 115929
  year: 2020
  ident: CR39
  article-title: Generative image inpainting via edge structure and color aware fusion
  publication-title: Signal Process. Image Communication.
  doi: 10.1016/j.image.2020.115929
– volume: 9
  start-page: 480
  issue: 9
  year: 2022
  ident: CR1
  article-title: A pixel-wise foreign object debris detection method based on multi-scale feature inpainting
  publication-title: Aerospace
  doi: 10.3390/aerospace9090480
– ident: CR15
– volume: 11
  start-page: 4247
  issue: 9
  year: 2021
  ident: CR36
  article-title: Multi-task learning for medical image inpainting based on organ boundary awareness
  publication-title: Applied Sciences.
  doi: 10.3390/app11094247
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 11
  start-page: 1673
  year: 2021
  ident: CR19
  article-title: Deep learning-based 3d inpainting of brain mr images
  publication-title: Scientific Reports.
  doi: 10.1038/s41598-020-80930-w
– volume: 10
  start-page: 1
  issue: 3
  year: 2023
  end-page: 15
  ident: CR32
  article-title: Enhanced brain parcellation via abnormality inpainting for neuroimage-based consciousness evaluation of hydrocephalus patients by lumbar drainage
  publication-title: Brain Informatics.
– ident: CR34
– volume: 51
  start-page: 4350
  issue: 9
  year: 2021
  end-page: 4362
  ident: CR3
  article-title: Toward realistic face photo-sketch synthesis via composition-aided gans
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2972944
– volume: 7
  start-page: 91
  year: 2016
  end-page: 99
  ident: CR12
  article-title: Medical image inpainting with RBF interpolation technique
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 39
  start-page: 3008
  year: 2020
  end-page: 3018
  ident: CR6
  article-title: CPFNet: context pyramid fusion network for medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2983721
– ident: CR28
– ident: CR41
– ident: CR20
– ident: 2536_CR47
  doi: 10.1007/978-3-030-72084-1_8
– ident: 2536_CR15
  doi: 10.1109/CVPR42600.2020.00778
– volume: 83
  start-page: 103430
  year: 2022
  ident: 2536_CR26
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2021.103430
– ident: 2536_CR21
  doi: 10.1007/978-3-319-24574-4_28
– volume: 22
  start-page: 813
  issue: 3
  year: 2022
  ident: 2536_CR10
  publication-title: Sensors
  doi: 10.3390/s22030813
– ident: 2536_CR17
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  ident: 2536_CR44
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1531326.1531330
– ident: 2536_CR28
  doi: 10.1007/978-3-319-46475-6_43
– ident: 2536_CR43
  doi: 10.1109/ISBI48211.2021.9434115
– ident: 2536_CR27
  doi: 10.1109/AIVR50618.2020.00039
– volume: 51
  start-page: 4350
  issue: 9
  year: 2021
  ident: 2536_CR3
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2972944
– ident: 2536_CR14
  doi: 10.1109/CVPR.2016.265
– volume: 11
  start-page: 1673
  year: 2021
  ident: 2536_CR19
  publication-title: Scientific Reports.
  doi: 10.1038/s41598-020-80930-w
– volume: 27
  start-page: 1
  year: 2014
  ident: 2536_CR38
  publication-title: Advances in Neural Information Processing Systems.
– ident: 2536_CR30
– volume: 10
  start-page: 7790
  year: 2020
  ident: 2536_CR24
  publication-title: Appl. Sci.
  doi: 10.3390/app10217790
– volume: 5
  start-page: 333
  issue: 2
  year: 2018
  ident: 2536_CR11
  publication-title: IEEE Trans. Comput. Imaging.
  doi: 10.1109/TCI.2018.2884479
– ident: 2536_CR20
  doi: 10.1109/WACV.2019.00154
– volume: 34
  start-page: 9717
  year: 2022
  ident: 2536_CR7
  publication-title: Neural Comput & Application
  doi: 10.1007/s00521-022-06961-8
– ident: 2536_CR42
  doi: 10.1007/978-3-030-01252-6_6
– volume: 13
  start-page: 7
  issue: 2
  year: 2022
  ident: 2536_CR5
  publication-title: Information
  doi: 10.3390/info13020071
– volume: 48
  start-page: 985
  issue: 5
  year: 2020
  ident: 2536_CR23
  publication-title: Acta Electronica Sinica
– volume: 11
  start-page: 4247
  issue: 9
  year: 2021
  ident: 2536_CR36
  publication-title: Applied Sciences.
  doi: 10.3390/app11094247
– volume: 7
  start-page: 91
  year: 2016
  ident: 2536_CR12
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 34
  start-page: 10001
  issue: 12
  year: 2022
  ident: 2536_CR4
  publication-title: Neural Computing & Application
  doi: 10.1007/s00521-022-06987-y
– ident: 2536_CR37
– volume: 10
  start-page: 1
  issue: 3
  year: 2023
  ident: 2536_CR32
  publication-title: Brain Informatics.
– ident: 2536_CR13
  doi: 10.1109/CVPR.2017.434
– ident: 2536_CR41
  doi: 10.1109/ICCV.2019.00895
– volume: 487
  start-page: 46
  year: 2022
  ident: 2536_CR2
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.046
– ident: 2536_CR31
  doi: 10.3390/app11020782
– ident: 2536_CR46
  doi: 10.1007/978-3-030-01252-6_6
– ident: 2536_CR16
  doi: 10.1109/ICSSSM.2007.4280177
– ident: 2536_CR25
  doi: 10.1007/978-3-319-46475-6_25
– ident: 2536_CR33
– volume: 208
  start-page: 116400
  year: 2020
  ident: 2536_CR8
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116400
– ident: 2536_CR35
– volume: 9
  start-page: 480
  issue: 9
  year: 2022
  ident: 2536_CR1
  publication-title: Aerospace
  doi: 10.3390/aerospace9090480
– volume: 2
  start-page: 1
  year: 2003
  ident: 2536_CR9
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– ident: 2536_CR18
  doi: 10.1145/3426020.3426088
– volume: 87
  start-page: 115929
  year: 2020
  ident: 2536_CR39
  publication-title: Signal Process. Image Communication.
  doi: 10.1016/j.image.2020.115929
– ident: 2536_CR34
  doi: 10.1109/CVPR.2016.278
– ident: 2536_CR29
  doi: 10.1007/978-3-030-01252-6_6
– ident: 2536_CR22
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 2536_CR45
  publication-title: ACM Transactions on Graphics (ToG).
  doi: 10.1145/3072959.3073659
– volume: 39
  start-page: 3008
  year: 2020
  ident: 2536_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2983721
– ident: 2536_CR40
  doi: 10.1007/978-3-030-01252-6_6
SSID ssj0027083
Score 2.3486917
Snippet Medical diagnosis can be severely hindered by distorted medical images, especially in the analysis of Magnetic Resonance Imaging (MRI) and Computed Tomography...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 181
SubjectTerms Algorithms
Computed tomography
Computer vision
Deep learning
Design
Diagnosis
Engineering
Human error
Image quality
Image reconstruction
Magnetic resonance imaging
Medical imaging
Neural networks
Optimization techniques
Parameter robustness
Pixels
Signal to noise ratio
Tomography
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xf5OBB0UDb7KbpUURREBFfeCt51V3Q7rJd_f1OsqlVUUEPPTVTwmQmM9NMvg9gl5m0wCjMaBQpLFB0xilWtgVVxhquI4fo5UFcL9LLS_HwkF2FS2FV3e1eH0n6nbq57JagKMWYgk-HcconYRrDnXCEDdc3902ZhVlFuB7zvdznENTklV-OQn2EOV3439wWYT5klORobAJLMGHLZZj7gDO4DEvBgyuyF2Cm91ege14OZM8TRZCyX1JZYv3twQNIX7m_MxXplUQ5CgnSe_ZkRsR1yT8SW3Z93wAx1g6I61sP9oui8mXUd9iYxg5JOW4xX4W705Pb4zMaeBeoRocc0SJRKWYWRguhNE-kKViSKmMwOeu0ZdvyNJaZjaWOueZpm1ttMyWkTZVgKBSxNZjCedt1IAyrTYl7ccG0aGcqyiwr4qyjrTBMxiprQVwvRa4DKLnjxnjKGzhlp9ocVZt71ea8BQfvMoMxJMevo7fqFc6De1Y5c9x9iTvzbMFhvaLN65-_tvG34Zswm3ij6NBYbMHUaPhit2FGv4561XDHm-0bp5HpBw
  priority: 102
  providerName: Springer Nature
Title Inpainting non-anatomical objects in brain imaging using enhanced deep convolutional autoencoder network
URI https://link.springer.com/article/10.1007/s12046-024-02536-6
https://www.proquest.com/docview/3257024908
Volume 49
WOSCitedRecordID wos001227042100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: P5Z
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: KB.
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0973-7677
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnChPIpYCisfOIDAbRJvnPhUFQQCtVqtoEWol8ivsCtBdtks_f0dO14ikMqlh_iSjGVlxp4Ze_x9AAfMZCV6YUajSGGCogWnmNmWVBlruI4copcHcf2R9fv53Z0YhA23OpRVztdEv1CbsXZ75F-Yo1tL3DHV18kTdaxR7nQ1UGgswrJDSYh96d5Nm3BFDQwnunWKoiJcmmmuziU4EIo94pMyTvlrx9RGm28OSL3fufjwvyNeh7UQcZJvjYlswIKtNmEjzOmaHAbg6aMtGF5VEzny1BGkGldUVpiRezgBMlZuv6Ymo4ooRypBRo-e3oi4uvl7YquhryQgxtoJcZXswaJRVD7Pxg4t09gpqZqi84_w6-L859klDUwMVOMUndEyURnGGkbnudI8kaZkSaaMwXAt7cme5VkshY2ljrnmWY9bbYXKpc1UzlAoYtuwhOO2O0AY5p8SV-eS6bwnVCQsK2ORapsbJmMlOhDP1VDoAFPu2DIeihZg2amuwF9beNUVvAPHLzKTBqTj3a_35voqwoSti1ZZHTiZa7x9_e_edt_v7ROsJt7IUhrne7A0mz7bfVjRf2ajetqF5dPz_uC6C4vfTz93vfFiO0h_Y3t9c_sXAC30_g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9VAEJ4AmsBFRTQ8RdkDJBhcbbt92-7BEBUJLzxeOEDCreyvyku0fb4Wjf-Uf6Oz25YGE7hx8NBTu5vd7rc7Mzsz3wBsMZPkKIUZDQKFBooWnKJlm1NlrOE6cIxensR1nEwm6fm5OFmAP10ujAur7M5Ef1CbUrs78vfMlVuLnJtqb_aDuqpRzrvaldBoYHFkf_9Ck636MNrH9d2OooMvp58PaVtVgGqEW03zSCUoN41OU6V5JE3OokQZg6rHMJax5UkohQ2lDrnmScyttkKl0iYqZdgoYNjvIjyIGeqmzgn86V1v4AUN7SeqERSHKtoknSZVL8KJU5wBPkPGKb8pCHvt9h-HrJdzB4__tz_0BB61GjX52GyBVViwxVNYbc-siuy0xNpv1uByVMzk1JfGIEVZUFnIuvR0CaRU7j6qItOCKFc0g0y_-_JNxOUFfCW2uPSREsRYOyMuUr_dsdhUXtWlYwM1dk6KJqj-GZzdy4yfwxKO264DYWhfS5Q-OdNpLFQgLMtDMdQ2NUyGSgwg7JY90y0Nu6sG8i3rCaQdVDJcysxDJeMD2L1uM2tISO78eqPDR9YeSFXWg2MAbzuE9a9v7-3F3b1twvLh6fE4G48mRy9hJfIAH9Iw3YClen5lX8FD_bOeVvPXfqsQuLhv5P0FpJlPSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9NADLdGhxA8jLUbojDYPexhCE5LcukleZyAahVVVWkw9S26r6yVxjVqU_5-fJeUFARI0x7ylPPpdLZjO7Z_BjhjOinQCjMaBBIDFJVxipFtQaU2mqvAIXp5ENdxMpmks1k23eni99Xu25Rk3dPgUJpsdVHq4qJtfItwG4r2BZ8B45Q_gv3YFdK7eP36pg250MNoWmX-Tve7OWp9zD_Sot7aDJ8__JyHcNB4muSyFo0u7Bnbg2c7-IM96DaavSbnDfz0uyOYj2wpFn6ABLFLS4XFuNyDCpCldH9t1mRhiXSjJcjiux9yRFz1_C0xdu7rCYg2piSunr2RayQVm2rpMDO1WRFbl54fw7fh568fr2gzj4EqVNSKFpFM0OPQKk2l4pHQBYsSqTU6bYNYxIYnochMKFTIFU9ibpTJZCpMIlOGRAF7AR08t3kJhGEUKvAbXTCVxpkMMsOKMBsok2omQpn1IdyyJVcNWLmbmXGXtzDL7mpzvNrcX23O-_D-F01ZQ3X8d_XJltt5o7brnLmZfpHLhfbhw5a77et_7_bqfstP4cn00zAfjyZfXsPTyMvHgIbpCXSq1ca8gcfqR7VYr956af4JFXX0zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inpainting+non-anatomical+objects+in+brain+imaging+using+enhanced+deep+convolutional+autoencoder+network&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Kumar%2C+Puranam+Revanth&rft.au=Shilpa%2C+B&rft.au=Jha%2C+Rajesh+Kumar&rft.au=Raju%2C+B+Deevena&rft.date=2024-05-18&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=49&rft.issue=2&rft.spage=181&rft_id=info:doi/10.1007%2Fs12046-024-02536-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7677&client=summon